1
|
Zhao T, Duan S, Li J, Zheng H, Liu C, Zhang H, Luo H, Xu Y. Mapping of repeat-associated non-AUG (RAN) translation knowledge: A bibliometric analysis. Heliyon 2024; 10:e29141. [PMID: 38628764 PMCID: PMC11019168 DOI: 10.1016/j.heliyon.2024.e29141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Over 50 genetic human disorders are attributed to the irregular expansion of microsatellites. These expanded microsatellite sequences can experience bidirectional transcription, leading to new reading frames. Beyond the standard AUG initiation or adjacent start codons, they are translated into proteins characterized by disease-causing amino acid repeats through repeat-associated non-AUG translation. Despite its significance, there's a discernible gap in comprehensive and objective articles on RAN translation. This study endeavors to evaluate and delineate the contemporary landscape and progress of RAN translation research via a bibliometric analysis. We sourced literature on RAN translation from the Web of Science Core Collection. Utilizing two bibliometric analysis tools, CiteSpace and VOSviewer, we gauged individual impacts and interactions by examining annual publications, journals, co-cited journals, countries/regions, institutions, authors, and co-cited authors. Following this, we assessed the co-occurrence and bursts of keywords and co-cited references to pinpoint research hotspots and trending in RAN translation. Between 2011 and 2022, 1317 authors across 359 institutions from 34 countries/regions contributed to 250 publications on RAN translation, spread across 118 academic journals. This article presents a systematic, objective, and comprehensive analysis of the current literature on RAN translation. Our findings emphasize that mechanisms related to C9orf72 ALS/FTD are pivotal topics in the realm of RAN translation, with cellular stress and the utilization of small molecule marking the trending research areas.
Collapse
Affiliation(s)
- Taiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Suying Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Honglin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenyang Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Agarwal R, T RR, Smith JC. Comparative Assessment of Pose Prediction Accuracy in RNA-Ligand Docking. J Chem Inf Model 2023; 63:7444-7452. [PMID: 37972310 DOI: 10.1021/acs.jcim.3c01533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Structure-based virtual high-throughput screening is used in early-stage drug discovery. Over the years, docking protocols and scoring functions for protein-ligand complexes have evolved to improve the accuracy in the computation of binding strengths and poses. In the past decade, RNA has also emerged as a target class for new small-molecule drugs. However, most ligand docking programs have been validated and tested for proteins and not RNA. Here, we test the docking power (pose prediction accuracy) of three state-of-the-art docking protocols on 173 RNA-small molecule crystal structures. The programs are AutoDock4 (AD4) and AutoDock Vina (Vina), which were designed for protein targets, and rDock, which was designed for both protein and nucleic acid targets. AD4 performed relatively poorly. For RNA targets for which a crystal structure of a bound ligand used to limit the docking search space is available and for which the goal is to identify new molecules for the same pocket, rDock performs slightly better than Vina, with success rates of 48% and 63%, respectively. However, in the more common type of early-stage drug discovery setting, in which no structure of a ligand-target complex is known and for which a larger search space is defined, rDock performed similarly to Vina, with a low success rate of ∼27%. Vina was found to have bias for ligands with certain physicochemical properties, whereas rDock performs similarly for all ligand properties. Thus, for projects where no ligand-protein structure already exists, Vina and rDock are both applicable. However, the relatively poor performance of all methods relative to protein-target docking illustrates a need for further methods refinement.
Collapse
Affiliation(s)
- Rupesh Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-1939, United States
| | - Rajitha Rajeshwar T
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-1939, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-1939, United States
| |
Collapse
|
3
|
Liang G, Yin H, Ding F. Technical Advances and Applications of Spatial Transcriptomics. GEN BIOTECHNOLOGY 2023; 2:384-398. [PMID: 39544230 PMCID: PMC11562938 DOI: 10.1089/genbio.2023.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Transcriptomics is one of the largest areas of research in biological sciences. Aside from RNA expression levels, the significance of RNA spatial context has also been unveiled in the recent decade, playing a critical role in diverse biological processes, from subcellular kinetic regulation to cell communication, from tissue architecture to tumor microenvironment, and more. To systematically unravel the positional patterns of RNA molecules across subcellular, cellular, and tissue levels, spatial transcriptomics techniques have emerged and rapidly became an irreplaceable tool set. Herein, we review and compare current spatial transcriptomics techniques on their methods, advantages, and limitations, as well as applications across a wide range of biological investigations. This review serves as a comprehensive guide to spatial transcriptomics for researchers interested in adopting this powerful suite of technologies.
Collapse
Affiliation(s)
- Guohao Liang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Hong Yin
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Fangyuan Ding
- Center for Synthetic Biology, Center for Complex Biological Systems, Department of Developmental and Cell Biology, and Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Almehmadi LM, Valsangkar VA, Halvorsen K, Zhang Q, Sheng J, Lednev IK. Surface-enhanced Raman spectroscopy for drug discovery: peptide-RNA binding. Anal Bioanal Chem 2022; 414:6009-6016. [PMID: 35764806 PMCID: PMC9404289 DOI: 10.1007/s00216-022-04190-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
The ever-growing demand for new drugs highlights the need to develop novel cost- and time-effective techniques for drug discovery. Surface-enhanced Raman spectroscopy (SERS) is an emerging ultrasensitive and label-free technique that allows for the efficient detection and characterization of molecular interactions. We have recently developed a SERS platform for detecting a single protein molecule linked to a gold substrate (Almehmadi et al. Scientific Reports 2019). In this study, we extended the approach to probe the binding of potential drugs to RNA targets. To demonstrate the proof of concept, two 16-amino acid residue peptides with close primary structures and different binding affinities to the RNA CUG repeat related to myotonic dystrophy were tested. Three-microliter solutions of the RNA repeat with these peptides at nanomolar concentrations were probed using the developed approach, and the binding of only one peptide was demonstrated. The SER spectra exhibited significant fluctuations along with a sudden strong enhancement as spectra were collected consecutively from individual spots. Principal component analysis (PCA) of the SER spectral datasets indicated that free RNA repeats could be differentiated from those complexed with a peptide with 100% accuracy. The developed SERS platform provides a novel opportunity for label-free screening of RNA-binding peptides for drug discovery. Schematic representation of the SERS platform for drug discovery developed in this study.
Collapse
Affiliation(s)
- Lamyaa M Almehmadi
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Vibhav A Valsangkar
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ken Halvorsen
- College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Qiang Zhang
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA. .,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA. .,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
5
|
Wiedemann B, Kamps D, Depta L, Weisner J, Cvetreznik J, Tomassi S, Gentz S, Hoffmann JE, Müller MP, Koch O, Dehmelt L, Rauh D. Design and synthesis of Nrf2-derived hydrocarbon stapled peptides for the disruption of protein-DNA-interactions. PLoS One 2022; 17:e0267651. [PMID: 35731722 PMCID: PMC9216541 DOI: 10.1371/journal.pone.0267651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Misregulation and mutations of the transcription factor Nrf2 are involved in the development of a variety of human diseases. In this study, we employed the technology of stapled peptides to address a protein-DNA-complex and designed a set of Nrf2-based derivatives. Varying the length and position of the hydrocarbon staple, we chose the best peptide for further evaluation in both fixed and living cells. Peptide 4 revealed significant enrichment within the nucleus compared to its linear counterpart 5, indicating potent binding to DNA. Our studies suggest that these molecules offer an interesting strategy to target activated Nrf2 in cancer cells.
Collapse
Affiliation(s)
- Bianca Wiedemann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Dominic Kamps
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Laura Depta
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Jörn Weisner
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Jana Cvetreznik
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - Sascha Gentz
- Protein Chemistry Facility, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jan-Erik Hoffmann
- Protein Chemistry Facility, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Matthias P. Müller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Oliver Koch
- Institute of Pharmaceutical and Medicinal Chemistry and German Center of Infection Research, Münster, Germany
| | - Leif Dehmelt
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
- * E-mail:
| |
Collapse
|
6
|
Chang Z, Zheng YY, Mathivanan J, Valsangkar VA, Du J, Abou-Elkhair RAI, Hassan AEA, Sheng J. Fluorescence-Based Binding Characterization of Small Molecule Ligands Targeting CUG RNA Repeats. Int J Mol Sci 2022; 23:ijms23063321. [PMID: 35328743 PMCID: PMC8955525 DOI: 10.3390/ijms23063321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pathogenic CUG and CCUG RNA repeats have been associated with myotonic dystrophy type 1 and 2 (DM1 and DM2), respectively. Identifying small molecules that can bind these RNA repeats is of great significance to develop potential therapeutics to treat these neurodegenerative diseases. Some studies have shown that aminoglycosides and their derivatives could work as potential lead compounds targeting these RNA repeats. In this work, sisomicin, previously known to bind HIV-1 TAR, is investigated as a possible ligand for CUG RNA repeats. We designed a novel fluorescence-labeled RNA sequence of r(CUG)10 to mimic cellular RNA repeats and improve the detecting sensitivity. The interaction of sisomicin with CUG RNA repeats is characterized by the change of fluorescent signal, which is initially minimized by covalently incorporating the fluorescein into the RNA bases and later increased upon ligand binding. The results show that sisomicin can bind and stabilize the folded RNA structure. We demonstrate that this new fluorescence-based binding characterization assay is consistent with the classic UV Tm technique, indicating its feasibility for high-throughput screening of ligand-RNA binding interactions and wide applications to measure the thermodynamic parameters in addition to binding constants and kinetics when probing such interactions.
Collapse
Affiliation(s)
- Zhihua Chang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Ya Ying Zheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Johnsi Mathivanan
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Vibhav A. Valsangkar
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Jinxi Du
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Reham A. I. Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44523, Egypt;
| | - Abdalla E. A. Hassan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44523, Egypt;
- Correspondence: (A.E.A.H.); (J.S.)
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
- Correspondence: (A.E.A.H.); (J.S.)
| |
Collapse
|
7
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
8
|
The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat Biomed Eng 2020; 5:157-168. [PMID: 32929188 DOI: 10.1038/s41551-020-00607-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.
Collapse
|
9
|
Costales MG, Childs-Disney JL, Haniff HS, Disney MD. How We Think about Targeting RNA with Small Molecules. J Med Chem 2020; 63:8880-8900. [PMID: 32212706 PMCID: PMC7486258 DOI: 10.1021/acs.jmedchem.9b01927] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA offers nearly unlimited potential as a target for small molecule chemical probes and lead medicines. Many RNAs fold into structures that can be selectively targeted with small molecules. This Perspective discusses molecular recognition of RNA by small molecules and highlights key enabling technologies and properties of bioactive interactions. Sequence-based design of ligands targeting RNA has established rules for affecting RNA targets and provided a potentially general platform for the discovery of bioactive small molecules. The RNA targets that contain preferred small molecule binding sites can be identified from sequence, allowing identification of off-targets and prediction of bioactive interactions by nature of ligand recognition of functional sites. Small molecule targeted degradation of RNA targets (ribonuclease-targeted chimeras, RIBOTACs) and direct cleavage by small molecules have also been developed. These growing technologies suggest that the time is right to provide small molecule chemical probes to target functionally relevant RNAs throughout the human transcriptome.
Collapse
Affiliation(s)
- Matthew G Costales
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
10
|
Crawford Parks TE, Marcellus KA, Péladeau C, Jasmin BJ, Ravel-Chapuis A. Overexpression of Staufen1 in DM1 mouse skeletal muscle exacerbates dystrophic and atrophic features. Hum Mol Genet 2020; 29:2185-2199. [PMID: 32504084 DOI: 10.1093/hmg/ddaa111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), the CUG expansion (CUGexp) in the 3' untranslated region of the dystrophia myotonica protein kinase messenger ribonucleic acid affects the homeostasis of ribonucleic acid-binding proteins, causing the multiple symptoms of DM1. We have previously reported that Staufen1 is increased in skeletal muscles from DM1 mice and patients and that sustained Staufen1 expression in mature mouse muscle causes a progressive myopathy. Here, we hypothesized that the elevated levels of Staufen1 contributes to the myopathic features of the disease. Interestingly, the classic DM1 mouse model human skeletal actin long repeat (HSALR) lacks overt atrophy while expressing CUGexp transcripts and elevated levels of endogenous Staufen1, suggesting a lower sensitivity to atrophic signaling in this model. We report that further overexpression of Staufen1 in the DM1 mouse model HSALR causes a myopathy via inhibition of protein kinase B signaling through an increase in phosphatase tensin homolog, leading to the expression of atrogenes. Interestingly, we also show that Staufen1 regulates the expression of muscleblind-like splicing regulator 1 and CUG-binding protein elav-like family member 1 in wild-type and DM1 skeletal muscle. Together, data obtained from these new DM1 mouse models provide evidence for the role of Staufen1 as an atrophy-associated gene that impacts progressive muscle wasting in DM1. Accordingly, our findings highlight the potential of Staufen1 as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
11
|
An explanation of the mechanisms underlying fragile X-associated premature ovarian insufficiency. J Assist Reprod Genet 2020; 37:1313-1322. [PMID: 32377997 PMCID: PMC7311620 DOI: 10.1007/s10815-020-01774-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Fragile X and fragile X-associated tremor-ataxia syndrome (FXTAS) are caused by mutations of the FMR1 gene. The mutations causing FXTAS can expand in a generation to a "full mutation" causing fragile X syndrome. The mutations causing FXTAS and the phenotype, fragile X-associated premature ovarian insufficiency (FXPOI), are referred to as the FMR1 premutation (PM). The objective of this paper was to formulate a theory to explain the Mechanism for FXPOI.Recent research on fragile X syndrome and FXTAS has led to sophisticated theories about the mechanisms underlying these diseases. It has been proposed that similar mechanisms underlie FXPOI. Utilizing recent research on FXTAS, but a more detailed application of ovarian physiology, we present a more ovarian specific theory as to the primary mechanism explaining the development of FXPOI.The FXPOI phenotype may best be viewed as derivative of the observation that fragile X PM carriers experience menopause an average of 5 years earlier than non-carriers. Women carrying the PM experience an earlier menopause because of an accelerated activation of their primordial follicle pool. This acceleration of primordial follicle activation occurs, in part, because of diminished AMH production. AMH production is diminished because of accelerated atresia of early antral follicles. This accelerated atresia likely occurs because the fragile X PM leads to a slowing of the rate of granulosa cell mitosis in some follicles.
Collapse
|
12
|
Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. J Transl Med 2019; 99:929-942. [PMID: 30918326 PMCID: PMC7219275 DOI: 10.1038/s41374-019-0241-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.
Collapse
Affiliation(s)
- Monica Banez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Arjmand F, Afsan Z, Sharma S, Parveen S, Yousuf I, Sartaj S, Siddique HR, Tabassum S. Recent advances in metallodrug-like molecules targeting non-coding RNAs in cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Nguyen L, Cleary JD, Ranum LPW. Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annu Rev Neurosci 2019; 42:227-247. [PMID: 30909783 DOI: 10.1146/annurev-neuro-070918-050405] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| | - John Douglas Cleary
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| | - Laura P W Ranum
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| |
Collapse
|
15
|
Pan F, Man VH, Roland C, Sagui C. Structure and Dynamics of DNA and RNA Double Helices Obtained from the CCG and GGC Trinucleotide Repeats. J Phys Chem B 2018; 122:4491-4512. [PMID: 29617130 DOI: 10.1021/acs.jpcb.8b01658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expansions of both GGC and CCG sequences lead to a number of expandable, trinucleotide repeat (TR) neurodegenerative diseases. Understanding of these diseases involves, among other things, the structural characterization of the atypical DNA and RNA secondary structures. We have performed molecular dynamics simulations of (GCC) n and (GGC) n homoduplexes in order to characterize their conformations, stability, and dynamics. Each TR has two reading frames, which results in eight nonequivalent RNA/DNA homoduplexes, characterized by CpG or GpC steps between the Watson-Crick base pairs. Free energy maps for the eight homoduplexes indicate that the C-mismatches prefer anti-anti conformations, while G-mismatches prefer anti-syn conformations. Comparison between three modifications of the DNA AMBER force field shows good agreement for the mismatch free energy maps. The mismatches in DNA-GCC (but not CCG) are extrahelical, forming an extended e-motif. The mismatched duplexes exhibit characteristic sequence-dependent step twist, with strong variations in the G-rich sequences and the e-motif. The distribution of Na+ is highly localized around the mismatches, especially G-mismatches. In the e-motif, there is strong Na+ binding by two G(N7) atoms belonging to the pseudo GpC step created when cytosines are extruded and by extrahelical cytosines. Finally, we used a novel technique based on fast melting by means of an infrared laser pulse to classify the relative stability of the different DNA-CCG and -GGC homoduplexes.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics , North Carolina State University , Raleigh , North Carolina 27695-8202 , United States
| | - Viet Hoang Man
- Department of Physics , North Carolina State University , Raleigh , North Carolina 27695-8202 , United States
| | - Christopher Roland
- Department of Physics , North Carolina State University , Raleigh , North Carolina 27695-8202 , United States
| | - Celeste Sagui
- Department of Physics , North Carolina State University , Raleigh , North Carolina 27695-8202 , United States
| |
Collapse
|
16
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
17
|
Crawford Parks TE, Ravel-Chapuis A, Bondy-Chorney E, Renaud JM, Côté J, Jasmin BJ. Muscle-specific expression of the RNA-binding protein Staufen1 induces progressive skeletal muscle atrophy via regulation of phosphatase tensin homolog. Hum Mol Genet 2017; 26:1821-1838. [PMID: 28369467 DOI: 10.1093/hmg/ddx085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Converging lines of evidence have now highlighted the key role for post-transcriptional regulation in the neuromuscular system. In particular, several RNA-binding proteins are known to be misregulated in neuromuscular disorders including myotonic dystrophy type 1, spinal muscular atrophy and amyotrophic lateral sclerosis. In this study, we focused on the RNA-binding protein Staufen1, which assumes multiple functions in both skeletal muscle and neurons. Given our previous work that showed a marked increase in Staufen1 expression in various physiological and pathological conditions including denervated muscle, in embryonic and undifferentiated skeletal muscle, in rhabdomyosarcomas as well as in myotonic dystrophy type 1 muscle samples from both mouse models and humans, we investigated the impact of sustained Staufen1 expression in postnatal skeletal muscle. To this end, we generated a skeletal muscle-specific transgenic mouse model using the muscle creatine kinase promoter to drive tissue-specific expression of Staufen1. We report that sustained Staufen1 expression in postnatal skeletal muscle causes a myopathy characterized by significant morphological and functional deficits. These deficits are accompanied by a marked increase in the expression of several atrophy-associated genes and by the negative regulation of PI3K/AKT signaling. We also uncovered that Staufen1 mediates PTEN expression through indirect transcriptional and direct post-transcriptional events thereby providing the first evidence for Staufen1-regulated PTEN expression. Collectively, our data demonstrate that Staufen1 is a novel atrophy-associated gene, and highlight its potential as a biomarker and therapeutic target for neuromuscular disorders and conditions.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
18
|
Gudde AEEG, van Heeringen SJ, de Oude AI, van Kessel IDG, Estabrook J, Wang ET, Wieringa B, Wansink DG. Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAG)n repeat. RNA Biol 2017; 14:1374-1388. [PMID: 28102759 PMCID: PMC5711456 DOI: 10.1080/15476286.2017.1279787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/20/2022] Open
Abstract
The unstable (CTG·CAG)n trinucleotide repeat in the myotonic dystrophy type 1 (DM1) locus is bidirectionally transcribed from genes with terminal overlap. By transcription in the sense direction, the DMPK gene produces various alternatively spliced mRNAs with a (CUG)n repeat in their 3' UTR. Expression in opposite orientation reportedly yields (CAG)n-repeat containing RNA, but both structure and biologic significance of this antisense gene (DM1-AS) are largely unknown. Via a combinatorial approach of computational and experimental analyses of RNA from unaffected individuals and DM1 patients we discovered that DM1-AS spans >6 kb, contains alternative transcription start sites and uses alternative polyadenylation sites up- and downstream of the (CAG)n repeat. Moreover, its primary transcripts undergo alternative splicing, whereby the (CAG)n segment is removed as part of an intron. Thus, in patients a mixture of DM1-AS RNAs with and without expanded (CAG)n repeat are produced. DM1-AS expression appears upregulated in patients, but transcript abundance remains very low in all tissues analyzed. Our data suggest that DM1-AS transcripts belong to the class of long non-coding RNAs. These and other biologically relevant implications for how (CAG)n-expanded transcripts may contribute to DM1 pathology can now be explored experimentally.
Collapse
Affiliation(s)
- Anke E. E. G. Gudde
- Radboud University Medical Center, Department of Cell Biology, Nijmegen, The Netherlands
| | - Simon J. van Heeringen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Amanda I. de Oude
- Radboud University Medical Center, Department of Cell Biology, Nijmegen, The Netherlands
| | | | - Joseph Estabrook
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bé Wieringa
- Radboud University Medical Center, Department of Cell Biology, Nijmegen, The Netherlands
| | - Derick G. Wansink
- Radboud University Medical Center, Department of Cell Biology, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Purα Repaired Expanded Hexanucleotide GGGGCC Repeat Noncoding RNA-Caused Neuronal Toxicity in Neuro-2a Cells. Neurotox Res 2017; 33:693-701. [DOI: 10.1007/s12640-017-9803-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
|
20
|
Kuot A, Hewitt AW, Snibson GR, Souzeau E, Mills R, Craig JE, Burdon KP, Sharma S. TGC repeat expansion in the TCF4 gene increases the risk of Fuchs' endothelial corneal dystrophy in Australian cases. PLoS One 2017; 12:e0183719. [PMID: 28832669 PMCID: PMC5568371 DOI: 10.1371/journal.pone.0183719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/09/2017] [Indexed: 11/18/2022] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is a progressive, vision impairing disease. Common single nucleotide polymorphisms (SNPs) and a trinucleotide repeat polymorphism, thymine-guanine-cytosine (TGC), in the TCF4 gene have been associated with the risk of FECD in some populations. We previously reported association of SNPs in TCF4 with FECD risk in the Australian population. The aim of this study was to determine whether TGC repeat polymorphism in TCF4 is associated with FECD in the Australian population. In 189 unrelated Australian cases with advanced late-onset FECD and 183 matched controls, the TGC repeat polymorphism located in intron 3 of TCF4 was genotyped using a short tandem repeat (STR) assay. The repeat length was verified by direct sequencing in selected homozygous carriers. We found significant association between the expanded TGC repeat (≥ 40 repeats) in TCF4 and advanced FECD (P = 2.58 × 10-22; OR = 15.66 (95% CI: 7.79-31.49)). Genotypic analysis showed that 51% of cases (97) compared to 5% of controls (9) were heterozygous or homozygous for the expanded repeat allele. Furthermore, the repeat expansion showed stronger association than the most significantly associated SNP, rs613872, in TCF4, with the disease in the Australian cohort. This and haplotype analysis of both the polymorphisms suggest that considering both the polymorphisms together rather than either of the two alone would better predict susceptibility to FECD in the Australian population. This is the first study to report association of the TGC trinucleotide repeat expansion in TCF4 with advanced FECD in the Australian population.
Collapse
Affiliation(s)
- Abraham Kuot
- Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Grant R. Snibson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Richard Mills
- Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kathryn P. Burdon
- Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
21
|
Batra R, Nelles DA, Pirie E, Blue SM, Marina RJ, Wang H, Chaim IA, Thomas JD, Zhang N, Nguyen V, Aigner S, Markmiller S, Xia G, Corbett KD, Swanson MS, Yeo GW. Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9. Cell 2017; 170:899-912.e10. [PMID: 28803727 DOI: 10.1016/j.cell.2017.07.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/11/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington's disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes. Here, we describe the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. We observe specific targeting and efficient elimination of microsatellite repeat expansion RNAs both when exogenously expressed and in patient cells. Importantly, RNA-targeting Cas9 (RCas9) reverses hallmark features of disease including elimination of RNA foci among all conditions studied (DM1, DM2, C9-ALS, polyglutamine diseases), reduction of polyglutamine protein products, relocalization of repeat-bound proteins to resemble healthy controls, and efficient reversal of DM1-associated splicing abnormalities in patient myotubes. Finally, we report a truncated RCas9 system compatible with adeno-associated viral packaging. This effort highlights the potential of RCas9 for human therapeutics.
Collapse
Affiliation(s)
- Ranjan Batra
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - David A Nelles
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elaine Pirie
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ryan J Marina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Harrison Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Isaac A Chaim
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Nigel Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Vu Nguyen
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Guangbin Xia
- Department of Neurology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Chemistry, University of California, San Diego, La Jolla, CA, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Molecular Engineering Laboratory, A(∗)STAR, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Chou CC, Chang PC, Wei YC, Lee KY. Optical Mapping Approaches on Muscleblind-Like Compound Knockout Mice for Understanding Mechanistic Insights Into Ventricular Arrhythmias in Myotonic Dystrophy. J Am Heart Assoc 2017; 6:JAHA.116.005191. [PMID: 28416514 PMCID: PMC5533016 DOI: 10.1161/jaha.116.005191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac arrhythmias are common causes of death in patients with myotonic dystrophy (dystrophia myotonica [DM]). Evidence shows that atrial tachyarrhythmia is an independent risk factor for sudden death; however, the relationship is unclear. Methods and Results Control wild‐type (Mbnl1+/+; Mbnl2+/+) and DM mutant (Mbnl1−/−; Mbnl2+/−) mice were generated by crossing double heterozygous knockout (Mbnl1+/−; Mbnl2+/−) mice. In vivo electrophysiological study and optical mapping technique were performed to investigate mechanisms of ventricular tachyarrhythmias. Transmission electron microscopy scanning was performed for myocardium ultrastructural analysis. DM mutant mice were more vulnerable to anesthesia medications and program electrical pacing: 2 of 12 mice had sudden apnea and cardiac arrest during premedication of general anesthesia; 9 of the remaining 10 had atrial tachycardia and/or atrioventricular block, but none of the wild‐type mice had spontaneous arrhythmias; and 9 of 10 mice had pacing‐induced ventricular tachyarrhythmias, but only 1 of 14 of the wild‐type mice. Optical mapping studies revealed prolonged action potential duration, slower conduction velocity, and steeper conduction velocity restitution curves in the DM mutant mice than in the wild‐type group. Spatially discordant alternans was more easily inducible in DM mutant than wild‐type mice. Transmission electron microscopy showed disarranged myofibrils with enlarged vacuole‐occupying mitochondria in the DM mutant group. Conclusions This DM mutant mouse model presented with clinical myofibril ultrastructural abnormality and cardiac arrhythmias, including atrial tachyarrhythmias, atrioventricular block, and ventricular tachyarrhythmias. Optical mapping studies revealed prolonged action potential duration and slow conduction velocity in the DM mice, leading to vulnerability of spatially discordant alternans and ventricular arrhythmia induction to pacing.
Collapse
Affiliation(s)
- Chung-Chuan Chou
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Cheng Chang
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Ciesiolka A, Jazurek M, Drazkowska K, Krzyzosiak WJ. Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions. Front Cell Neurosci 2017; 11:97. [PMID: 28442996 PMCID: PMC5387085 DOI: 10.3389/fncel.2017.00097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Short Tandem Repeats (STRs) are frequent entities in many transcripts, however, in some cases, pathological events occur when a critical repeat length is reached. This phenomenon is observed in various neurological disorders, such as myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome, C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), and polyglutamine diseases, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA). The pathological effects of these repeats are triggered by mutant RNA transcripts and/or encoded mutant proteins, which depend on the localization of the expanded repeats in non-coding or coding regions. A growing body of recent evidence revealed that the RNA structures formed by these mutant RNA repeat tracts exhibit toxic effects on cells. Therefore, in this review article, we present existing knowledge on the structural aspects of different RNA repeat tracts as revealed mainly using well-established biochemical and biophysical methods. Furthermore, in several cases, it was shown that these expanded RNA structures are potent traps for a variety of RNA-binding proteins and that the sequestration of these proteins from their normal intracellular environment causes alternative splicing aberration, inhibition of nuclear transport and export, or alteration of a microRNA biogenesis pathway. Therefore, in this review article, we also present the most studied examples of abnormal interactions that occur between mutant RNAs and their associated proteins.
Collapse
Affiliation(s)
- Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Karolina Drazkowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
24
|
Ipe J, Swart M, Burgess KS, Skaar TC. High-Throughput Assays to Assess the Functional Impact of Genetic Variants: A Road Towards Genomic-Driven Medicine. Clin Transl Sci 2017; 10:67-77. [PMID: 28213901 PMCID: PMC5355973 DOI: 10.1111/cts.12440] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- J Ipe
- Indiana University School of MedicineDepartment of MedicineDivision of Clinical PharmacologyIndianapolisIndianaUSA
| | - M Swart
- Indiana University School of MedicineDepartment of MedicineDivision of Clinical PharmacologyIndianapolisIndianaUSA
| | - KS Burgess
- Indiana University School of MedicineDepartment of MedicineDivision of Clinical PharmacologyIndianapolisIndianaUSA
- Indiana University School of MedicineDepartment of Pharmacology and ToxicologyIndianapolisIndianaUSA
| | - TC Skaar
- Indiana University School of MedicineDepartment of MedicineDivision of Clinical PharmacologyIndianapolisIndianaUSA
| |
Collapse
|
25
|
deLorimier E, Hinman MN, Copperman J, Datta K, Guenza M, Berglund JA. Pseudouridine Modification Inhibits Muscleblind-like 1 (MBNL1) Binding to CCUG Repeats and Minimally Structured RNA through Reduced RNA Flexibility. J Biol Chem 2017; 292:4350-4357. [PMID: 28130447 DOI: 10.1074/jbc.m116.770768] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/25/2017] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 2 is a genetic neuromuscular disease caused by the expression of expanded CCUG repeat RNAs from the non-coding region of the CCHC-type zinc finger nucleic acid-binding protein (CNBP) gene. These CCUG repeats bind and sequester a family of RNA-binding proteins known as Muscleblind-like 1, 2, and 3 (MBNL1, MBNL2, and MBNL3), and sequestration plays a significant role in pathogenicity. MBNL proteins are alternative splicing regulators that bind to the consensus RNA sequence YGCY (Y = pyrimidine). This consensus sequence is found in the toxic RNAs (CCUG repeats) and in cellular RNA substrates that MBNL proteins have been shown to bind. Replacing the uridine in CCUG repeats with pseudouridine (Ψ) resulted in a modest reduction of MBNL1 binding. Interestingly, Ψ modification of a minimally structured RNA containing YGCY motifs resulted in more robust inhibition of MBNL1 binding. The different levels of inhibition between CCUG repeat and minimally structured RNA binding appear to be due to the ability to modify both pyrimidines in the YGCY motif, which is not possible in the CCUG repeats. Molecular dynamic studies of unmodified and pseudouridylated minimally structured RNAs suggest that reducing the flexibility of the minimally structured RNA leads to reduced binding by MBNL1.
Collapse
Affiliation(s)
- Elaine deLorimier
- From the Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403 and
| | - Melissa N Hinman
- From the Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403 and
| | - Jeremy Copperman
- From the Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403 and
| | - Kausiki Datta
- the Center for NeuroGenetics, Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610-3010
| | - Marina Guenza
- From the Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403 and
| | - J Andrew Berglund
- From the Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403 and .,the Center for NeuroGenetics, Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610-3010
| |
Collapse
|
26
|
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res 2016; 44:9050-9070. [PMID: 27625393 PMCID: PMC5100574 DOI: 10.1093/nar/gkw803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases.
Collapse
Affiliation(s)
- Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julia Starega-Roslan
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Bilinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
27
|
Li J, Matsumoto J, Bai LP, Murata A, Dohno C, Nakatani K. A Ligand That Targets CUG Trinucleotide Repeats. Chemistry 2016; 22:14881-14889. [PMID: 27573860 DOI: 10.1002/chem.201602741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 11/06/2022]
Abstract
The development of small molecules that can recognize specific RNA secondary and tertiary structures is currently an important research topic for developing tools to modulate gene expression and therapeutic drugs. Expanded CUG trinucleotide repeats, known as toxic RNA, capture the splicing factor MBNL1 and are causative of neurological disorder myotonic dystrophy type 1 (DM1). Herein, the rational molecular design, synthesis, and binding analysis of 2,9-diaminoalkyl-substituted 1,10-phenanthroline (DAP), which bound to CUG trinucleotide repeats, is described. The results of melting temperature (Tm ) analyses, surface plasmon resonance (SPR) assay, and electrospray spray ionization time-of-flight (ESI-TOF) mass spectrometry showed that DAP bound to r(CUG)9 but not to r(CAG)9 and r(CGG)9 . The dual luciferase assay clearly indicated DAP bound to the r(CUG)n repeat by affecting the translation in vitro.
Collapse
Affiliation(s)
- Jinxing Li
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Jun Matsumoto
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine and, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Chikara Dohno
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan.
| |
Collapse
|
28
|
Xia G, Gao Y, Jin S, Subramony SH, Terada N, Ranum LPW, Swanson MS, Ashizawa T. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells 2016; 33:1829-38. [PMID: 25702800 DOI: 10.1002/stem.1970] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/17/2015] [Indexed: 12/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3' UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step toward autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 induced pluripotent stem (iPS) cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization. Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs were reversed to normal pattern in genome-modified NSCs. Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1.
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Yuanzheng Gao
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA
| | - S H Subramony
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Naohiro Terada
- Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Laura P W Ranum
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Maurice S Swanson
- Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Forsdyke DR. Complexity. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
30
|
Actinomycin D Specifically Reduces Expanded CUG Repeat RNA in Myotonic Dystrophy Models. Cell Rep 2015; 13:2386-2394. [PMID: 26686629 DOI: 10.1016/j.celrep.2015.11.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 09/10/2015] [Accepted: 11/06/2015] [Indexed: 01/16/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited disease characterized by the inability to relax contracted muscles. Affected individuals carry large CTG expansions that are toxic when transcribed. One possible treatment approach is to reduce or eliminate transcription of CTG repeats. Actinomycin D (ActD) is a potent transcription inhibitor and FDA-approved chemotherapeutic that binds GC-rich DNA with high affinity. Here, we report that ActD decreased CUG transcript levels in a dose-dependent manner in DM1 cell and mouse models at significantly lower concentrations (nanomolar) compared to its use as a general transcription inhibitor or chemotherapeutic. ActD also significantly reversed DM1-associated splicing defects in a DM1 mouse model, and did so within the currently approved human treatment range. RNA-seq analyses showed that low concentrations of ActD did not globally inhibit transcription in a DM1 mouse model. These results indicate that transcription inhibition of CTG expansions is a promising treatment approach for DM1.
Collapse
|
31
|
Siboni RB, Bodner MJ, Khalifa MM, Docter AG, Choi JY, Nakamori M, Haley MM, Berglund JA. Biological Efficacy and Toxicity of Diamidines in Myotonic Dystrophy Type 1 Models. J Med Chem 2015; 58:5770-80. [PMID: 26103061 PMCID: PMC4972181 DOI: 10.1021/acs.jmedchem.5b00356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a disease characterized by errors in alternative splicing, or "mis-splicing". The causative agent of mis-splicing in DM1 is an inherited CTG repeat expansion located in the 3' untranslated region of the DM protein kinase gene. When transcribed, CUG repeat expansion RNA sequesters muscleblind-like (MBNL) proteins, which constitute an important family of alternative splicing regulators. Sequestration of MBNL proteins results in the mis-splicing of its regulated transcripts. Previous work has demonstrated that pentamidine, a diamidine which is currently FDA-approved as an antiparasitic agent, was able to partially reverse mis-splicing in multiple DM1 models, albeit at toxic concentrations. In this study, we characterized a series of pentamidine analogues to determine their ability to reverse mis-splicing and their toxicity in vivo. Experiments in cell and mouse models demonstrated that compound 13, also known as furamidine, effectively reversed mis-splicing with equal efficacy and reduced toxicity compared to pentamidine.
Collapse
Affiliation(s)
| | | | | | | | | | - Masayuki Nakamori
- §Department of Neurology, University of Osaka Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | |
Collapse
|
32
|
RNA-Binding Proteins: Splicing Factors and Disease. Biomolecules 2015; 5:893-909. [PMID: 25985083 PMCID: PMC4496701 DOI: 10.3390/biom5020893] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
Pre-mRNA splicing is mediated by interactions of the Core Spliceosome and an array of accessory RNA binding proteins with cis-sequence elements. Splicing is a major regulatory component in higher eukaryotes. Disruptions in splicing are a major contributor to human disease. One in three hereditary disease alleles are believed to cause aberrant splicing. Hereditary disease alleles can alter splicing by disrupting a splicing element, creating a toxic RNA, or affecting splicing factors. One of the challenges of medical genetics is identifying causal variants from the thousands of possibilities discovered in a clinical sequencing experiment. Here we review the basic biochemistry of splicing, the mechanisms of splicing mutations, the methods for identifying splicing mutants, and the potential of therapeutic interventions.
Collapse
|
33
|
Fontana F, Siva K, Denti MA. A network of RNA and protein interactions in Fronto Temporal Dementia. Front Mol Neurosci 2015; 8:9. [PMID: 25852467 PMCID: PMC4365750 DOI: 10.3389/fnmol.2015.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/25/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Fontana
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Kavitha Siva
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
- CNR, Institute of NeurosciencePadua, Italy
| |
Collapse
|
34
|
Raz Y, Raz V. Oculopharyngeal muscular dystrophy as a paradigm for muscle aging. Front Aging Neurosci 2014; 6:317. [PMID: 25426070 PMCID: PMC4226162 DOI: 10.3389/fnagi.2014.00317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/28/2014] [Indexed: 12/04/2022] Open
Abstract
Symptoms in late-onset neuromuscular disorders initiate only from midlife onward and progress with age. These disorders are primarily determined by identified hereditable mutations, but their late-onset symptom manifestation is not fully understood. Here, we review recent research developments on the late-onset autosomal dominant oculopharyngeal muscular dystrophy (OPMD). OPMD is caused by an expansion mutation in the gene encoding for poly-adenylate RNA binding protein1 (PABPN1). The molecular pathogenesis for the disease is still poorly understood. Despite a ubiquitous expression of PABPN1, symptoms in OPMD are limited to skeletal muscles. We discuss recent studies showing that PABPN1 levels in skeletal muscles are lower compared with other tissues, and specifically in skeletal muscles, PABPN1 expression declines from midlife onward. In OPMD, aggregation of expanded PABPN1 causes an additional decline in the level of the functional protein, which is associated with severe muscle weakness in OPMD. Reduced PABNPN1 expression in muscle cell culture causes myogenic defects, suggesting that PABPN1 loss-of-function causes muscle weakness in OPMD and in the elderly. Molecular signatures of OPMD muscles are similar to those of normal muscle aging, although expression trends progress faster in OPMD. We discuss a working hypothesis that aging-associated factors trigger late-onset symptoms in OPMD, and contribute to accelerated muscle weakness in OPMD. We focus on the pharyngeal and eyelid muscles, which are often affected in OPMD patients. We suggest that muscle weakness in OPMD is a paradigm for muscle aging.
Collapse
Affiliation(s)
- Yotam Raz
- Department of Human Genetics, Leiden University Medical Center , Leiden , Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
35
|
deLorimier E, Coonrod LA, Copperman J, Taber A, Reister EE, Sharma K, Todd PK, Guenza MG, Berglund JA. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model. Nucleic Acids Res 2014; 42:12768-78. [PMID: 25303993 PMCID: PMC4227782 DOI: 10.1093/nar/gku941] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CUG repeat expansions in the 3′ UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2′-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2′-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.
Collapse
Affiliation(s)
- Elaine deLorimier
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Leslie A Coonrod
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Jeremy Copperman
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Alex Taber
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Emily E Reister
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Kush Sharma
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marina G Guenza
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - J Andrew Berglund
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
36
|
Kearse MG, Todd PK. Repeat-associated non-AUG translation and its impact in neurodegenerative disease. Neurotherapeutics 2014; 11:721-31. [PMID: 25005000 PMCID: PMC4391382 DOI: 10.1007/s13311-014-0292-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide repeat expansions underlie numerous human neurological disorders. Repeats can trigger toxicity through multiple pathogenic mechanisms, including RNA gain-of-function, protein gain-of-function, and protein loss-of-function pathways. Traditionally, inference of the underlying pathogenic mechanism derives from the repeat location, with dominantly inherited repeats within transcribed noncoding sequences eliciting toxicity predominantly as RNA via sequestration of specific RNA binding proteins. However, recent findings question this assumption and suggest that repeats outside of annotated open reading frames may also trigger toxicity through a novel form of protein translational initiation known as repeat-associated non-AUG (RAN) translation. To date, RAN translation has been implicated in 4 nucleotide repeat expansion disorders: spinocerebellar ataxia type 8; myotonic dystrophy type 1 with CTG•CAG repeats; C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia with GGGGCC•GGCCCC repeats; and fragile X-associated tremor/ataxia syndrome with CGG repeats. RAN translation contributes to hallmark pathological characteristics in these disorders by producing homopolymeric or dipeptide repeat proteins. Here, we review what is known about RAN translation, with an emphasis on how differences in both repeat sequence and context may confer different requirements for unconventional initiation. We then discuss how this new mechanism of translational initiation might function in normal physiology and lay out a roadmap for addressing the numerous questions that remain.
Collapse
Affiliation(s)
- Michael G. Kearse
- />Department of Neurology, University of Michigan Medical School, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Peter K. Todd
- />Department of Neurology, University of Michigan Medical School, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
- />Veterans Affairs Medical Center, Ann Arbor, MI 48105 USA
| |
Collapse
|
37
|
Ravel-Chapuis A, Crawford TE, Blais-Crépeau ML, Bélanger G, Richer CT, Jasmin BJ. The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc-dependent mechanism. Mol Biol Cell 2014; 25:3765-78. [PMID: 25208565 PMCID: PMC4230783 DOI: 10.1091/mbc.e14-04-0895] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The expression pattern of Staufen1 during mouse skeletal muscle development is described. Sustained expression of Staufen1 in myoblasts prevents normal differentiation by causing decreases in the expression of key myogenic markers by an SMD-independent mechanism and by promoting the translational regulation of c-myc. Recent work has shown that Staufen1 plays key roles in skeletal muscle, yet little is known about its pattern of expression during embryonic and postnatal development. Here we first show that Staufen1 levels are abundant in mouse embryonic muscles and that its expression decreases thereafter, reaching low levels in mature muscles. A similar pattern of expression is seen as cultured myoblasts differentiate into myotubes. Muscle degeneration/regeneration experiments revealed that Staufen1 increases after cardiotoxin injection before returning to the low levels seen in mature muscles. We next prevented the decrease in Staufen1 during differentiation by generating stable C2C12 muscle cell lines overexpressing Staufen1. Cells overexpressing Staufen1 differentiated poorly, as evidenced by reductions in the differentiation and fusion indices and decreases in MyoD, myogenin, MEF2A, and MEF2C, independently of Staufen-mediated mRNA decay. However, levels of c-myc, a factor known to inhibit differentiation, were increased in C2C12 cells overexpressing Staufen1 through enhanced translation. By contrast, the knockdown of Staufen1 decreased c-myc levels in myoblasts. Collectively our results show that Staufen1 is highly expressed during early stages of differentiation/development and that it can impair differentiation by regulating c-myc, thereby highlighting the multifunctional role of Staufen1 in skeletal muscle cells.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tara E Crawford
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marie-Laure Blais-Crépeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Chase T Richer
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
38
|
Abstract
CNG repeats (where N denotes one of the four natural nucleotides) are abundant in the human genome. Their tendency to undergo expansion can lead to hereditary diseases known as TREDs (trinucleotide repeat expansion disorders). The toxic factor can be protein, if the abnormal gene is expressed, or the gene transcript, or both. The gene transcripts have attracted much attention in the biomedical community, but their molecular structures have only recently been investigated. Model RNA molecules comprising CNG repeats fold into long hairpins whose stems generally conform to an A-type helix, in which the non-canonical N-N pairs are flanked by C-G and G-C pairs. Each homobasic pair is accommodated in the helical context in a unique manner, with consequences for the local helical parameters, solvent structure, electrostatic potential and potential to interact with ligands. The detailed three-dimensional profiles of RNA CNG repeats can be used in screening of compound libraries for potential therapeutics and in structure-based drug design. Here is a brief survey of the CNG structures published to date.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
39
|
Mohan A, Goodwin M, Swanson MS. RNA-protein interactions in unstable microsatellite diseases. Brain Res 2014; 1584:3-14. [PMID: 24709120 DOI: 10.1016/j.brainres.2014.03.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
A novel RNA-mediated disease mechanism has emerged from studies on dominantly inherited neurological disorders caused by unstable microsatellite expansions in non-coding regions of the genome. These non-coding tandem repeat expansions trigger the production of unusual RNAs that gain a toxic function, which involves the formation of RNA repeat structures that interact with, and alter the activities of, various factors required for normal RNA processing as well as additional cellular functions. In this review, we explore the deleterious effects of toxic RNA expression and discuss the various model systems currently available for studying RNA gain-of-function in neurologic diseases. Common themes, including bidirectional transcription and repeat-associated non-ATG (RAN) translation, have recently emerged from expansion disease studies. These and other discoveries have highlighted the need for further investigations designed to provide the additional mechanistic insights essential for future therapeutic development.
Collapse
Affiliation(s)
- Apoorva Mohan
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Marianne Goodwin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA.
| |
Collapse
|
40
|
|
41
|
Jahromi AH, Fu Y, Miller KA, Nguyen L, Luu LM, Baranger AM, Zimmerman SC. Developing bivalent ligands to target CUG triplet repeats, the causative agent of myotonic dystrophy type 1. J Med Chem 2013; 56:9471-9481. [PMID: 24188018 DOI: 10.1021/jm400794z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An expanded CUG repeat transcript (CUG(exp)) is the causative agent of myotonic dystrophy type 1 (DM1) by sequestering muscleblind-like 1 protein (MBNL1), a regulator of alternative splicing. On the basis of a ligand (1) that was previously reported to be active in an in vitro assay, we present the synthesis of a small library containing 10 dimeric ligands (4-13) that differ in length, composition, and attachment point of the linking chain. The oligoamino linkers gave a greater gain in affinity for CUG RNA and were more effective when compared to oligoether linkers. The most potent in vitro ligand (9) was shown to be aqueous-soluble and both cell- and nucleus-permeable, displaying almost complete dispersion of MBNL1 ribonuclear foci in a DM1 cell model. Direct evidence for the bioactivity of 9 was observed in its ability to disperse ribonuclear foci in individual live DM1 model cells using time-lapse confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Amin Haghighat Jahromi
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL, USA.,Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Yuan Fu
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Kali A Miller
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lien Nguyen
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Long M Luu
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Anne M Baranger
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Steven C Zimmerman
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL, USA.,Department of Chemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
42
|
Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ, Siboni RB, Docter AG, Haley MM, Thornton CA, Berglund JA. Reducing levels of toxic RNA with small molecules. ACS Chem Biol 2013; 8:2528-37. [PMID: 24028068 DOI: 10.1021/cb400431f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myotonic dystrophy (DM) is one of the most common forms of muscular dystrophy. DM is an autosomal dominant disease caused by a toxic gain of function RNA. The toxic RNA is produced from expanded noncoding CTG/CCTG repeats, and these CUG/CCUG repeats sequester the Muscleblind-like (MBNL) family of RNA binding proteins. The MBNL proteins are regulators of alternative splicing, and their sequestration has been linked with mis-splicing events in DM. A previously reported screen for small molecules found that pentamidine was able to improve splicing defects associated with DM. Biochemical experiments and cell and mouse model studies of the disease indicate that pentamidine and related compounds may work through binding the CTG*CAG repeat DNA to inhibit transcription. Analysis of a series of methylene linker analogues of pentamidine revealed that heptamidine reverses splicing defects and rescues myotonia in a DM1 mouse model.
Collapse
Affiliation(s)
| | - Masayuki Nakamori
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Wenli Wang
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Samuel Carrell
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | | | | | | | | | | | - Charles A. Thornton
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | | |
Collapse
|
43
|
Halford C. Preliminary investigation of the effects of silencing the non-coding RNA, NEAT1, on the Burkitt's lymphoma cell line BJAB. ACTA ACUST UNITED AC 2013. [DOI: 10.1093/biohorizons/hzt006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Jahromi AH, Nguyen L, Fu Y, Miller KA, Baranger AM, Zimmerman SC. A novel CUG(exp)·MBNL1 inhibitor with therapeutic potential for myotonic dystrophy type 1. ACS Chem Biol 2013; 8:1037-43. [PMID: 23480597 DOI: 10.1021/cb400046u] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an expanded CUG repeat (CUG(exp)) that sequesters muscleblind-like 1 protein (MBNL1), a protein that regulates alternative splicing. CUG(exp) RNA is a validated drug target for this currently untreatable disease. Herein, we develop a bioactive small molecule (1) that targets CUG(exp) RNA and is able to inhibit the CUG(exp)·MBNL1 interaction in cells that model DM1. The core of this small molecule is based on ligand 2, which was previously reported to be active in an in vitro assay. A polyamine-derivative side chain was conjugated to this core to make it aqueous-soluble and cell-penetrable. In a DM1 cell model this conjugate was found to disperse CUG(exp) ribonuclear foci, release MBNL1, and partially reverse the mis-splicing of the insulin receptor pre-mRNA. Direct evidence for ribonuclear foci dispersion by this ligand was obtained in a live DM1 cell model using time-lapse confocal microscopy.
Collapse
Affiliation(s)
- Amin Haghighat Jahromi
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Lien Nguyen
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Yuan Fu
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Kali A. Miller
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Anne M. Baranger
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Steven C. Zimmerman
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| |
Collapse
|
45
|
Haghighat Jahromi A, Honda M, Zimmerman SC, Spies M. Single-molecule study of the CUG repeat-MBNL1 interaction and its inhibition by small molecules. Nucleic Acids Res 2013; 41:6687-97. [PMID: 23661680 PMCID: PMC3711446 DOI: 10.1093/nar/gkt330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Effective drug discovery and optimization can be accelerated by techniques capable of deconvoluting the complexities often present in targeted biological systems. We report a single-molecule approach to study the binding of an alternative splicing regulator, muscleblind-like 1 protein (MBNL1), to (CUG)n = 4,6 and the effect of small molecules on this interaction. Expanded CUG repeats (CUG(exp)) are the causative agent of myotonic dystrophy type 1 by sequestering MBNL1. MBNL1 is able to bind to the (CUG)n-inhibitor complex, indicating that the inhibition is not a straightforward competitive process. A simple ligand, highly selective for CUG(exp), was used to design a new dimeric ligand that binds to (CUG)n almost 50-fold more tightly and is more effective in destabilizing MBNL1-(CUG)4. The single-molecule method and the analysis framework might be extended to the study of other biomolecular interactions.
Collapse
Affiliation(s)
- Amin Haghighat Jahromi
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
46
|
Poulos MG, Batra R, Li M, Yuan Y, Zhang C, Darnell RB, Swanson MS. Progressive impairment of muscle regeneration in muscleblind-like 3 isoform knockout mice. Hum Mol Genet 2013; 22:3547-58. [PMID: 23660517 DOI: 10.1093/hmg/ddt209] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The muscleblind-like (MBNL) genes encode alternative splicing factors that are essential for the postnatal development of multiple tissues, and the inhibition of MBNL activity by toxic C(C)UG repeat RNAs is a major pathogenic feature of the neuromuscular disease myotonic dystrophy. While MBNL1 controls fetal-to-adult splicing transitions in muscle and MBNL2 serves a similar role in the brain, the function of MBNL3 in vivo is unknown. Here, we report that mouse Mbnl3, which encodes protein isoforms that differ in the number of tandem zinc-finger RNA-binding motifs and subcellular localization, is expressed primarily during embryonic development but also transiently during injury-induced adult skeletal muscle regeneration. Mbnl3 expression is required for normal C2C12 myogenic differentiation and high-throughput sequencing combined with cross-linking/immunoprecipitation analysis indicates that Mbnl3 binds preferentially to the 3' untranslated regions of genes implicated in cell growth and proliferation. In addition, Mbnl3ΔE2 isoform knockout mice, which fail to express the major Mbnl3 nuclear isoform, show age-dependent delays in injury-induced muscle regeneration and impaired muscle function. These results suggest that Mbnl3 inhibition by toxic RNA expression may be a contributing factor to the progressive skeletal muscle weakness and wasting characteristic of myotonic dystrophy.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Molecular Genetics and Microbiology, Genetics Institute and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Coonrod LA, Lohman JR, Berglund JA. Utilizing the GAAA tetraloop/receptor to facilitate crystal packing and determination of the structure of a CUG RNA helix. Biochemistry 2012; 51:8330-7. [PMID: 23025897 DOI: 10.1021/bi300829w] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a microsatellite expansion disorder caused by the aberrant expansion of CTG repeats in the 3'-untranslated region of the DMPK gene. When transcribed, the toxic RNA CUG repeats sequester RNA binding proteins, which leads to disease symptoms. The expanded CUG repeats can adopt a double-stranded structure, and targeting this helix is a therapeutic strategy for DM1. To improve our understanding of the 5'CUG/3'GUC motif and how it may interact with proteins and small molecules, we designed a short CUG helix attached to a GAAA tetraloop/receptor to facilitate crystal packing. Here we report the highest-resolution structure (1.95 Å) to date of a GAAA tetraloop/receptor and the CUG helix it was used to crystallize. Within the CUG helix, we identify two different forms of noncanonical U-U pairs and reconfirm that CUG repeats are essentially A-form. An analysis of all noncanonical U-U pairs in the context of CUG repeats revealed six different classes of conformations that the noncanonical U-U pairs are able to adopt.
Collapse
Affiliation(s)
- Leslie A Coonrod
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
48
|
Ravel-Chapuis A, Bélanger G, Yadava RS, Mahadevan MS, DesGroseillers L, Côté J, Jasmin BJ. The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. ACTA ACUST UNITED AC 2012; 196:699-712. [PMID: 22431750 PMCID: PMC3308689 DOI: 10.1083/jcb.201108113] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Staufen1 interacts with mRNAs with expanded CUG repeats and promotes their nuclear export and translation, while also promoting alternative splicing of other mRNAs. In myotonic dystrophy type 1 (DM1), dystrophia myotonica protein kinase messenger ribonucleic acids (RNAs; mRNAs) with expanded CUG repeats (CUGexp) aggregate in the nucleus and become toxic to cells by sequestering and/or misregulating RNA-binding proteins, resulting in aberrant alternative splicing. In this paper, we find that the RNA-binding protein Staufen1 is markedly and specifically increased in skeletal muscle from DM1 mouse models and patients. We show that Staufen1 interacts with mutant CUGexp mRNAs and promotes their nuclear export and translation. This effect is critically dependent on the third double-stranded RNA–binding domain of Staufen1 and shuttling of Staufen1 into the nucleus via its nuclear localization signal. Moreover, we uncover a new role of Staufen1 in splicing regulation. Overexpression of Staufen1 rescues alternative splicing of two key pre-mRNAs known to be aberrantly spliced in DM1, suggesting its increased expression represents an adaptive response to the pathology. Altogether, our results unravel a novel function for Staufen1 in splicing regulation and indicate that it may positively modulate the complex DM1 phenotype, thereby revealing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Four parameters increase the sensitivity and specificity of the exon array analysis and disclose 25 novel aberrantly spliced exons in myotonic dystrophy. J Hum Genet 2012; 57:368-74. [PMID: 22513715 DOI: 10.1038/jhg.2012.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA gain-of-function disorder in which abnormally expanded CTG repeats of DMPK sequestrate a splicing trans-factor MBNL1 and upregulate another splicing trans-factor CUGBP1. To identify a diverse array of aberrantly spliced genes, we performed the exon array analysis of DM1 muscles. We analyzed 72 exons by RT-PCR and found that 27 were aberrantly spliced, whereas 45 were not. Among these, 25 were novel and especially splicing aberrations of LDB3 exon 4 and TTN exon 45 were unique to DM1. Retrospective analysis revealed that four parameters efficiently detect aberrantly spliced exons: (i) the signal intensity is high; (ii) the ratio of probe sets with reliable signal intensities (that is, detection above background P-value=0.000) is high within a gene; (iii) the splice index (SI) is high; and (iv) SI is deviated from SIs of the other exons that can be estimated by calculating the deviation value (DV). Application of the four parameters gave rise to a sensitivity of 77.8% and a specificity of 95.6% in our data set. We propose that calculation of DV, which is unique to our analysis, is of particular importance in analyzing the exon array data.
Collapse
|
50
|
Di Cresce C, Way C, Rytelewski M, Vareki SM, Nilam S, Vincent MD, Koropatnick J, Ferguson PJ. Antisense Technology: From Unique Laboratory Tool to Novel Anticancer Treatments. RNA TECHNOLOGIES 2012:145-189. [DOI: 10.1007/978-3-642-27426-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|