1
|
Reinhardt CR, Lee JA, Hendricks L, Green T, Kunczynski L, Roberts AJ, Miller N, Rafalin N, Kulik HJ, Pollock CJ, Austin RN. No Bridge between Us: EXAFS and Computations Confirm Two Distant Iron Ions Comprise the Active Site of Alkane Monooxygenase (AlkB). J Am Chem Soc 2025. [PMID: 39772501 DOI: 10.1021/jacs.4c12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Alkane monooxygenase (AlkB) is the dominant enzyme that catalyzes the oxidation of liquid alkanes in the environment. Two recent structural models derived from cryo-electron microscopy (cryo-EM) reveal an unusual active site: a histidine-rich center that binds two iron ions without a bridging ligand. To ensure that potential photoreduction and radiation damage are not responsible for the absence of a bridging ligand in the cryo-EM structures, spectroscopic methods are needed. We present the results of extended X-ray absorption fine structure (EXAFS) experiments collected under conditions where photodamage was avoided. Careful data analysis reveals an active site structure consistent with the cryo-EM structures in which the two iron ions are ligated by nine histidines and separated by at least 5 Å. The EXAFS data were used to inform structural models for molecular dynamics (MD) simulations. The MD simulations corroborate EXAFS observations that neither of the two conserved carboxylate-containing residues (E281 and D190) near the active site are likely candidates for metal ion bridging. Mutagenesis experiments, spectroscopy, and additional MD simulations were used to further explore the role of these carboxylate residues. A variant in which a carboxylate containing residue (E281) was changed to a methyl residue (E281A) showed little change in pre-edge features, consistent with the observation that it is not essential for activity and hence unlikely to serve as a bridging ligand at any point in the catalytic cycle. D190 variants had substantially diminished activity, suggesting an important role in catalysis not yet fully understood.
Collapse
Affiliation(s)
- Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juliet A Lee
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Lauren Hendricks
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Tierani Green
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Lily Kunczynski
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | | | - Naomi Miller
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Noga Rafalin
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Rachel N Austin
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| |
Collapse
|
2
|
Byeon SK, Kim J, Wegwerth PJ, Zenka R, George JP, Pinto E Vairo F, Oglesbee D, Schultz MJ, Matern D, Pandey A. Development of a Multiplexed Sphingolipids Method for Diagnosis of Inborn Errors of Ceramide Metabolism. Clin Chem 2024; 70:1366-1374. [PMID: 39206579 DOI: 10.1093/clinchem/hvae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sphingolipids play a crucial role in cellular functions and are essential components of cell membranes, signaling molecules, and lipid metabolism. In particular, ceramide is a key intermediate in sphingolipid metabolism and defects in ceramide metabolism can lead to various inborn errors of metabolism, making ceramides important targets for clinical screening and diagnosis. Detecting altered concentration patterns of sphingolipids is desirable for distinguishing related inborn errors of metabolism for diagnosis and treatment monitoring. METHODS We developed a liquid chromatography-tandem mass spectrometry method with a pathway-oriented approach to focus on sphingolipids involved in ceramide metabolism. A total of 47 sphingolipids bearing different head groups and side chains were targeted. Precision/reproducibility, linearity, and spike recovery extraction efficiency tests were performed on plasma and serum samples from confirmed cases of sphingolipidosis. RESULTS Linearity of the method showed the coefficient of determination (r2) for all standards to be >0.99 with a slope of 1.00 ± 0.01. Intra- and interday reproducibility of standards spiked into plasma and serum revealed a coefficient of variation <20%. Spike and recovery assessment showed recovery values of 80%-120% for all standards. Altered levels of sphingolipids from patients with hereditary sensory and autonomic neuropathy caused by pathogenic variants in SPTLC2 and hypomyelinating leukodystrophy related to variants in DEGS1 were detected, in agreement with trends reported in earlier studies confirming the utility of this pathway-centric method. CONCLUSIONS This method can serve as a useful tool to simultaneously monitor sphingolipids, enabling screening and diagnosis of inborn errors of ceramide metabolism.
Collapse
Affiliation(s)
- Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Peter Jared Wegwerth
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Roman Zenka
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - John P George
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MNUnited States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Matthew J Schultz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MNUnited States
| |
Collapse
|
3
|
Cronan JE. Unsaturated fatty acid synthesis in bacteria: Mechanisms and regulation of canonical and remarkably noncanonical pathways. Biochimie 2024; 218:137-151. [PMID: 37683993 PMCID: PMC10915108 DOI: 10.1016/j.biochi.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Unsaturated phospholipid acyl chains are required for membrane function in most bacteria. The double bonds of the cis monoenoic chains arise by two distinct pathways depending on whether oxygen is required. The oxygen-independent pathway (traditionally called the anaerobic pathway) introduces the cis double bond by isomerization of the trans double bond intermediate of the fatty acid elongation cycle. Double bond isomerization occurs at an intermediate chain length (e.g., C10) and the isomerization product is elongated to the C16-C18 chains that become phospholipid monoenoic acyl chains. This pathway was first delineated in Escherichia coli and became the paradigm pathway. However, studies of other bacteria show deviations from this paradigm, the most exceptional being reversal of the fatty acid elongation cycle by a reaction paralleling the initial step in the β-oxidative degradation of fatty acids. In the oxygen-dependent pathway diiron enzymes called desaturases introduce a double bond into a saturated acyl chain by regioselective cis dehydrogenation through activation of molecular oxygen with an active-site diiron cluster. This difficult hydrogen abstraction from a methylene group often occurs at the midpoint of a saturated fatty acyl chain. In bacteria the acyl chain is a phospholipid acyl chain, and the desaturase is membrane bound. Both the oxygen-independent oxygen-dependent pathways are transcriptionally regulated by repressor and activator proteins that respond to small molecule ligands such as acyl-CoAs. However, in Bacillus subtilis the desaturase is synthesized only at low growth temperatures, a process controlled by a signal transduction regulatory pathway dependent on membrane lipid properties.
Collapse
Affiliation(s)
- John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, 61801, USA.
| |
Collapse
|
4
|
Ibrahim IH. Metalloproteins and metalloproteomics in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:123-176. [PMID: 38960472 DOI: 10.1016/bs.apcsb.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
5
|
Dong H, Cronan JE. Suppressor mutants demonstrate the metabolic plasticity of unsaturated fatty acid synthesis in Pseudomonas aeruginosa PAO1. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001400. [PMID: 37818937 PMCID: PMC10634369 DOI: 10.1099/mic.0.001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Pseudomonas aeruginosa PAO1 has two aerobic pathways for synthesis of unsaturated fatty acids (UFAs), DesA and DesB plus the oxygen independent FabAB pathway. The DesA desaturase acts on saturated acyl chains of membrane phospholipid bilayers whereas the substrates of the DesB desaturase are thought to be long chain saturated acyl-CoA thioesters derived from exogeneous saturated fatty acids that are required to support DesB-dependent growth. Under suitable aerobic conditions either of these membrane-bound desaturates can support growth of P. aeruginosa ∆fabA strains lacking the oxygen independent FabAB pathway. We previously studied function of the desA desaturase of P. putida in a P. aeruginosa ∆fabA ∆desA strain that required supplementation with a UFA for growth and noted bypass suppression of the P. aeruginosa ∆fabA ∆desA strain that restored UFA synthesis. We report three genes encoding lipid metabolism proteins that give rise to suppressor strains that bypass loss of the DesA and oxygen independent FabAB pathways.
Collapse
Affiliation(s)
- Huijuan Dong
- Departments of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E. Cronan
- Departments of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departments of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Papadopoulou A, Meyer F, Buller RM. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2023; 62:229-240. [PMID: 35446547 DOI: 10.1021/acs.biochem.2c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent dioxygenases (α-KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as α-KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all α-KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within α-KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Fabian Meyer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca M Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
7
|
Cerone M, Smith TK. Desaturases: Structural and mechanistic insights into the biosynthesis of unsaturated fatty acids. IUBMB Life 2022; 74:1036-1051. [PMID: 36017969 PMCID: PMC9825965 DOI: 10.1002/iub.2671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
This review highlights the key role of fatty acid desaturases in the synthesis of naturally occurring, more common and not unsaturated fatty acids. The three major classes of fatty acid desaturases, such as acyl-lipid, acyl-acyl carrier protein and acyl-coenzyme A, are described in detail, with particular attention to the cellular localisation, the structure, the substrate and product specificity and the expression and regulation of desaturase genes. The review also gives an insight into the biocatalytic reaction of fatty acid desaturation by covering the general and more class-specific mechanistic studies around the synthesis of unsaturated fatty acids Finally, we conclude the review by looking at the numerous novel applications for desaturases in order to meet the very high demand for polyunsaturated fatty acids, taking into account the opportunity for the development of new, more efficient, easily reproducible, sustainable bioengineering advances in the field.
Collapse
Affiliation(s)
- Michela Cerone
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| | - Terry K. Smith
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| |
Collapse
|
8
|
Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA. Membrane fatty acid desaturase: biosynthesis, mechanism, and architecture. Appl Microbiol Biotechnol 2022; 106:5957-5972. [PMID: 36063178 DOI: 10.1007/s00253-022-12142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Fatty acid desaturase catalyzes the desaturation reactions by inserting double bonds into the fatty acyl chain, producing unsaturated fatty acids, which play a vital part in the synthesis of polyunsaturated fatty acids. Though soluble fatty acid desaturases have been described extensively in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to their difficulties in producing a sufficient amount of recombinant desaturases. However, the advancement of technology has shown substantial progress towards the development of elucidating crystal structures of membrane fatty acid desaturase, thus, allowing modification of structure to be manipulated. Understanding the structure, mechanism, and biosynthesis of fatty acid desaturase lay a foundation for the potential production of various strategies associated with alteration and modifications of polyunsaturated fatty acids. This manuscript presents the current state of knowledge and understanding about the structure, mechanisms, and biosynthesis of fatty acid desaturase. In addition, the role of unsaturated fatty acid desaturases in health and diseases is also encompassed. This will be useful in understanding the molecular basis and structural protein of fatty acid desaturase that are significant for the advancement of therapeutic strategies associated with the improvement of health status. KEY POINTS: • Current state of knowledge and understanding about the biosynthesis, mechanisms, and structure of fatty acid desaturase. • The role of unsaturated fatty acid desaturase. • The molecular basis and structural protein elucidated the crystal structure of fatty acid desaturase.
Collapse
Affiliation(s)
- Nur Farah Anis Abd Halim
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
10
|
Padmanabhan S, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Del Rey Navalón I, Pérez-Castaño R, Galbis-Martínez ML, Fontes M, Elías-Arnanz M. Plasmalogens and Photooxidative Stress Signaling in Myxobacteria, and How it Unmasked CarF/TMEM189 as the Δ1'-Desaturase PEDS1 for Human Plasmalogen Biosynthesis. Front Cell Dev Biol 2022; 10:884689. [PMID: 35646900 PMCID: PMC9131029 DOI: 10.3389/fcell.2022.884689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmalogens are glycerophospholipids with a hallmark sn-1 vinyl ether bond that endows them with unique physical-chemical properties. They have proposed biological roles in membrane organization, fluidity, signaling, and antioxidative functions, and abnormal plasmalogen levels correlate with various human pathologies, including cancer and Alzheimer’s disease. The presence of plasmalogens in animals and in anaerobic bacteria, but not in plants and fungi, is well-documented. However, their occurrence in the obligately aerobic myxobacteria, exceptional among aerobic bacteria, is often overlooked. Tellingly, discovery of the key desaturase indispensable for vinyl ether bond formation, and therefore fundamental in plasmalogen biogenesis, emerged from delving into how the soil myxobacterium Myxococcus xanthus responds to light. A recent pioneering study unmasked myxobacterial CarF and its human ortholog TMEM189 as the long-sought plasmanylethanolamine desaturase (PEDS1), thus opening a crucial door to study plasmalogen biogenesis, functions, and roles in disease. The findings demonstrated the broad evolutionary sweep of the enzyme and also firmly established a specific signaling role for plasmalogens in a photooxidative stress response. Here, we will recount our take on this fascinating story and its implications, and review the current state of knowledge on plasmalogens, their biosynthesis and functions in the aerobic myxobacteria.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Irene Del Rey Navalón
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Luisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
11
|
Cui J, Chen H, Tang X, Zhang H, Chen YQ, Chen W. Characterization and Molecular Mechanism of a Novel Cytochrome b5 Reductase with NAD(P)H Specificity from Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5186-5196. [PMID: 35416034 DOI: 10.1021/acs.jafc.1c08108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electron-transfer capabilities of cytochrome b5 reductase (Cyt b5R) and NADPH supply have been shown to be critical factors in microbial fatty acid synthesis. Unfortunately, Cyt b5R substrate specificity is limited to the coenzyme NADH. In this study, we discovered that a novel Cyt b5R from Mortierella alpina (MaCytb5RII) displays affinity for NADPH and NADH. The enzymatic characteristics of high-purity MaCytb5RII were determined with the Km,NADPH and Km,NADH being 0.42 and 0.07 mM, respectively. MaCytb5RII shows high specific activity at 4 °C and pH 9.0. We anchored the residues that interacted with the coenzymes using the homology models of MaCytb5Rs docking NAD(P)H and FAD. The enzyme activity analysis of the purified mutants MaCytb5RII[S230N], MaCytb5RII[Y242F], and MaCytb5RII[S272A] revealed that Ser230 is essential for MaCytb5RII to have dual NAD(P)H dependence, whereas Tyr242 influences MaCytb5RII's NADPH affinity and Ala272 greatly decreases MaCytb5RII's NADH affinity.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27127, United States
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
12
|
Ben Ayed R, Chirmade T, Hanana M, Khamassi K, Ercisli S, Choudhary R, Kadoo N, Karunakaran R. Comparative Analysis and Structural Modeling of Elaeis oleifera FAD2, a Fatty Acid Desaturase Involved in Unsaturated Fatty Acid Composition of American Oil Palm. BIOLOGY 2022; 11:529. [PMID: 35453727 PMCID: PMC9032008 DOI: 10.3390/biology11040529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
American oil palm (Elaeis oleifera) is an important source of dietary oil that could fulfill the increasing worldwide demand for cooking oil. Therefore, improving its production is crucial and could be realized through breeding and genetic engineering approaches aiming to obtain high-yielding varieties with improved oil content and quality. The fatty acid composition and particularly the oleic/linoleic acid ratio are major factors influencing oil quality. Our work focused on a fatty acid desaturase (FAD) enzyme involved in the desaturation and conversion of oleic acid to linoleic acid. Following the in silico identification and annotation of Elaeis oleifera FAD2, its molecular and structural features characterization was performed to better understand the mechanistic bases of its enzymatic activity. EoFAD2 is 1173 nucleotides long and encodes a protein of 390 amino acids that shares similarities with other FADs. Interestingly, the phylogenetic study showed three distinguished groups where EoFAD2 clustered among monocotyledonous taxa. EoFAD2 is a membrane-bound protein with five transmembrane domains presumably located in the endoplasmic reticulum. The homodimer organization model of EoFAD2 enzyme and substrates and respective substrate-binding residues were predicted and described. Moreover, the comparison between 24 FAD2 sequences from different species generated two interesting single-nucleotide polymorphisms (SNPs) associated with the oleic/linoleic acid contents.
Collapse
Affiliation(s)
- Rayda Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road, P.O. Box 1177, Sfax 3018, Tunisia
| | - Tejas Chirmade
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; (T.C.); (N.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam Lif 2050, Tunisia;
| | - Khalil Khamassi
- Field Crop Laboratory (LR16INRAT02), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis 1004, Tunisia;
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Narendra Kadoo
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; (T.C.); (N.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rohini Karunakaran
- Unit of Biochemistry, Centre of Excellence for Biomaterials Engineering, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia
| |
Collapse
|
13
|
Furubayashi M, Maoka T, Mitani Y. Promiscuous activity of β-carotene hydroxylase CrtZ on epoxycarotenoids leads to the formation of rare carotenoids with 6-hydroxy-3-keto-ε-ends. FEBS Lett 2022; 596:1921-1931. [PMID: 35344590 DOI: 10.1002/1873-3468.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
Carotenoids with rare 6-hydroxy-3-keto-ε-end groups, such as piprixanthin, vitixanthin or cochloxanthin, found in manakin birds or plants, are rare carotenoids with high antioxidant activity. The same chemical structure is found in abscisic acid or blumenol, apocarotenoids found in plants or fungi. In this study, we serendipitously discovered that the promiscuous activity of the β-carotene hydroxylase CrtZ, a diiron-containing membrane protein, can catalyze the formation of 6-hydroxy-3-keto-ε-end by using epoxycarotenoids antheraxanthin or violaxanthin as substrate. We suggest that the reaction mechanism is similar to that of a rhodoxanthin biosynthetic enzyme. Our results provide further understanding of the reaction mechanism of diiron-containing β-carotene hydroxylases, as well as insight into the biosynthesis of natural compounds with 6-hydroxy-3-keto-ε-end carotenoid derivatives.
Collapse
Affiliation(s)
- Maiko Furubayashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido, 062-8517, Japan
| | - Takashi Maoka
- Division of Food Function and Chemistry, Research Institute for Production Development, Kyoto, 606-0805, Japan
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido, 062-8517, Japan
| |
Collapse
|
14
|
Werner ER, Fernández-Quintero ML, Hulo N, Golderer G, Sailer S, Lackner K, Werner-Felmayer G, Liedl KR, Watschinger K. Essential role of a conserved aspartate for the enzymatic activity of plasmanylethanolamine desaturase. Cell Mol Life Sci 2022; 79:214. [PMID: 35347434 PMCID: PMC8960569 DOI: 10.1007/s00018-022-04238-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Plasmalogens are an abundant class of glycerophospholipids in the mammalian body, with special occurrence in the brain and in immune cell membranes. Plasmanylethanolamine desaturase (PEDS1) is the final enzyme of plasmalogen biosynthesis, which introduces the characteristic 1-O-alk-1'-enyl double bond. The recent sequence identification of PEDS1 as transmembrane protein 189 showed that its protein sequence is related to a special class of plant desaturases (FAD4), with whom it shares a motif of 8 conserved histidines, which are essential for the enzymatic activity. In the present work, we wanted to gain more insight into the sequence-function relationship of this enzyme and mutated to alanine additional 28 amino acid residues of murine plasmanylethanolamine desaturase including those 20 residues, which are also totally conserved-in addition to the eight-histidine-motif-among the animal PEDS1 and plant FAD4 plant desaturases. We measured the enzymatic activity by transient transfection of tagged murine PEDS1 expression clones to a PEDS1-deficient human HAP1 cell line by monitoring of labeled plasmalogens formed from supplemented 1-O-pyrenedecyl-sn-glycerol in relation to recombinant protein expression. Surprisingly, only a single mutation, namely aspartate 100, led to a total loss of PEDS1 activity. The second strongest impact on enzymatic activity had mutation of phenylalanine 118, leaving only 6% residual activity. A structural model obtained by homology modelling to available structures of stearoyl-CoA reductase predicted that this aspartate 100 residue interacts with histidine 96, and phenylalanine 118 interacts with histidine 187, both being essential histidines assumed to be involved in the coordination of the di-metal center of the enzyme.
Collapse
Affiliation(s)
- Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, University of Geneva, 1, rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Georg Golderer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
15
|
Iqbal T, Chakraborty S, Murugan S, Das D. Metalloenzymes for Fatty Acid-Derived Hydrocarbon Biosynthesis: Nature's Cryptic Catalysts. Chem Asian J 2022; 17:e202200105. [PMID: 35319822 DOI: 10.1002/asia.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Indexed: 11/08/2022]
Abstract
Waning resources, massive energy consumption, everdeepening global warming crisis, and climate change have raised grave concerns regarding continued dependence on fossil fuels as the predominant source of energy and generated tremendous interest for developing biofuels, which are renewable. Hydrocarbon-based 'drop-in' biofuels can be a proper substitute for fossil fuels such as gasoline or jet fuel. In Nature, hydrocarbons are produced by diverse organisms such as insects, plants, bacteria, and cyanobacteria. Metalloenzymes play a crucial role in hydrocarbons biosynthesis, and the past decade has witnessed discoveries of a number of metalloenzymes catalyzing hydrocarbon biosynthesis from fatty acids and their derivatives employing unprecedented mechanisms. These discoveries elucidated the enigma related to the divergent chemistries involved in the catalytic mechanisms of these metalloenzymes. There is substantial diversity in the structure, mode of action, cofactor requirement, and substrate scope among these metalloenzymes. Detailed structural analysis along with mutational studies of some of these enzymes have contributed significantly to identifying the key amino acid residues that dictate substrate specificity and catalytic intricacy. In this Review, we discuss the metalloenzymes that catalyze fatty acid-derived hydrocarbon biosynthesis in various organisms, emphasizing the active site architecture, catalytic mechanism, cofactor requirements, and substrate specificity of these enzymes. Understanding such details is essential for successfully implementing these enzymes in emergent biofuel research through protein engineering and synthetic biology approaches.
Collapse
Affiliation(s)
- Tabish Iqbal
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | | | - Subhashini Murugan
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | - Debasis Das
- Indian Institute of Science, Inorganic and Physical Chemistry, CV Raman Rd, 560012, Bangalore, INDIA
| |
Collapse
|
16
|
Guy JE, Cai Y, Baer MD, Whittle E, Chai J, Yu XH, Lindqvist Y, Raugei S, Shanklin J. Regioselectivity mechanism of the Thunbergia alata Δ6-16:0-acyl carrier protein desaturase. PLANT PHYSIOLOGY 2022; 188:1537-1549. [PMID: 34893899 PMCID: PMC8896614 DOI: 10.1093/plphys/kiab577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 05/12/2023]
Abstract
Plant plastidial acyl-acyl carrier protein (ACP) desaturases are a soluble class of diiron-containing enzymes that are distinct from the diiron-containing integral membrane desaturases found in plants and other organisms. The archetype of this class is the stearoyl-ACP desaturase which converts stearoyl-ACP into oleoyl (18:1Δ9cis)-ACP. Several variants expressing distinct regioselectivity have been described including a Δ6-16:0-ACP desaturase from black-eyed Susan vine (Thunbergia alata). We solved a crystal structure of the T. alata desaturase at 2.05 Å resolution. Using molecular dynamics (MD) simulations, we identified a low-energy complex between 16:0-ACP and the desaturase that would position C6 and C7 of the acyl chain adjacent to the diiron active site. The model complex was used to identify mutant variants that could convert the T. alata Δ6 desaturase to Δ9 regioselectivity. Additional modeling between ACP and the mutant variants confirmed the predicted regioselectivity. To validate the in-silico predictions, we synthesized two variants of the T. alata desaturase and analyzed their reaction products using gas chromatography-coupled mass spectrometry. Assay results confirmed that mutants designed to convert T. alata Δ6 to Δ9 selectivity exhibited the predicted changes. In complementary experiments, variants of the castor desaturase designed to convert Δ9 to Δ6 selectivity lost some of their Δ9 desaturation ability and gained the ability to desaturate at the Δ6 position. The computational workflow for revealing the mechanistic understanding of regioselectivity presented herein lays a foundation for designing acyl-ACP desaturases with novel selectivities to increase the diversity of monoenes available for bioproduct applications.
Collapse
Affiliation(s)
- Jodie E Guy
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Yuanheng Cai
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794, USA
| | - Marcel D Baer
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Edward Whittle
- Brookhaven National Laboratory, Department of Biology, Upton, New York 11973, USA
| | - Jin Chai
- Brookhaven National Laboratory, Department of Biology, Upton, New York 11973, USA
| | - Xiao-Hong Yu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ylva Lindqvist
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - John Shanklin
- Brookhaven National Laboratory, Department of Biology, Upton, New York 11973, USA
- Author for communication:
| |
Collapse
|
17
|
Cordova LT, Palmer CM, Alper HS. Shifting the distribution: modulation of the lipid profile in Yarrowia lipolytica via iron content. Appl Microbiol Biotechnol 2022; 106:1571-1581. [PMID: 35099573 DOI: 10.1007/s00253-022-11800-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
Microbial fermentation offers a sustainable source of fuels, commodity chemicals, and pharmaceuticals, yet strain performance is influenced greatly by the growth media selected. Specifically, trace metals (e.g., iron, copper, manganese, zinc, and others) are critical for proper growth and enzymatic function within microorganisms yet are non-standardized across media formulation. In this work, the effect of trace metal supplementation on the lipid production profile of Yarrowia lipolytica was explored using tube scale fermentation followed by biomass and lipid characterization. Addition of iron (II) to the chemically defined Yeast Synthetic Complete (YSC) medium increased final optical density nearly twofold and lipid production threefold, while addition of copper (II) had no impact. Additionally, dose-responsive changes in lipid distribution were observed, with the percent of oleic acid increasing and stearic acid decreasing as initial iron concentration increased. These changes were reversible with subsequent iron-selective chelation. Use of rich Yeast Peptone Dextrose (YPD) medium enabled further increases in the production of two specialty oleochemicals ultimately reaching 63 and 47% of the lipid pool as α-linolenic acid and cyclopropane fatty acid, respectively, compared to YSC medium. Selective removal of iron (II) natively present in YPD medium decreased this oleochemical production, ultimately aligning the lipid profile with that of non-supplemented YSC medium. These results provide further insight into the proposed mechanisms for iron regulation in yeasts especially as these productions strains contain a mutant allele of the iron regulator, mga2. The work presented here also suggests a non-genetic method for control of the lipid profile in Y. lipolytica for use in diverse applications. KEY POINTS: • Iron supplementation increases cell density and lipid titer in Yarrowia lipolytica. • Iron addition reversibly alters lipid portfolio increasing linolenic acid. • Removal of iron from YPD media provides a link to enhanced oleochemical production.
Collapse
Affiliation(s)
- Lauren T Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Claire M Palmer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA. .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA.
| |
Collapse
|
18
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
19
|
O'Hair RAJ. ORGANOMETALLIC GAS-PHASE ION CHEMISTRY AND CATALYSIS: INSIGHTS INTO THE USE OF METAL CATALYSTS TO PROMOTE SELECTIVITY IN THE REACTIONS OF CARBOXYLIC ACIDS AND THEIR DERIVATIVES. MASS SPECTROMETRY REVIEWS 2021; 40:782-810. [PMID: 32965774 DOI: 10.1002/mas.21654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Carboxylic acids are valuable organic substrates as they are widely available, easy to handle, and exhibit structural and functional variety. While they are used in many standard synthetic protocols, over the past two decades numerous studies have explored new modes of metal-mediated reactivity of carboxylic acids and their derivatives. Mass spectrometry-based studies can provide fundamental mechanistic insights into these new modes of reactivity. Here gas-phase models for the following catalytic transformations of carboxylic acids and their derivatives are reviewed: protodecarboxylation; dehydration; decarbonylation; reaction as coordinated bases in C-H bond activation; remote functionalization and decarboxylative C-C bond coupling. In each case the catalytic problem is defined, insights from gas-phase studies are highlighted, comparisons with condensed-phase systems are made and perspectives are reached. Finally, the potential role for mechanistic studies that integrate both gas- and condensed-phase studies is highlighted by recent studies on the discovery of new catalysts for the selective decomposition of formic acid and the invention of the new extrusion-insertion class of reactions for the synthesis of amides, thioamides, and amidines. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Richard A J O'Hair
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
20
|
Smith R, Jouhet J, Gandini C, Nekrasov V, Marechal E, Napier JA, Sayanova O. Plastidial acyl carrier protein Δ9-desaturase modulates eicosapentaenoic acid biosynthesis and triacylglycerol accumulation in Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1247-1259. [PMID: 33725374 PMCID: PMC8360179 DOI: 10.1111/tpj.15231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The unicellular marine diatom Phaeodactylum tricornutum accumulates up to 35% eicosapentaenoic acid (EPA, 20:5n3) and has been used as a model organism to study long chain polyunsaturated fatty acids (LC-PUFA) biosynthesis due to an excellent annotated genome sequence and established transformation system. In P. tricornutum, the majority of EPA accumulates in polar lipids, particularly in galactolipids such as mono- and di-galactosyldiacylglycerol. LC-PUFA biosynthesis is considered to start from oleic acid (18:1n9). EPA can be synthesized via a series of desaturation and elongation steps occurring at the endoplasmic reticulum and newly synthesized EPA is then imported into the plastids for incorporation into galactolipids via an unknown route. The basis for the flux of EPA is fundamental to understanding LC-PUFA biosynthesis in diatoms. We used P. tricornutum to study acyl modifying activities, upstream of 18:1n9, on subsequent LC-PUFA biosynthesis. We identified the gene coding for the plastidial acyl carrier protein Δ9-desaturase, a key enzyme in fatty acid modification and analyzed the impact of overexpression and knock out of this gene on glycerolipid metabolism. This revealed a previously unknown role of this soluble desaturase in EPA synthesis and production of triacylglycerol. This study provides further insight into the distinctive nature of lipid metabolism in the marine diatom P. tricornutum and suggests additional approaches for tailoring oil composition in microalgae.
Collapse
Affiliation(s)
- Richard Smith
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
- Present address:
AlgenuityEden LaboratoryBroadmead RoadStewartbyMK43 9NDUK
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble AlpesCNRSIRAECEAIRIGGrenoble38000France
| | - Chiara Gandini
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
- Present address:
Open Bioeconomy LaboratoryDepartment of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Vladimir Nekrasov
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
| | - Eric Marechal
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble AlpesCNRSIRAECEAIRIGGrenoble38000France
| | | | - Olga Sayanova
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
| |
Collapse
|
21
|
Ohno H, Inuki S. Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Org Biomol Chem 2021; 19:3551-3568. [PMID: 33908430 DOI: 10.1039/d0ob02577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic natural product synthesis is generally straightforward and efficient because of its established feasibility in nature and utility in comprehensive synthesis, and the cost-effectiveness of naturally derived starting materials. On the other hand, nonbiomimetic strategies can be an important option in natural product synthesis since (1) nonbiomimetic synthesis offers more flexibility and can demonstrate the originality of chemists, and (2) the structures of derivatives accessible by nonbiomimetic synthesis can be considerably different from those that are synthesised in nature. This review summarises nonbiomimetic total syntheses of indole alkaloids using alkyne chemistry for constructing core structures, including ergot alkaloids, monoterpene indole alkaloids (mainly corynanthe, aspidosperma, strychnos, and akuammiline), and pyrroloindole and related alkaloids. To clarify the differences between alkyne-based strategies and biosynthesis, the alkynes in nature and the biosyntheses of indole alkaloids are also outlined.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
Brachmann AO, Probst SI, Rüthi J, Dudko D, Bode HB, Piel J. A Desaturase‐Like Enzyme Catalyzes Oxazole Formation in
Pseudomonas
Indolyloxazole Alkaloids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander O. Brachmann
- Eidgenössische Technische Hochschule (ETH) Zürich Institute of Microbiology Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Silke I. Probst
- Eidgenössische Technische Hochschule (ETH) Zürich Institute of Microbiology Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Joel Rüthi
- Eidgenössische Technische Hochschule (ETH) Zürich Institute of Microbiology Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Darya Dudko
- Eidgenössische Technische Hochschule (ETH) Zürich Institute of Microbiology Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Helge B. Bode
- Goethe Universität Frankfurt Institute of Molecular Biological Science Max-von-Laue Str. 9 60438 Frankfurt am Main Germany
- Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25 60325 Frankfurt am Main Germany
- Buchmann Institute for Molecular Life Sciences (BMLS) Johann Wolfgang Goethe Universität Max-von-Laue-Straße 15 60438 Frankfurt am Main Germany
- Max-Planck-Institute for Terrestrial Microbiology Department of Natural Products in Organismic Interactions 35043 Marburg Germany
| | - Jörn Piel
- Eidgenössische Technische Hochschule (ETH) Zürich Institute of Microbiology Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
23
|
Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA. Iron Oxidation in Escherichia coli Bacterioferritin Ferroxidase Centre, a Site Designed to React Rapidly with H 2O 2 but Slowly with O 2. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:8442-8450. [PMID: 38529354 PMCID: PMC10962548 DOI: 10.1002/ange.202015964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Indexed: 11/09/2022]
Abstract
Both O2 and H2O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo-EcBfr, pre-loaded anaerobically with Fe2+, was exposed to O2 or H2O2. We show that O2 binds di-Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di-Fe2+ FC, at a rate circa 1000 faster than O2, ensuring an overall 1:4 stoichiometry of iron oxidation by O2. Initially formed Fe3+ can further react with H2O2 (producing protein bound radicals) but relaxes within seconds to an H2O2-unreactive di-Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2O2 rather than sequester iron.
Collapse
Affiliation(s)
- Jacob Pullin
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Michael T. Wilson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Martin Clémancey
- Université Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux, UMR 524917 rue des Martyrs38000GrenobleFrance
| | - Geneviève Blondin
- Université Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux, UMR 524917 rue des Martyrs38000GrenobleFrance
| | - Justin M. Bradley
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Geoffrey R. Moore
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Nick E. Le Brun
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Marina Lučić
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | | | | |
Collapse
|
24
|
Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA. Iron Oxidation in Escherichia coli Bacterioferritin Ferroxidase Centre, a Site Designed to React Rapidly with H 2 O 2 but Slowly with O 2. Angew Chem Int Ed Engl 2021; 60:8361-8369. [PMID: 33482043 PMCID: PMC8049013 DOI: 10.1002/anie.202015964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Both O2 and H2O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo‐EcBfr, pre‐loaded anaerobically with Fe2+, was exposed to O2 or H2O2. We show that O2 binds di‐Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di‐Fe2+ FC, at a rate circa 1000 faster than O2, ensuring an overall 1:4 stoichiometry of iron oxidation by O2. Initially formed Fe3+ can further react with H2O2 (producing protein bound radicals) but relaxes within seconds to an H2O2‐unreactive di‐Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2O2 rather than sequester iron.
Collapse
Affiliation(s)
- Jacob Pullin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Martin Clémancey
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, 38000, Grenoble, France
| | - Geneviève Blondin
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, 38000, Grenoble, France
| | - Justin M Bradley
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Geoffrey R Moore
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Marina Lučić
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
25
|
Acyl-Acyl Carrier Protein Desaturases and Plant Biotic Interactions. Cells 2021; 10:cells10030674. [PMID: 33803674 PMCID: PMC8002970 DOI: 10.3390/cells10030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions between land plants and other organisms such as pathogens, pollinators, or symbionts usually involve a variety of specialized effectors participating in complex cross-talks between organisms. Fatty acids and their lipid derivatives play important roles in these biological interactions. While the transcriptional regulation of genes encoding acyl–acyl carrier protein (ACP) desaturases appears to be largely responsive to biotic stress, the different monounsaturated fatty acids produced by these enzymes were shown to take active part in plant biotic interactions and were assigned with specific functions intrinsically linked to the position of the carbon–carbon double bond within their acyl chain. For example, oleic acid, an omega-9 monounsaturated fatty acid produced by Δ9-stearoyl–ACP desaturases, participates in signal transduction pathways affecting plant immunity against pathogen infection. Myristoleic acid, an omega-5 monounsaturated fatty acid produced by Δ9-myristoyl–ACP desaturases, serves as a precursor for the biosynthesis of omega-5 anacardic acids that are active biocides against pests. Finally, different types of monounsaturated fatty acids synthesized in the labellum of orchids are used for the production of a variety of alkenes participating in the chemistry of sexual deception, hence favoring plant pollination by hymenopterans.
Collapse
|
26
|
Brachmann AO, Probst SI, Rüthi J, Dudko D, Bode HB, Piel J. A Desaturase-Like Enzyme Catalyzes Oxazole Formation in Pseudomonas Indolyloxazole Alkaloids. Angew Chem Int Ed Engl 2021; 60:8781-8785. [PMID: 33460275 DOI: 10.1002/anie.202014491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Indexed: 11/10/2022]
Abstract
Indolyloxazole alkaloids occur in diverse micro- and macroorganisms and exhibit a wide range of pharmacological activities. Despite their ubiquitous occurrence and simple structures, the biosynthetic pathway remained unknown. Here, we used transposon mutagenesis in the labradorin producer Pseudomonas entomophila to identify a cryptic biosynthetic locus encoding an N-acyltransferase and a non-heme diiron desaturase-like enzyme. Heterologous expression in E. coli demonstrates that both enzymes are sufficient to produce indolyloxazoles. Probing their function in stable-isotope feeding experiments, we provide evidence for an unusual desaturase mechanism that generates the oxazole by decarboxylative cyclization.
Collapse
Affiliation(s)
- Alexander O Brachmann
- Eidgenössische Technische Hochschule (ETH) Zürich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Silke I Probst
- Eidgenössische Technische Hochschule (ETH) Zürich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Joel Rüthi
- Eidgenössische Technische Hochschule (ETH) Zürich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Darya Dudko
- Eidgenössische Technische Hochschule (ETH) Zürich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Helge B Bode
- Goethe Universität Frankfurt, Institute of Molecular Biological Science, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe Universität, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Jörn Piel
- Eidgenössische Technische Hochschule (ETH) Zürich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
27
|
Baer MD, Shanklin J, Raugei S. Atomistic insight on structure and dynamics of spinach acyl carrier protein with substrate length. Biophys J 2021; 120:3841-3853. [PMID: 33631202 PMCID: PMC8456182 DOI: 10.1016/j.bpj.2020.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023] Open
Abstract
The plant acyl-acyl carrier protein (ACP) desaturases are a family of soluble enzymes that convert saturated fatty acyl-ACPs into their cis-monounsaturated equivalents in an oxygen-dependent reaction. These enzymes play a key role in biosynthesis of monounsaturated fatty acids in plants. ACPs are central proteins in fatty acid biosynthesis that deliver acyl chains to desaturases. They have been reported to show a varying degree of local dynamics and structural variability depending on the acyl chain size. It has been suggested that substrate-specific changes in ACP structure and dynamics have a crucial impact on the desaturase enzymatic activity. Using molecular dynamics simulations, we investigated the intrinsic solution structure and dynamics of ACP from spinach with four different acyl chains: capric (C10), myristic (C14), palmitic (C16), and stearic (C18) acids. We found that the fatty acids can adopt two distinct structural binding motifs, which feature different binding free energies and influence the ACP dynamics in a different manner. Docking simulations of ACP to castor Δ9-desaturase and ivy Δ4-desaturase suggest that ACP desaturase interactions could lead to a preferential selection between the motifs.
Collapse
Affiliation(s)
- Marcel D Baer
- Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate, Richland, Washington.
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Simone Raugei
- Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate, Richland, Washington
| |
Collapse
|
28
|
Li X, Lv JM, Hu D, Abe I. Biosynthesis of alkyne-containing natural products. RSC Chem Biol 2021; 2:166-180. [PMID: 34458779 PMCID: PMC8341276 DOI: 10.1039/d0cb00190b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
Alkyne-containing natural products are important molecules that are widely distributed in microbes and plants. Inspired by the advantages of acetylenic products used in the fields of medicinal chemistry, organic synthesis and material science, great efforts have focused on discovering the biosynthetic enzymes and pathways for alkyne formation. Here, we summarize the biosyntheses of alkyne-containing natural products and introduce de novo biosynthetic strategies for alkyne-tagged compound production.
Collapse
Affiliation(s)
- Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1 Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
29
|
Degraeve-Guilbault C, Pankasem N, Gueirrero M, Lemoigne C, Domergue F, Kotajima T, Suzuki I, Joubès J, Corellou F. Temperature Acclimation of the Picoalga Ostreococcus tauri Triggers Early Fatty-Acid Variations and Involves a Plastidial ω3-Desaturase. FRONTIERS IN PLANT SCIENCE 2021; 12:639330. [PMID: 33815446 PMCID: PMC8018280 DOI: 10.3389/fpls.2021.639330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Alteration of fatty-acid unsaturation is a universal response to temperature changes. Marine microalgae display the largest diversity of polyunsaturated fatty-acid (PUFA) whose content notably varies according to temperature. The physiological relevance and the molecular mechanisms underlying these changes are however, still poorly understood. The ancestral green picoalga Ostreococcus tauri displays original lipidic features that combines PUFAs from two distinctive microalgal lineages (Chlorophyceae, Chromista kingdom). In this study, optimized conditions were implemented to unveil early fatty-acid and desaturase transcriptional variations upon chilling and warming. We further functionally characterized the O. tauri ω3-desaturase which is closely related to ω3-desaturases from Chromista species. Our results show that the overall omega-3 to omega-6 ratio is swiftly and reversibly regulated by temperature variations. The proportion of the peculiar 18:5 fatty-acid and temperature are highly and inversely correlated pinpointing the importance of 18:5 temperature-dependent variations across kingdoms. Chilling rapidly and sustainably up-regulated most desaturase genes. Desaturases involved in the regulation of the C18-PUFA pool as well as the Δ5-desaturase appear to be major transcriptional targets. The only ω3-desaturase candidate, related to ω3-desaturases from Chromista species, is localized at chloroplasts in Nicotiana benthamiana and efficiently performs ω3-desaturation of C18-PUFAs in Synechocystis sp. PCC6803. Overexpression in the native host further unveils a broad impact on plastidial and non-plastidial glycerolipids illustrated by the alteration of omega-3/omega-6 ratio in C16-PUFA and VLC-PUFA pools. Global glycerolipid features of the overexpressor recall those of chilling acclimated cells.
Collapse
Affiliation(s)
| | - Nattiwong Pankasem
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Maurean Gueirrero
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse membranaire, UMR 5200, Villenave d’Ornon, France
| | - Cécile Lemoigne
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse membranaire, UMR 5200, Villenave d’Ornon, France
| | - Frédéric Domergue
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse membranaire, UMR 5200, Villenave d’Ornon, France
| | - Tomonori Kotajima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jérôme Joubès
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse membranaire, UMR 5200, Villenave d’Ornon, France
| | - Florence Corellou
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse membranaire, UMR 5200, Villenave d’Ornon, France
- *Correspondence: Florence Corellou,
| |
Collapse
|
30
|
Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID-19 ✰,✰✰,★,★★. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102183. [PMID: 33038834 PMCID: PMC7527828 DOI: 10.1016/j.plefa.2020.102183] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms vary from silence to rapid death, the latter mediated by both a cytokine storm and a thrombotic storm. SARS-CoV (2003) induces Cox-2, catalyzing the synthesis, from highly unsaturated fatty acids (HUFA), of eicosanoids and docosanoids that mediate both inflammation and thrombosis. HUFA balance between arachidonic acid (AA) and other HUFA is a likely determinant of net signaling to induce a healthy or runaway physiological response. AA levels are determined by a non-protein coding regulatory polymorphisms that mostly affect the expression of FADS1, located in the FADS gene cluster on chromosome 11. Major and minor haplotypes in Europeans, and a specific functional insertion-deletion (Indel), rs66698963, consistently show major differences in circulating AA (>50%) and in the balance between AA and other HUFA (47-84%) in free living humans; the indel is evolutionarily selective, probably based on diet. The pattern of fatty acid responses is fully consistent with specific genetic modulation of desaturation at the FADS1-mediated 20:3→20:4 step. Well established principles of net tissue HUFA levels indicate that the high linoleic acid and low alpha-linoleic acid in populations drive the net balance of HUFA for any individual. We predict that fast desaturators (insertion allele at rs66698963; major haplotype in Europeans) are predisposed to higher risk and pathological responses to SARS-CoV-2 could be reduced with high dose omega-3 HUFA.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States; Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
31
|
Nachtschatt M, Okada S, Speight R. Integral Membrane Fatty Acid Desaturases: A Review of Biochemical, Structural, and Biotechnological Advances. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Nachtschatt
- Commonwealth Scientific and Industrial Research Organisation Clunies Ross St. Canberra ACT 2601 Australia
- Queensland University of Technology 2 George St. Brisbane QLD 4000 Australia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research Organisation Clunies Ross St. Canberra ACT 2601 Australia
| | - Robert Speight
- Queensland University of Technology 2 George St. Brisbane QLD 4000 Australia
| |
Collapse
|
32
|
Vandebrouck C, Ferreira T. Glued in lipids: Lipointoxication in cystic fibrosis. EBioMedicine 2020; 61:103038. [PMID: 33038767 PMCID: PMC7648119 DOI: 10.1016/j.ebiom.2020.103038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 01/14/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane regulator (CFTR) gene, which encodes a chloride channel located at the apical surface of epithelial cells. Unsaturated Fatty Acid (UFA) deficiency has been a persistent observation in tissues from patients with CF. However, the impacts of such deficiencies on the etiology of the disease have been the object of intense debates. The aim of the present review is first to highlight the general consensus on fatty acid dysregulations that emerges from, sometimes apparently contradictory, studies. In a second step, a unifying mechanism for the potential impacts of these fatty acid dysregulations in CF cells, based on alterations of membrane biophysical properties (known as lipointoxication), is proposed. Finally, the contribution of lipointoxication to the progression of the CF disease and how it could affect the efficacy of current treatments is also discussed.
Collapse
Affiliation(s)
- Clarisse Vandebrouck
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France; Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|
33
|
Buitimea-Cantúa GV, Marsch-Martinez N, Ríos-Chavez P, Méndez-Bravo A, Molina-Torres J. Global gene expression analyses of the alkamide-producing plant Heliopsis longipes supports a polyketide synthase-mediated biosynthesis pathway. PeerJ 2020; 8:e10074. [PMID: 33033663 PMCID: PMC7521342 DOI: 10.7717/peerj.10074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Alkamides are plant-specific bioactive molecules. They are low molecular weight N-substituted α-unsaturated acyl amides that display biological explicit activities in different organisms from bacteria, fungi, insects to mammals and plants. The acyl chain has been proposed to be biosynthesized from a fatty acid; however, this has not been demonstrated yet. Heliopsis longipes (Asteraceae) accumulates in root a C10 alkamide called affinin in its roots, but not in leaves. The closely related species Heliopsis annua does not produce alkamides. To elucidate the biosynthetic pathway of the alkamides acyl chain, a comparative global gene expression analysis contrasting roots and leaves of both species was performed. METHODS Transcriptomics analysis allowed to identify genes highly expressed in H. longipes roots, but not in tissues and species that do not accumulate alkamides. The first domain searched was the Ketosynthase (KS) domain. The phylogenetic analysis using sequences of the KS domain of FAS and PKS from different organisms, revealed that KS domains of the differentially expressed transcripts in H. longipes roots and the KS domain found in transcripts of Echinacea purpurea, another alkamides producer species, were grouped together with a high bootstrap value of 100%, sharing great similarity. Among the annotated transcripts, we found some coding for the enzymatic domains KS, AT, ACP, DH, OR and TE, which presented higher expression in H. longipes roots than in leaves. The expression level of these genes was further evaluated by qRT-PCR. All unigenes tested showed higher expression in H. longipes roots than in any the other samples. Based on this and considering that the acyl chain of affinin presents unsaturated bonds at even C numbers, we propose a new putative biosynthesis pathway mediated by a four modules polyketide synthase (PKS). RESULTS The global gene expression analysis led to the selection of a set of candidate genes involved in the biosynthesis of the acyl chain of affinin, suggesting that it may be performed by a non-iterative, partially reductive, four module type I PKS complex (PKS alk) previously thought to be absent from the plant kingdom.
Collapse
Affiliation(s)
| | - Nayelli Marsch-Martinez
- Department of Biotecnologia y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Patricia Ríos-Chavez
- Instituto de Investigaciones Químico-Biológicas, Universidad de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Alfonso Méndez-Bravo
- Laboratorio Nacional de Análisis y Síntesis Ecológica, CONACYT – Escuela Nacional de Estudios Superiores, Morelia, Michoacan, Mexico
| | - Jorge Molina-Torres
- Department of Biotecnologia y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
34
|
Cai Y, Yu XH, Chai J, Liu CJ, Shanklin J. A conserved evolutionary mechanism permits Δ9 desaturation of very-long-chain fatty acyl lipids. J Biol Chem 2020; 295:11337-11345. [PMID: 32527722 DOI: 10.1074/jbc.ra120.014258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Indexed: 11/06/2022] Open
Abstract
Δ9 fatty acyl desaturases introduce a cis-double bond between C9 and C10 of saturated fatty acyl chains. From the crystal structure of the mouse stearoyl-CoA desaturase (mSCD1) it was proposed that Tyr-104, a surface residue located at the distal end of the fatty acyl binding pocket plays a key role in specifying 18C selectivity. We created mSCD1-Y104G to test the hypothesis that eliminating this bulky side chain would create an opening and permit the substrate's methyl end to protrude through the enzyme into the lipid bilayer, facilitating the desaturation of very-long-chain (VLC) substrates. Consistent with this hypothesis, Y104G acquired the ability to desaturate 24C and 26C acyl-CoAs while maintaining its Δ9-regioselectivity. We also investigated two distantly related very-long-chain fatty acyl (VLCFA) desaturases from Arabidopsis, ADS1.2 and ADS1.4, which have Ala and Gly, respectively, in place of the gatekeeping Tyr found in mSCD1. Substitution of Tyr for Ala and Gly in ADS1.2 and ADS1.4, respectively, blocked their ability to desaturate VLCFAs. Further, we identified a pair of fungal desaturase homologs which contained either an Ile or a Gly at this location and showed that only the Gly-containing desaturase was capable of very-long-chain desaturation. The conserved desaturase architecture wherein a surface residue with a single bulky side chain forms the end of the substrate binding cavity predisposes them to single amino acid substitutions that enable a switch between long- and very-long-chain selectivity. The data presented here show that such changes have independently occurred multiple times during evolution.
Collapse
Affiliation(s)
- Yuanheng Cai
- Biochemistry & Cell Biology Department, Stony Brook University, Stony Brook, New York, USA
| | - Xiao-Hong Yu
- Biochemistry & Cell Biology Department, Stony Brook University, Stony Brook, New York, USA
| | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - John Shanklin
- Biochemistry & Cell Biology Department, Stony Brook University, Stony Brook, New York, USA .,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
35
|
Discovery of a Dual Function Cytochrome P450 that Catalyzes Enyne Formation in Cyclohexanoid Terpenoid Biosynthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
37
|
Chen Y, Naresh A, Liang S, Lin C, Chein R, Lin H. Discovery of a Dual Function Cytochrome P450 that Catalyzes Enyne Formation in Cyclohexanoid Terpenoid Biosynthesis. Angew Chem Int Ed Engl 2020; 59:13537-13541. [DOI: 10.1002/anie.202004435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Yu‐Rong Chen
- Institute of Biological Chemistry Academia Sinica Taipei 115 Taiwan R.O.C
| | | | - Suh‐Yuen Liang
- Institute of Biological Chemistry Academia Sinica Taipei 115 Taiwan R.O.C
| | - Chun‐Hung Lin
- Institute of Biological Chemistry Academia Sinica Taipei 115 Taiwan R.O.C
| | - Rong‐Jie Chein
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan R.O.C
| | - Hsiao‐Ching Lin
- Institute of Biological Chemistry Academia Sinica Taipei 115 Taiwan R.O.C
| |
Collapse
|
38
|
Cahoon EB, Li-Beisson Y. Plant unusual fatty acids: learning from the less common. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:66-73. [PMID: 32304939 DOI: 10.1016/j.pbi.2020.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The plant kingdom contains an abundance of structurally diverse fatty acids referred to as unusual fatty acids. Unusual fatty acids on plant surfaces can form polyesters that contribute to the function of cutin as a barrier for water loss and pathogen protection. Unusual fatty acids are also found as abundant components of seed oils of selected species and often confer desirable properties for industrial and nutritional applications. Here, we review recent findings on the biosynthesis and metabolism of unusual fatty acids in cutin and seed oils and use of this information for enzyme structure-function studies and seed oil metabolic engineering. We also highlight the recent discovery of unusual fatty acids that are formed from a previously undescribed variation of fatty acid elongation.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
39
|
Lv J, Gao Y, Zhao H, Awakawa T, Liu L, Chen G, Yao X, Hu D, Abe I, Gao H. Biosynthesis of Biscognienyne B Involving a Cytochrome P450‐Dependent Alkynylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian‐Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station Jinan University Guangzhou 510632 P. R. China
| | - Yao‐Hui Gao
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| | - Huan Zhao
- College of Traditional Chinese Medicine Jinan University Guangzhou 510632 P. R. China
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ling Liu
- State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing 100101 P. R. China
| | - Guo‐Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| | - Xin‐Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
40
|
Lv J, Gao Y, Zhao H, Awakawa T, Liu L, Chen G, Yao X, Hu D, Abe I, Gao H. Biosynthesis of Biscognienyne B Involving a Cytochrome P450‐Dependent Alkynylation. Angew Chem Int Ed Engl 2020; 59:13531-13536. [DOI: 10.1002/anie.202004364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Jian‐Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station Jinan University Guangzhou 510632 P. R. China
| | - Yao‐Hui Gao
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| | - Huan Zhao
- College of Traditional Chinese Medicine Jinan University Guangzhou 510632 P. R. China
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ling Liu
- State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing 100101 P. R. China
| | - Guo‐Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| | - Xin‐Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
41
|
Vitale GA, Sciarretta M, Palma Esposito F, January GG, Giaccio M, Bunk B, Spröer C, Bajerski F, Power D, Festa C, Monti MC, D'Auria MV, de Pascale D. Genomics-Metabolomics Profiling Disclosed Marine Vibrio spartinae 3.6 as a Producer of a New Branched Side Chain Prodigiosin. JOURNAL OF NATURAL PRODUCTS 2020; 83:1495-1504. [PMID: 32275146 DOI: 10.1021/acs.jnatprod.9b01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide range of prescreening tests for antimicrobial activity of 59 bacterial isolates from sediments of Ria Formosa Lagoon (Algarve, Portugal) disclosed Vibrio spartinae 3.6 as the most active antibacterial producing strain. This bacterial strain, which has not previously been submitted for chemical profiling, was subjected to de novo whole genome sequencing, which aided in the discovery and elucidation of a prodigiosin biosynthetic gene cluster that was predicted by the bioinformatic tool KEGG BlastKoala. Comparative genomics led to the identification of a new membrane di-iron oxygenase-like enzyme, annotated as Vspart_02107, which is likely to be involved in the biosynthesis of cycloprodigiosin and analogues. The combined genomics-metabolomics profiling of the strain led to the isolation and identification of one new branched-chain prodigiosin (5) and to the detection of two new cyclic forms. Furthermore, the evaluation of the minimum inhibitory concentrations disclosed the major prodigiosin as very effective against multi-drug-resistant pathogens including Stenotrophomonas maltophilia, a clinical isolate of Listeria monocytogenes, as well as some human pathogens reported by the World Health Organization as prioritized targets.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
| | - Martina Sciarretta
- Department of Pharmacy, University of Naples "Federico II" (UNINA), Via Domenico Montesanto, 49, I-80131 Naples, Italy
| | - Fortunato Palma Esposito
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale di Napoli, I-80121 Naples, Italy
| | - Grant Garren January
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
| | - Marianna Giaccio
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, German
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, German
| | - Felizitas Bajerski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, German
| | - Deborah Power
- Centro de Ciencias do Mar (CCMAR), Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II" (UNINA), Via Domenico Montesanto, 49, I-80131 Naples, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno (UNISA), I-84084 Fisciano, SA, Italy
| | - Maria Valeria D'Auria
- Department of Pharmacy, University of Naples "Federico II" (UNINA), Via Domenico Montesanto, 49, I-80131 Naples, Italy
| | - Donatella de Pascale
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale di Napoli, I-80121 Naples, Italy
| |
Collapse
|
42
|
Desaturase specificity is controlled by the physicochemical properties of a single amino acid residue in the substrate binding tunnel. Comput Struct Biotechnol J 2020; 18:1202-1209. [PMID: 32542106 PMCID: PMC7283083 DOI: 10.1016/j.csbj.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane fatty acyl desaturases (mFAD) are ubiquitous enzymes in eukaryotes. They introduce double bonds into fatty acids (FAs), producing structurally diverse unsaturated FAs which serve as membrane lipid components or precursors of signaling molecules. The mechanisms controlling enzymatic specificity and selectivity of desaturation are, however, poorly understood. We found that the physicochemical properties, particularly side chain volume, of a single amino acid (aa) residue in insect mFADs (Lepidoptera: Bombyx mori and Manduca sexta) control the desaturation products. Molecular dynamics simulations of systems comprising wild-type or mutant mFADs with fatty acyl-CoA substrates revealed that the single aa substitution likely directs the outcome of the desaturation reaction by modulating the distance between substrate fatty acyl carbon atoms and active center metal ions. These findings, as well as our methodology combining mFAD mutational screening with molecular dynamics simulations, will facilitate prediction of desaturation products and facilitate engineering of mFADs for biotechnological applications.
Collapse
|
43
|
Berestovoy MA, Pavlenko OS, Goldenkova-Pavlova IV. Plant Fatty Acid Desaturases: Role in the Life of Plants and Biotechnological Potential. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086420020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Royer J, Shanklin J, Balch-Kenney N, Mayorga M, Houston P, de Jong RM, McMahon J, Laprade L, Blomquist P, Berry T, Cai Y, LoBuglio K, Trueheart J, Chevreux B. Rhodoxanthin synthase from honeysuckle; a membrane diiron enzyme catalyzes the multistep conversation of β-carotene to rhodoxanthin. SCIENCE ADVANCES 2020; 6:eaay9226. [PMID: 32426461 PMCID: PMC7176425 DOI: 10.1126/sciadv.aay9226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Rhodoxanthin is a vibrant red carotenoid found across the plant kingdom and in certain birds and fish. It is a member of the atypical retro class of carotenoids, which contain an additional double bond and a concerted shift of the conjugated double bonds relative to the more widely occurring carotenoid pigments, and whose biosynthetic origins have long remained elusive. Here, we identify LHRS (Lonicera hydroxylase rhodoxanthin synthase), a variant β-carotene hydroxylase (BCH)-type integral membrane diiron enzyme that mediates the conversion of β-carotene into rhodoxanthin. We identify residues that are critical to rhodoxanthin formation by LHRS. Substitution of only three residues converts a typical BCH into a multifunctional enzyme that mediates a multistep pathway from β-carotene to rhodoxanthin via a series of distinct oxidation steps in which the product of each step becomes the substrate for the next catalytic cycle. We propose a biosynthetic pathway from β-carotene to rhodoxanthin.
Collapse
Affiliation(s)
- John Royer
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, 50 Bell Ave, Upton, NY 11973, USA
| | | | - Maria Mayorga
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Peter Houston
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - René M. de Jong
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, Netherlands
| | - Jenna McMahon
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Lisa Laprade
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Paul Blomquist
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Timothy Berry
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Yuanheng Cai
- Department of Biology, Brookhaven National Laboratory, 50 Bell Ave, Upton, NY 11973, USA
| | - Katherine LoBuglio
- Department of Organismic and Evolutionary Biology, Farlow Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Joshua Trueheart
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Bastien Chevreux
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| |
Collapse
|
45
|
Whittle EJ, Cai Y, Keereetaweep J, Chai J, Buist PH, Shanklin J. Castor Stearoyl-ACP Desaturase Can Synthesize a Vicinal Diol by Dioxygenase Chemistry. PLANT PHYSIOLOGY 2020; 182:730-738. [PMID: 31806737 PMCID: PMC6997704 DOI: 10.1104/pp.19.01111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/20/2019] [Indexed: 05/26/2023]
Abstract
In previous work, we identified a triple mutant of the castor (Ricinus communis) stearoyl-Acyl Carrier Protein desaturase (T117R/G188L/D280K) that, in addition to introducing a double bond into stearate to produce oleate, performed an additional round of oxidation to convert oleate to a trans allylic alcohol acid. To determine the contributions of each mutation, in this work we generated individual castor desaturase mutants carrying residue changes corresponding to those in the triple mutant and investigated their catalytic activities. We observed that T117R, and to a lesser extent D280K, accumulated a novel product, namely erythro-9,10-dihydroxystearate, that we identified via its methyl ester through gas chromatography-mass spectrometry and comparison with authentic standards. The use of 18O2 labeling showed that the oxygens of both hydroxyl moieties originate from molecular oxygen rather than water. Incubation with an equimolar mixture of 18O2 and 16O2 demonstrated that both hydroxyl oxygens originate from a single molecule of O2, proving the product is the result of dioxygenase catalysis. Using prolonged incubation, we discovered that wild-type castor desaturase is also capable of forming erythro-9,10-dihydroxystearate, which presents a likely explanation for its accumulation to ∼0.7% in castor oil, the biosynthetic origin of which had remained enigmatic for decades. In summary, the findings presented here expand the documented constellation of di-iron enzyme catalysis to include a dioxygenase reactivity in which an unactivated alkene is converted to a vicinal diol.
Collapse
Affiliation(s)
- Edward J Whittle
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Yuanheng Cai
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Peter H Buist
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
46
|
Purine DNA Lesions at Different Oxygen Concentration in DNA Repair-Impaired Human Cells (EUE-siXPA). Cells 2019; 8:cells8111377. [PMID: 31683970 PMCID: PMC6912421 DOI: 10.3390/cells8111377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Xeroderma Pigmentosum (XP) is a DNA repair disease characterized by nucleotide excision repair (NER) malfunction, leading to photosensitivity and increased incidence of skin malignancies. The role of XP-A in NER pathways has been well studied while discrepancies associated with ROS levels and the role of radical species between normal and deficient XPA cell lines have been observed. Using liquid chromatography tandem mass spectrometry we have determined the four 5’,8-cyclopurines (cPu) lesions (i.e., 5′R-cdG, 5′S-cdG, 5′R-cdA and 5′S-cdA), 8-oxo-dA and 8-oxo-dG in wt (EUE-pBD650) and XPA-deficient (EUE-siXPA) human embryonic epithelial cell lines, under different oxygen tension (hyperoxic 21%, physioxic 5% and hypoxic 1%). The levels of Fe and Cu were also measured. The main findings of our study were: (i) the total amount of cPu (1.82–2.52 lesions/106 nucleotides) is the same order of magnitude as 8-oxo-Pu (3.10–4.11 lesions/106 nucleotides) in both cell types, (ii) the four cPu levels are similar in hyperoxic and physioxic conditions for both wt and deficient cell lines, whereas 8-oxo-Pu increases in all cases, (iii) both wt and deficient cell lines accumulated high levels of cPu under hypoxic compared to physioxic conditions, whereas the 8-oxo-Pu levels show an opposite trend, (iv) the diastereoisomeric ratios 5′R/5′S are independent of oxygen concentration being 0.29 for cdG and 2.69 for cdA for EUE-pBD650 (wt) and 0.32 for cdG and 2.94 for cdA for EUE-siXPA (deficient), (v) in deficient cell lines Fe levels were significantly higher. The data show for the first time the connection of oxygen concentration in cells with different DNA repair ability and the levels of different DNA lesions highlighting the significance of cPu. Membrane lipidomic data at 21% O2 indicated differences in the fatty acid contents between wild type and deficient cells, envisaging functional effects on membranes associated with the different repair capabilities, to be further investigated.
Collapse
|
47
|
de Mendoza D, Pilon M. Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans. Prog Lipid Res 2019; 76:100996. [DOI: 10.1016/j.plipres.2019.100996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
|
48
|
Manley OM, Fan R, Guo Y, Makris TM. Oxidative Decarboxylase UndA Utilizes a Dinuclear Iron Cofactor. J Am Chem Soc 2019; 141:8684-8688. [DOI: 10.1021/jacs.9b02545] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Olivia M. Manley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas M. Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
49
|
Nagao K, Murakami A, Umeda M. Structure and Function of Δ9-Fatty Acid Desaturase. Chem Pharm Bull (Tokyo) 2019; 67:327-332. [DOI: 10.1248/cpb.c18-01001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
50
|
He HY, Henderson AC, Du YL, Ryan KS. Two-Enzyme Pathway Links l-Arginine to Nitric Oxide in N-Nitroso Biosynthesis. J Am Chem Soc 2019; 141:4026-4033. [DOI: 10.1021/jacs.8b13049] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S. Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|