1
|
Parthasarathy R, Wakefield D, Santiago FS, Kaakoush NO, Tedla N. Horizontal gene transfer and endogenous retroviruses as mechanisms for molecular mimicry. THE LANCET. MICROBE 2024; 5:e4-e5. [PMID: 37883987 DOI: 10.1016/s2666-5247(23)00316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Affiliation(s)
- Rohit Parthasarathy
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Denis Wakefield
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fernando S Santiago
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Li L, Liu Y, Xiao Q, Xiao Z, Meng D, Yang Z, Deng W, Yin H, Liu Z. Dissecting the HGT network of carbon metabolic genes in soil-borne microbiota. Front Microbiol 2023; 14:1173748. [PMID: 37485539 PMCID: PMC10361621 DOI: 10.3389/fmicb.2023.1173748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/22/2023] [Indexed: 07/25/2023] Open
Abstract
The microbiota inhabiting soil plays a significant role in essential life-supporting element cycles. Here, we investigated the occurrence of horizontal gene transfer (HGT) and established the HGT network of carbon metabolic genes in 764 soil-borne microbiota genomes. Our study sheds light on the crucial role of HGT components in microbiological diversification that could have far-reaching implications in understanding how these microbial communities adapt to changing environments, ultimately impacting agricultural practices. In the overall HGT network of carbon metabolic genes in soil-borne microbiota, a total of 6,770 nodes and 3,812 edges are present. Among these nodes, phyla Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes are predominant. Regarding specific classes, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidia, Actinomycetia, Betaproteobacteria, and Clostridia are dominant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional assignments of glycosyltransferase (18.5%), glycolysis/gluconeogenesis (8.8%), carbohydrate-related transporter (7.9%), fatty acid biosynthesis (6.5%), benzoate degradation (3.1%) and butanoate metabolism (3.0%) are primarily identified. Glycosyltransferase involved in cell wall biosynthesis, glycosylation, and primary/secondary metabolism (with 363 HGT entries), ranks first overwhelmingly in the list of most frequently identified carbon metabolic HGT enzymes, followed by pimeloyl-ACP methyl ester carboxylesterase, alcohol dehydrogenase, and 3-oxoacyl-ACP reductase. Such HGT events mainly occur in the peripheral functions of the carbon metabolic pathway instead of the core section. The inter-microbe HGT genetic traits in soil-borne microbiota genetic sequences that we recognized, as well as their involvement in the metabolism and regulation processes of carbon organic, suggest a pervasive and substantial effect of HGT on the evolution of microbes.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, China
| | - Qinzhi Xiao
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, China
| | - Zhipeng Xiao
- Hengyang Tobacco Company of Hunan Province, Hengyang, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Wenqiao Deng
- Changsha Institute of Agricultural Science, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
3
|
Sengupta S, Azad RK. Reconstructing horizontal gene flow network to understand prokaryotic evolution. Open Biol 2022; 12:220169. [PMID: 36446404 PMCID: PMC9708380 DOI: 10.1098/rsob.220169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major source of phenotypic innovation and a mechanism of niche adaptation in prokaryotes. Quantification of HGT is critical to decipher its myriad roles in microbial evolution and adaptation. Advances in genome sequencing and bioinformatics have augmented our ability to understand the microbial world, particularly the direct or indirect influence of HGT on diverse life forms. Methods for detecting HGT can be classified into phylogenetic-based and parametric or composition-based approaches. Here, we exploited the complementary strengths of both the approaches to construct a high confidence horizontal gene flow network. Our network is unique in its ability to detect the transfer of native genes of a genome to genomes from other taxa, thus establishing donor and recipient organisms (taxa), rather than through a post hoc analysis as is the practice with several other approaches. The scale-free horizontal gene flow network presented here provides new insights into modes of transfer for the exchange of genetic information and also illuminates differential gene flow across phyla.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA,Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
4
|
Sengupta S, Azad RK. Reconstructing horizontal gene flow network to understand prokaryotic evolution. Open Biol 2022. [PMID: 36446404 DOI: 10.6084/m9.figshare.c.6307519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major source of phenotypic innovation and a mechanism of niche adaptation in prokaryotes. Quantification of HGT is critical to decipher its myriad roles in microbial evolution and adaptation. Advances in genome sequencing and bioinformatics have augmented our ability to understand the microbial world, particularly the direct or indirect influence of HGT on diverse life forms. Methods for detecting HGT can be classified into phylogenetic-based and parametric or composition-based approaches. Here, we exploited the complementary strengths of both the approaches to construct a high confidence horizontal gene flow network. Our network is unique in its ability to detect the transfer of native genes of a genome to genomes from other taxa, thus establishing donor and recipient organisms (taxa), rather than through a post hoc analysis as is the practice with several other approaches. The scale-free horizontal gene flow network presented here provides new insights into modes of transfer for the exchange of genetic information and also illuminates differential gene flow across phyla.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA.,Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
5
|
Zhang P, Zhang Z, Zhang L, Wang J, Wu C. Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Comput Struct Biotechnol J 2020; 18:1383-1390. [PMID: 32637037 PMCID: PMC7316871 DOI: 10.1016/j.csbj.2020.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The phylogenetic distribution of GT1 family enzymes showed domain-dependent pattern. The domain-dependent characterized GTs showed distinct substrates spectrum. Two regions that discriminate the GT1 enzymes from different domains were identified.
Glycosyltransferases (GTs) are responsible for transferring glycosyl moieties from activated sugar donors to certain acceptors, among which the GT1 family enzymes have been known for their outstanding glycosylation capacities toward diverse natural products, such as glycolipids, flavonoids and macrolides etc. However, there still lacks a systematic collation of this important family members. In this minireview, all the GT1 family sequences were phylogenetically analyzed, and the grouping of GT1 proteins exhibited a taxonomic life domain-dependent pattern, revealing many untapped clades of GTs. The further phylogenetic analysis of the characterized GTs facilitated the classification of substrates coverage of GT1 family enzymes from different life domains, whereby the GTs from bacteria can tolerate a wider spectrum of chemical skeletons as substrates, showing higher promiscuity than those from other domains. Furthermore, the sequence sizes of GTs from different domains were compared to understand their different substrates selectivity. Based on the multiple sequence alignments of 28 representative GT1 enzymes with crystal structures, two critical regions located in the N-terminal of GTs were identified, which were most variable among sequences from different taxonomic domains and essential for substrates binding and/or catalysis. The key roles of these two regions were validated by enumerating the influential residues that interacted with substrates in the representative structures from bacteria and plants. The atlas for GT1 family in terms of phylogeny, substrates selectivity, sequence length, and critical motifs provides the clues for the exploration of unknown GT1s and rational engineering of known enzymes, synthesizing novel promising glycoconjugates for pharmaceutical application.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Lijuan Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
6
|
Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology 2020; 29:625-644. [PMID: 31287538 DOI: 10.1093/glycob/cwz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vertebrates are estimated to have arisen over 500 million years ago in the Cambrian Period. Species that survived the Big Five extinction events at a global scale underwent repeated adaptive radiations along with habitat expansions from the sea to the land and sky. The development of the endoskeleton and neural tube enabled more complex body shapes. At the same time, vertebrates became suitable for the invasion and proliferation of foreign organisms. Adaptive immune systems were acquired for responses to a wide variety of pathogens, and more sophisticated systems developed during the evolution of mammals and birds. Vertebrate glycans consist of common core structures and various elongated structures, such as Neu5Gc, Galα1-3Gal, Galα1-4Gal, and Galβ1-4Gal epitopes, depending on the species. During species diversification, complex glycan structures were generated, maintained or lost. Whole-genome sequencing has revealed that vertebrates harbor numerous and even redundant glycosyltransferase genes. The production of various glycan structures is controlled at the genetic level in a species-specific manner. Because cell surface glycans are often targets of bacterial and viral infections, glycan structural diversity is presumed to be protective against infections. However, the maintenance of apparently redundant glycosyltransferase genes and investment in species-specific glycan structures, even in higher vertebrates with highly developed immune systems, are not well explained. This fact suggests that glycans play important roles in unknown biological processes.
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
7
|
Addressing concerns over the fate of DNA derived from genetically modified food in the human body: A review. Food Chem Toxicol 2018; 124:423-430. [PMID: 30580028 DOI: 10.1016/j.fct.2018.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
Global commercialization of GM food and feed has stimulated much debate over the fate of GM food-derived DNA in the body of the consumer and as to whether it poses any health risks. We reviewed the fate of DNA derived from GM food in the human body. During mechanical/chemical processing, integrity of DNA is compromised. Food-DNA can survive harsh processing and digestive conditions with fragments up to a few hundred bp detectable in the gastrointestinal tract. Compelling evidence supported the presence of food (also GM food) derived DNA in the blood and tissues of human/animal. There is limited evidence of food-born DNA integrating into the genome of the consumer and of horizontal transfer of GM crop DNA into gut-bacteria. We find no evidence that transgenes in GM crop-derived foods have a greater propensity for uptake and integration than the host DNA of the plant-food. We found no evidence of plant-food DNA function/expression following transfer to either the gut-bacteria or somatic cells. Strong evidence suggested that plant-food-miRNAs can survive digestion, enter the body and affect gene expression patterns. We envisage that this multi-dimensional review will address questions regarding the fate of GM food-derived DNA and gene-regulatory-RNA in the human body.
Collapse
|
8
|
Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, Hayward MR, Forslund SK, Schmidt TSB, Descombes P, Jackson JR, Li Q, Bork P. Similarity of the dog and human gut microbiomes in gene content and response to diet. MICROBIOME 2018; 6:72. [PMID: 29669589 PMCID: PMC5907387 DOI: 10.1186/s40168-018-0450-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 03/19/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Gut microbes influence their hosts in many ways, in particular by modulating the impact of diet. These effects have been studied most extensively in humans and mice. In this work, we used whole genome metagenomics to investigate the relationship between the gut metagenomes of dogs, humans, mice, and pigs. RESULTS We present a dog gut microbiome gene catalog containing 1,247,405 genes (based on 129 metagenomes and a total of 1.9 terabasepairs of sequencing data). Based on this catalog and taxonomic abundance profiling, we show that the dog microbiome is closer to the human microbiome than the microbiome of either pigs or mice. To investigate this similarity in terms of response to dietary changes, we report on a randomized intervention with two diets (high-protein/low-carbohydrate vs. lower protein/higher carbohydrate). We show that diet has a large and reproducible effect on the dog microbiome, independent of breed or sex. Moreover, the responses were in agreement with those observed in previous human studies. CONCLUSIONS We conclude that findings in dogs may be predictive of human microbiome results. In particular, a novel finding is that overweight or obese dogs experience larger compositional shifts than lean dogs in response to a high-protein diet.
Collapse
Affiliation(s)
- Luis Pedro Coelho
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens Roat Kultima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paul Igor Costea
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | - Matthew Robert Hayward
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sofia K. Forslund
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Blackler RJ, Gagnon SML, Polakowski R, Rose NL, Zheng RB, Letts JA, Johal AR, Schuman B, Borisova SN, Palcic MM, Evans SV. Glycosyltransfer in mutants of putative catalytic residue Glu303 of the human ABO(H) A and B blood group glycosyltransferases GTA and GTB proceeds through a labile active site. Glycobiology 2018; 27:370-380. [PMID: 27979997 DOI: 10.1093/glycob/cww117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
The homologous glycosyltransferases α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an SNi-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type. High-resolution single crystal X-ray diffraction studies reveal, surprisingly, that the mutated Cys, Asp and Gln functional groups are no more than 0.8 Å further from the anomeric carbon of donor substrate compared to wild type. However, complicating the analysis is the observation that Glu303 itself plays a critical role in maintaining the stability of a strained "double-turn" in the active site through several hydrogen bonds, and any mutation other than E303Q leads to significantly higher thermal motion or even disorder in the substrate recognition pockets. Thus, there is a remarkable juxtaposition of the mutants E303C and E303D, which retain significant activity despite disrupted active site architecture, with GTB/E303Q, which maintains active site architecture but exhibits zero activity. These findings indicate that nucleophilicity at position 303 is more catalytically valuable than active site stability and highlight the mechanistic elasticity of these enzymes.
Collapse
Affiliation(s)
- Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC, Canada
| | - Susannah M L Gagnon
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC, Canada
| | - Robert Polakowski
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Natisha L Rose
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ruixiang B Zheng
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - James A Letts
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC, Canada
| | - Asha R Johal
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC, Canada
| | - Brock Schuman
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC, Canada
| | - Svetlana N Borisova
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC, Canada
| | - Monica M Palcic
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC, Canada
| |
Collapse
|
10
|
Crisp A, Boschetti C, Perry M, Tunnacliffe A, Micklem G. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol 2015; 16:50. [PMID: 25785303 PMCID: PMC4358723 DOI: 10.1186/s13059-015-0607-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/04/2015] [Indexed: 01/17/2023] Open
Abstract
Background A fundamental concept in biology is that heritable material, DNA, is passed from parent to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic material between different species. HGT is well-known in single-celled organisms such as bacteria, but its existence in higher organisms, including animals, is less well established, and is controversial in humans. Results We have taken advantage of the recent availability of a sufficient number of high-quality genomes and associated transcriptomes to carry out a detailed examination of HGT in 26 animal species (10 primates, 12 flies and four nematodes) and a simplified analysis in a further 14 vertebrates. Genome-wide comparative and phylogenetic analyses show that HGT in animals typically gives rise to tens or hundreds of active ‘foreign’ genes, largely concerned with metabolism. Our analyses suggest that while fruit flies and nematodes have continued to acquire foreign genes throughout their evolution, humans and other primates have gained relatively few since their common ancestor. We also resolve the controversy surrounding previous evidence of HGT in humans and provide at least 33 new examples of horizontally acquired genes. Conclusions We argue that HGT has occurred, and continues to occur, on a previously unsuspected scale in metazoans and is likely to have contributed to biochemical diversification during animal evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0607-3) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Brockhausen I. Crossroads between Bacterial and Mammalian Glycosyltransferases. Front Immunol 2014; 5:492. [PMID: 25368613 PMCID: PMC4202792 DOI: 10.3389/fimmu.2014.00492] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022] Open
Abstract
Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, Queen's University , Kingston, ON , Canada ; Department of Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| |
Collapse
|
12
|
Yamamoto F, Cid E, Yamamoto M, Saitou N, Bertranpetit J, Blancher A. An integrative evolution theory of histo-blood group ABO and related genes. Sci Rep 2014; 4:6601. [PMID: 25307962 PMCID: PMC5377540 DOI: 10.1038/srep06601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022] Open
Abstract
The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Emili Cid
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Miyako Yamamoto
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Naruya Saitou
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Jaume Bertranpetit
- IBE - Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Antoine Blancher
- Laboratoire d'Immunogénétique Moléculaire (LIMT, EA3034), Faculté de Médecine Purpan, Université Paul Sabatier, (Université de Toulouse III), Toulouse, France
| |
Collapse
|
13
|
Sánchez-Rodríguez A, Tytgat HLP, Winderickx J, Vanderleyden J, Lebeer S, Marchal K. A network-based approach to identify substrate classes of bacterial glycosyltransferases. BMC Genomics 2014; 15:349. [PMID: 24885406 PMCID: PMC4039749 DOI: 10.1186/1471-2164-15-349] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/16/2014] [Indexed: 01/03/2023] Open
Abstract
Background Bacterial interactions with the environment- and/or host largely depend on the bacterial glycome. The specificities of a bacterial glycome are largely determined by glycosyltransferases (GTs), the enzymes involved in transferring sugar moieties from an activated donor to a specific substrate. Of these GTs their coding regions, but mainly also their substrate specificity are still largely unannotated as most sequence-based annotation flows suffer from the lack of characterized sequence motifs that can aid in the prediction of the substrate specificity. Results In this work, we developed an analysis flow that uses sequence-based strategies to predict novel GTs, but also exploits a network-based approach to infer the putative substrate classes of these predicted GTs. Our analysis flow was benchmarked with the well-documented GT-repertoire of Campylobacter jejuni NCTC 11168 and applied to the probiotic model Lactobacillus rhamnosus GG to expand our insights in the glycosylation potential of this bacterium. In L. rhamnosus GG we could predict 48 GTs of which eight were not previously reported. For at least 20 of these GTs a substrate relation was inferred. Conclusions We confirmed through experimental validation our prediction of WelI acting upstream of WelE in the biosynthesis of exopolysaccharides. We further hypothesize to have identified in L. rhamnosus GG the yet undiscovered genes involved in the biosynthesis of glucose-rich glycans and novel GTs involved in the glycosylation of proteins. Interestingly, we also predict GTs with well-known functions in peptidoglycan synthesis to also play a role in protein glycosylation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-349) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Sarah Lebeer
- Department of Microbial and Molecular Systems, KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 2460, Leuven B-3001, Belgium.
| | | |
Collapse
|
14
|
Pham TTK, Stinson B, Thiyagarajan N, Lizotte-Waniewski M, Brew K, Acharya KR. Structures of complexes of a metal-independent glycosyltransferase GT6 from Bacteroides ovatus with UDP-N-acetylgalactosamine (UDP-GalNAc) and its hydrolysis products. J Biol Chem 2014; 289:8041-50. [PMID: 24459149 PMCID: PMC3961637 DOI: 10.1074/jbc.m113.545384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/22/2014] [Indexed: 11/20/2022] Open
Abstract
Mammalian members of glycosyltransferase family 6 (GT6) of the CAZy database have a GT-A fold containing a conserved Asp-X-Asp (DXD) sequence that binds an essential metal cofactor. Bacteroides ovatus GT6a represents a GT6 clade found in more than 30 Gram-negative bacteria that is similar in sequence to the catalytic domains of mammalian GT6, but has an Asn(95)-Ala-Asn(97) (NXN) sequence substituted for the DXD motif and metal-independent catalytic activity. Co-crystals of a low activity mutant of BoGT6a (E192Q) with UDP-GalNAc contained protein complexes with intact UDP-GalNAc and two forms with hydrolysis products (UDP plus GalNAc) representing an initial closed complex and later open form primed for product release. Two cationic residues near the C terminus of BoGT6a, Lys(231) and Arg(243), interact with the diphosphate moiety of UDP-GalNAc, but only Lys(231) interacts with the UDP product and may function in leaving group stabilization. The amide group of Asn(95), the first Asn of the NXN motif, interacts with the ribose moiety of the substrate. This metal-independent GT6 resembles its metal-dependent homologs in undergoing conformational changes on binding UDP-GalNAc that arise from structuring the C terminus to cover this substrate. It appears that in the GT6 family, the metal cofactor functions specifically in binding the UDP moiety in the donor substrate and transition state, actions that can be efficiently performed by components of the polypeptide chain.
Collapse
Affiliation(s)
- Tram T. K. Pham
- From the Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom and
| | - Brittany Stinson
- the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Nethaji Thiyagarajan
- From the Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom and
| | - Michelle Lizotte-Waniewski
- the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Keith Brew
- the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - K. Ravi Acharya
- From the Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom and
| |
Collapse
|
15
|
Thiyagarajan N, Pham TTK, Stinson B, Sundriyal A, Tumbale P, Lizotte-Waniewski M, Brew K, Acharya KR. Structure of a metal-independent bacterial glycosyltransferase that catalyzes the synthesis of histo-blood group A antigen. Sci Rep 2012; 2:940. [PMID: 23230506 PMCID: PMC3516806 DOI: 10.1038/srep00940] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/16/2012] [Indexed: 11/09/2022] Open
Abstract
Histo-blood group antigens (HBGAs) are a source of antigenic variation between individuals that modulates resistance and susceptibility to pathogens and is a barrier to the spread of enveloped viruses. HBGAs are also produced by a few prokaryotes where they are synthesized by glycosyltransferases (GTs) related to human HBGA synthases. Here we report the first structure of a bacterial GT of this family, from an intestinal resident, Bacteroides ovatus. Unlike its mammalian homologues and other GTs with similar folds, this protein lacks a metal-binding Asp-X-Asp motif and is fully active in the absence of divalent metal ions, yet is strikingly similar in structure and in its interactions with substrates to structurally characterized mammalian metal-dependent mammalian homologues. This shows how an apparently major divergence in catalytic properties can be accommodated by minor structural adjustments and illustrates the structural underpinnings of horizontal transfer of a functional gene from prokaryotes to vertebrates.
Collapse
Affiliation(s)
- Nethaji Thiyagarajan
- Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Urresti S, Albesa-Jové D, Schaeffer F, Pham HT, Kaur D, Gest P, van der Woerd MJ, Carreras-González A, López-Fernández S, Alzari PM, Brennan PJ, Jackson M, Guerin ME. Mechanistic insights into the retaining glucosyl-3-phosphoglycerate synthase from mycobacteria. J Biol Chem 2012; 287:24649-61. [PMID: 22637481 DOI: 10.1074/jbc.m112.368191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Considerable progress has been made in recent years in our understanding of the structural basis of glycosyl transfer. Yet the nature and relevance of the conformational changes associated with substrate recognition and catalysis remain poorly understood. We have focused on the glucosyl-3-phosphoglycerate synthase (GpgS), a "retaining" enzyme, that initiates the biosynthetic pathway of methylglucose lipopolysaccharides in mycobacteria. Evidence is provided that GpgS displays an unusually broad metal ion specificity for a GT-A enzyme, with Mg(2+), Mn(2+), Ca(2+), Co(2+), and Fe(2+) assisting catalysis. In the crystal structure of the apo-form of GpgS, we have observed that a flexible loop adopts a double conformation L(A) and L(I) in the active site of both monomers of the protein dimer. Notably, the L(A) loop geometry corresponds to an active conformation and is conserved in two other relevant states of the enzyme, namely the GpgS·metal·nucleotide sugar donor and the GpgS·metal·nucleotide·acceptor-bound complexes, indicating that GpgS is intrinsically in a catalytically active conformation. The crystal structure of GpgS in the presence of Mn(2+)·UDP·phosphoglyceric acid revealed an alternate conformation for the nucleotide sugar β-phosphate, which likely occurs upon sugar transfer. Structural, biochemical, and biophysical data point to a crucial role of the β-phosphate in donor and acceptor substrate binding and catalysis. Altogether, our experimental data suggest a model wherein the catalytic site is essentially preformed, with a few conformational changes of lateral chain residues as the protein proceeds along the catalytic cycle. This model of action may be applicable to a broad range of GT-A glycosyltransferases.
Collapse
Affiliation(s)
- Saioa Urresti
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yamamoto F, Cid E, Yamamoto M, Blancher A. ABO research in the modern era of genomics. Transfus Med Rev 2011; 26:103-18. [PMID: 21945157 DOI: 10.1016/j.tmrv.2011.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Research on ABO has advanced significantly in recent years. A database was established to manage the sequence information of an increasing number of novel alleles. Genome sequencings have identified ABO orthologues and paralogues in various organisms and enhanced the knowledge on the evolution of the ABO and related genes. The most prominent advancements include clarification of the association between ABO and different disease processes. For instance, ABO status affects the infectivity of certain strains of Helicobacter pylori and Noroviruses as well as the sequestration and rosetting of red blood cells infected with Plasmodium falciparum. Genome-wide association studies have conclusively linked the ABO locus to pancreatic cancer, venous thromboembolism, and myocardial infarction in the presence of coronary atherosclerosis. These findings suggest ABO's important role in determining an individual's susceptibility to such diseases. Furthermore, our understanding of the structures of A and B transferases and their enzymology has been dramatically improved. ABO has also become a research subject in neurobiology and the preparation of artificial/universal blood and became a topic in the pseudoscience of "blood type diets." With such new progress, it has become evident that ABO is a critical player in the modern era of genomic medicine. This article provides the most up-to-date information regarding ABO genomics.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- Institut de Medicina Predictiva i Personalitzada delCàncer (IMPPC), Badalona, Spain.
| | | | | | | |
Collapse
|