1
|
Zhang Q. Structural insights into the advancements of mobile colistin resistance enzymes. Microbiol Res 2025; 291:127983. [PMID: 39612773 DOI: 10.1016/j.micres.2024.127983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The plasmid-encoded mobile colistin resistance enzyme (MCR) is challenging the clinical efficacy of colistin as a last-resort antibiotic against multidrug-resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A, and its catalytic domain in the periplasm has been elucidated. To date, there are many works on the catalytic domain and function of this enzyme class. However, the roles of unreported soluble or inter-membrane domains remain undefined, which might cause an inaccurate or even incorrect understanding of substrate recognition and binding. In this review, MCR-1 is first compared and analyzed from the perspective of the full-length alpha-fold MCR-1. Specifically, some disputed issues, especially in its architecture and catalytic mechanism are discussed independently. Meanwhile, the structure-based insights into MCRs variants, their evolutions, and the balance between colistin-resistance and survival costs, are also critically analyzed. Importantly, by comparing it with the full-length MCR-1, several potential pockets for drug design have been re-identified. Finally, recent advancements in inhibitors targeting MCR-1 are also in-depth summarized. These details offer a new perspective on MCRs and serve as a valuable foundation for drug development.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong.
| |
Collapse
|
2
|
Cheng Q, Cheung Y, Xu C, Chan EWC, Chan KF, Chen S. Overall mutational scanning unveils the essential active residues for the mechanistic action of MCR-1. Microbiol Res 2025; 291:127982. [PMID: 39608179 DOI: 10.1016/j.micres.2024.127982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Polymyxins, including colistin and polymyxin B, serve as crucial last-resort antibiotics for managing infections caused by carbapenem-resistant Enterobacterales (CRE). However, the rapid spread of the mobilized colistin resistance gene (mcr-1) challenged the efficacy of treatment by polymyxins. The mcr-1 gene encoded a transmembrane phosphoethanolamine (PEA) transferase enzyme, MCR-1. MCR-1 could catalyze the transfer of PEA moiety of phosphatidylethanolamine (PE) to the 1' (or 4')-phosphate group of the lipid A. Despite the determination of several structures of the soluble domain of MCR-1, the structural and biochemical mechanisms of integral MCR-1 remain less understood. In this study, we utilized an alanine scanning mutagenesis approach to systematically investigate the functional attributes of distinct regions within MCR-1. We identified fifteen critical residues that are indispensable for the enzymatic activity of MCR-1 and are pivotal for its ability to confer resistance to colistin. Furthermore, molecular docking of MCR-1 complexed with the phosphoethanolamine (PE) substrate revealed the presence of a channel-shaped cavity, a characteristic feature shared with other phosphoethanolamine transferases. Despite MCR-1 exhibiting a low sequence identity with both MCR homologues and other phosphoethanolamine (PEA) transferases, several conserved sites were identified, including Y97, M105, K333, H395, L477, and H478, suggesting a potentially shared catalytic mechanism among them for modifying LPS-lipid A. Overall, these findings provide a deep understanding of the catalytic mechanism of MCR-1 for colistin resistance. Moreover, these findings provide a robust structural and functional foundation, enabling the rational design of targeted inhibitors and restoring colistin activity against serious infections with carbapenem-resistant Enterobacterales (CRE).
Collapse
Affiliation(s)
- Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yanchu Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Xu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Kin Fai Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Su Z, Zhang W, Shi Y, Cui T, Xu Y, Yang R, Huang M, Zhou C, Zhang H, Lu T, Qu J, He ZG, Gan J, Feng Y. A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway. SCIENCE ADVANCES 2024; 10:eadp3954. [PMID: 39705367 DOI: 10.1126/sciadv.adp3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/14/2024] [Indexed: 12/22/2024]
Abstract
The covalently attached cofactor biotin plays pivotal roles in central metabolism. The top-priority ESKAPE-type pathogens, Acinetobacter baumannii and Klebsiella pneumoniae, constitute a public health challenge of global concern. Despite the fact that the late step of biotin synthesis is a validated anti-ESKAPE drug target, the primary stage remains fragmentarily understood. We report the functional definition of two BioC isoenzymes (AbBioC for A. baumannii and KpBioC for K. pneumoniae) that act as malonyl-ACP methyltransferase and initiate biotin synthesis. The physiological requirement of biotin is diverse within ESKAPE pathogens. CRISPR-Cas9-based inactivation of bioC rendered A. baumannii and K. pneumoniae biotin auxotrophic. The availability of soluble AbBioC enabled the in vitro reconstitution of DTB/biotin synthesis. We solved two crystal structures of AbBioC bound to SAM cofactor (2.54 angstroms) and sinefungin (SIN) inhibitor (1.72 angstroms). Structural and functional study provided molecular basis for SIN inhibition of BioC. We demonstrated that BioC methyltransferase plays dual roles in K. pneumoniae infection and A. baumannii colistin resistance.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Weizhen Zhang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Yu Shi
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tao Cui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongchang Xu
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Runshi Yang
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Man Huang
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Toxicology, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Zheng-Guo He
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
- Taikang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, Hubei 430071, China
| | - Jianhua Gan
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Youjun Feng
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Nuske MR, Zhong J, Huang R, Sarojini V, Chen JLY, Squire CJ, Blaskovich MAT, Leung IKH. Adjuvant strategies to tackle mcr-mediated polymyxin resistance. RSC Med Chem 2024:d4md00654b. [PMID: 39539347 PMCID: PMC11556429 DOI: 10.1039/d4md00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The emergence of the mobile colistin resistance (mcr) gene is a demonstrable threat contributing to the worldwide antibiotic resistance crisis. The gene is encoded on plasmids and can easily spread between different bacterial strains. mcr encodes a phosphoethanolamine (pEtN) transferase, which catalyses the transfer of the pEtN moiety from phosphatidylethanolamine to lipid A, the head group of lipopolysaccharides (LPS). This neutralises the overall negative charge of the LPS and prevents the binding of polymyxins to bacterial membranes. We believe that the development of polymyxin adjuvants could be a promising approach to prolong the use of this important class of last-resort antibiotics. This review discusses recent progress in the identification, design and development of adjuvants to restore polymyxin sensitivity in these resistant bacteria, and focuses on both MCR inhibitors as well as alternative approaches that modulate polymyxin resistance.
Collapse
Affiliation(s)
- Madison R Nuske
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Junlang Zhong
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Renjie Huang
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| | | | - Jack L Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology Auckland 1010 New Zealand
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, Università degli Studi di Siena 53100 Siena Italy
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland Auckland 1010 New Zealand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Ivanhoe K H Leung
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| |
Collapse
|
5
|
Song K, Jin L, Cai M, Wang Q, Wu X, Wang S, Sun S, Wang R, Chen F, Wang H. Decoding the origins, spread, and global risks of mcr-9 gene. EBioMedicine 2024; 108:105326. [PMID: 39260038 PMCID: PMC11416231 DOI: 10.1016/j.ebiom.2024.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The global spread of the plasmid-mediated mcr (mobilized colistin resistance) gene family presents a significant threat to the efficacy of colistin, a last-line defense against numerous Gram-negative pathogens. The mcr-9 is the second most prevalent variant after mcr-1. METHODS A dataset of 698 mcr-9-positive isolates from 44 countries is compiled. The historical trajectory of the mcr-9 gene is reconstructed using Bayesian analysis. The effective reproduction number is used innovatively to study the transmission dynamics of this mobile-drug-resistant gene. FINDINGS Our investigation traces the origins of mcr-9 back to the 1960s, revealing a subsequent expansion from Western Europe to the America and East Asia in the late 20th century. Currently, its transmissibility remains high in Western Europe. Intriguingly, mcr-9 likely emerged from human-associated Salmonella and exhibits a unique propensity for transmission within the Enterobacter. Our research provides a new perspective that this host preference may be driven by codon usage biases in plasmids. Specifically, mcr-9-carrying plasmids prefer the nucleotide C over T compared to mcr-1-carrying plasmids among synonymous codons. The same bias is seen in Enterobacter compared to Escherichia (respectively as their most dominant genus). Furthermore, we uncovered fascinating patterns of coexistence between different mcr-9 subtypes and other resistance genes. Characterized by its low colistin resistance, mcr-9 has used this seemingly benign feature to silently circumnavigate the globe, evading conventional detection methods. However, colistin-resistant Enterobacter strains with high mcr-9 expression have emerged clinically, implying a strong risk of mcr-9 evolving into a global "true-resistance-gene". INTERPRETATION This study explores the mcr-9 gene, emphasizing its origin, adaptability, and dissemination potential. Given the high mcr-9 expression colistin-resistant strains was observed in clinically the prevalence of mcr-9 poses a significant challenge to drug resistance prevention and control within the One Health framework. FUNDING This work was partially supported by the National Natural Science Foundation of China (Grant No. 32141001 and 81991533).
Collapse
Affiliation(s)
- Kaiwen Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Meng Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyu Wu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
6
|
Sheng Q, Wang X, Hou Z, Liu B, Jiang M, Ren M, Fu J, He M, Zhang J, Xiang Y, Zhang Q, Zhou L, Deng Y, Shen X. Novel functions of o-cymen-5-ol nanoemulsion in reversing colistin resistance in multidrug-resistant Klebsiella pneumoniae infections. Biochem Pharmacol 2024; 227:116384. [PMID: 38909787 DOI: 10.1016/j.bcp.2024.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Multidrug resistance (MDR) Klebsiella pneumoniae (K. pneumoniae) is a major emerging threat to human health, and leads to very high mortality rate. The effectiveness of colistin, the last resort against MDR Gram-negative bacteria, is significantly compromised due to the widespread presence of plasmid- or chromosome-mediated resistance genes. In this study, o-cymen-5-ol has been found to greatly restore colistin sensitivity in MDR K. pneumoniae. Importantly, this compound does not impact bacterial viability, induce resistance, or cause any noticeable cell toxicity. Various routes disclosed the potential mechanism of o-cymen-5-ol potentiating colistin activity against MDR K. pneumoniae. These include inhibiting the activity of plasmid-mediated mobile colistin resistance gene (mcr-1), accelerating lipopolysaccharide (LPS) - mediated membrane damage, and promoting the ATP-binding cassette (ABC) transporter pathway. To enhance the administration and bioavailability of o-cymen-5-ol, a nanoemulsion has been designed, which significantly improves the loading efficiency and solubility of o-cymen-5-ol, resulting in antimicrobial potentiation of colistin against K. pneumoniae infection. This study has revealed a new understanding of the o-cymen-5-ol nanoemulsion as a means to enhance the effectiveness of colistin against resistant factors. The finding also suggests that o-cymen-5-ol nanoemulsion could be a promising approach in the development of potential treatments for multidrug-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Qiushuang Sheng
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Xiao Wang
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Zhaoyan Hou
- Changchun Center for Disease Control and Prevention, Changchun, China
| | - Bin Liu
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Mingquan Jiang
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Mingyue Ren
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Jingchao Fu
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Miao He
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Jingchen Zhang
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Yue Xiang
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Qingbo Zhang
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Lanying Zhou
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Yanhong Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China; State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Zhang H, Wu T, Ruan H. Identification and Functional Analysis of ncRNAs Regulating Intrinsic Polymyxin Resistance in Foodborne Proteus vulgaris. Microorganisms 2024; 12:1661. [PMID: 39203505 PMCID: PMC11356903 DOI: 10.3390/microorganisms12081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Polymyxin, known as the "last line of defense" against bacterial infection, exerts a significant inhibitory effect on a wide range of Gram-negative pathogenic bacteria. The presence of strains, specifically Proteus vulgaris species, displaying intrinsic polymyxin resistance poses significant challenges to current clinical treatment. However, the underlying mechanism responsible for this intrinsic resistance remains unclear. Bacterial non-coding RNAs (ncRNAs) are abundant in genomes and have been demonstrated to have significant regulatory roles in antibiotic resistance across various bacterial species. However, it remains to be determined whether ncRNAs in Proteus vulgaris can regulate intrinsic polymyxin resistance. This study focused on investigating the foodborne Proteus vulgaris strain P3M and its intrinsic polymyxin resistance regulation mediated by ncRNAs. Through a combination of bioinformatics analysis, mutant construction, and phenotypic experimental verification, we successfully identified the ncRNAs involved and their potential target genes. These findings serve as an essential foundation for the precise identification of ncRNAs participating in the intricate regulation process of polymyxin resistance. Additionally, this study offers valuable insights into the efficient screening of bacterial ncRNAs that contribute positively to antibiotic resistance regulation.
Collapse
Affiliation(s)
| | | | - Haihua Ruan
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.); (T.W.)
| |
Collapse
|
8
|
Cheng D, Tian R, Pan T, Yu Q, Wei L, Liyin J, Dai Y, Wang X, Tan R, Qu H, Lu M. High-performance lung-targeted bio-responsive platform for severe colistin-resistant bacterial pneumonia therapy. Bioact Mater 2024; 35:517-533. [PMID: 38404643 PMCID: PMC10885821 DOI: 10.1016/j.bioactmat.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Polymyxins are the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. However, this last resort has been threatened by the emergence of superbugs carrying the mobile colistin resistance gene-1 (mcr-1). Given the high concentration of matrix metalloproteinase 3 (MMP-3) in bacterial pneumonia, limited plasma accumulation of colistin (CST) in the lung, and potential toxicity of ionic silver (Ag+), we designed a feasible clinical transformation platform, an MMP-3 high-performance lung-targeted bio-responsive delivery system, which we named "CST&Ag@CNMS". This system exhibited excellent lung-targeting ability (>80% in lungs), MMP-3 bio-responsive release property (95% release on demand), and synergistic bactericidal activity in vitro (2-4-fold minimum inhibitory concentration reduction). In the mcr-1+ CST-resistant murine pneumonia model, treatment with CST&Ag@CNMS improved survival rates (70% vs. 20%), reduced bacteria burden (2-3 log colony-forming unit [CFU]/g tissue), and considerably mitigated inflammatory response. In this study, CST&Ag@CNMS performed better than the combination of free CST and AgNO3. We also demonstrated the superior biosafety and biodegradability of CST&Ag@CNMS both in vitro and in vivo. These findings indicate the clinical translational potential of CST&Ag@CNMS for the treatment of lung infections caused by CST-resistant bacteria carrying mcr-1.
Collapse
Affiliation(s)
- Decui Cheng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaozhi Liyin
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yunqi Dai
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
9
|
Liu JH, Liu YY, Shen YB, Yang J, Walsh TR, Wang Y, Shen J. Plasmid-mediated colistin-resistance genes: mcr. Trends Microbiol 2024; 32:365-378. [PMID: 38008597 DOI: 10.1016/j.tim.2023.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.
Collapse
Affiliation(s)
- Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | | | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Liu L, Lou N, Liang Q, Xiao W, Teng G, Ma J, Zhang H, Huang M, Feng Y. Chasing the landscape for intrahospital transmission and evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Sci Bull (Beijing) 2023; 68:3027-3047. [PMID: 37949739 DOI: 10.1016/j.scib.2023.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
The spread of hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP) is a global health concern. Here, we report the intrahospital colonization and spread of Hv-CRKP isolates in a tertiary hospital from 2017 to 2022. Analyses of 90 nonredundant CRKP isolates from 72 patients indicated that Hv-CRKP transferability relies on the dominant ST11-K64 clone. Whole-genome sequencing of 11 representative isolates gave 31 complete plasmid sequences, including 12 KPC-2 resistance carriers and 10 RmpA virulence vehicles. Apart from the binary vehicles, we detected two types of fusion plasmids, favoring the cotransfer of RmpA virulence and KPC-2 resistance. The detection of ancestry/relic plasmids enabled us to establish genetic mechanisms by which rare fusion plasmids form. Unexpectedly, we found a total of five rmpA promoter variants (P9T-P13T) exhibiting distinct activities and varying markedly in their geographic distributions. CRISPR/Cas9 manipulation confirmed that an active PT11-rmpA regulator is a biomarker for the "high-risk" ST11-K64/CRKP clone. These findings suggest clonal spread and clinical evolution of the prevalent ST11-K64/Hv-CRKP clones. Apart from improved public awareness of Hv-CRKP convergence, our findings might benefit the development of surveillance (and/or intervention) strategies for the dominant ST11-K64 lineage of the Hv-CRKP population in healthcare sectors.
Collapse
Affiliation(s)
- Lizhang Liu
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ningjie Lou
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiqiang Liang
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Xiao
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Gaoqin Teng
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiangang Ma
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Man Huang
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Youjun Feng
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
| |
Collapse
|
11
|
Liang L, Zhong LL, Wang L, Zhou D, Li Y, Li J, Chen Y, Liang W, Wei W, Zhang C, Zhao H, Lyu L, Stoesser N, Doi Y, Bai F, Feng S, Tian GB. A new variant of the colistin resistance gene MCR-1 with co-resistance to β-lactam antibiotics reveals a potential novel antimicrobial peptide. PLoS Biol 2023; 21:e3002433. [PMID: 38091366 PMCID: PMC10786390 DOI: 10.1371/journal.pbio.3002433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/12/2024] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The emerging and global spread of a novel plasmid-mediated colistin resistance gene, mcr-1, threatens human health. Expression of the MCR-1 protein affects bacterial fitness and this cost correlates with lipid A perturbation. However, the exact molecular mechanism remains unclear. Here, we identified the MCR-1 M6 variant carrying two-point mutations that conferred co-resistance to β-lactam antibiotics. Compared to wild-type (WT) MCR-1, this variant caused severe disturbance in lipid A, resulting in up-regulation of L, D-transpeptidases (LDTs) pathway, which explains co-resistance to β-lactams. Moreover, we show that a lipid A loading pocket is localized at the linker domain of MCR-1 where these 2 mutations are located. This pocket governs colistin resistance and bacterial membrane permeability, and the mutated pocket in M6 enhances the binding affinity towards lipid A. Based on this new information, we also designed synthetic peptides derived from M6 that exhibit broad-spectrum antimicrobial activity, exposing a potential vulnerability that could be exploited for future antimicrobial drug design.
Collapse
Affiliation(s)
- Lujie Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lan-Lan Zhong
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Dianrong Zhou
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yaxin Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiachen Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yong Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Wanfei Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Hui Zhao
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lingxuan Lyu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Nicole Stoesser
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yohei Doi
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Siyuan Feng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guo-Bao Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
12
|
Sheng Q, Wang N, Zhou Y, Deng X, Hou X, Wang J, Qiu J, Deng Y. A new function of thymol nanoemulsion for reversing colistin resistance in Salmonella enterica serovar Typhimurium infection. J Antimicrob Chemother 2023; 78:2983-2994. [PMID: 37923362 DOI: 10.1093/jac/dkad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Adjuvant addition of approved drugs or foodborne additives to colistin might be a cost-effective strategy to overcome the challenge of plasmid-mediated mobile colistin resistance gene emergence, which poses a threat in the clinic and in livestock caused by infections with Gram-negative bacteria, especially carbapenem-resistant Enterobacteriaceae. METHODS Chequerboard assay was applied to screen the colistin adjuvants from natural compounds. The killing-time curve, combined disc test and membrane permeation assay were conducted to identify the synergy efficacy of thymol and colistin in vitro. Thin-layer chromatography (TLC), LC-MS and fluorescence spectra were used to indicate the interaction of thymol and MCR-1. The potential binding sites were then investigated by molecular simulation dynamics. Finally, a thymol nanoemulsion was prepared with high-pressure homogenization as the clinical dosage form. RESULTS Thymol presented an excellent synergistic effect in vitro with colistin against Salmonella enterica serovar Typhimurium and Escherichia coli bacteria. Thymol addition, forming a complex with MCR-1, might interfere with the efficacy of MCR-1. Moreover, thymol strengthened colistin activity associated with potentiating membrane damage, destroying the biofilm and enhancing reactive oxygen species-mediated oxidative damage. Thymol nanoemulsion combined with colistin remarkably prevented the intestinal damage caused by S. Typhimurium infection, resulting in a survival rate higher than 60%. CONCLUSIONS This study achieved a promising thymol oral formulation as colistin adjuvant to combat S. Typhimurium infection, which could be used to extend the lifespan of colistin in clinical veterinary medicine.
Collapse
Affiliation(s)
- Qiushuang Sheng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Department of Microbiology, Jilin Province Product Quality Supervision and Inspection Institute, Changchun, Jilin, China
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yonglin Zhou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoning Hou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiazhang Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yanhong Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Materon IC, Palzkill T. Structural biology of MCR-1-mediated resistance to polymyxin antibiotics. Curr Opin Struct Biol 2023; 82:102647. [PMID: 37399693 PMCID: PMC10527939 DOI: 10.1016/j.sbi.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Polymyxins, a last resort antibiotic, target the outer membrane of pathogens and are used to address the increasing prevalence of multidrug-resistant Gram-negative bacteria. The plasmid-encoded enzyme MCR-1 confers polymyxin resistance to bacteria by modifying the outer membrane. Transferable resistance to polymyxins is a major concern; therefore, MCR-1 is an important drug target. In this review, we discuss recent structural and mechanistic aspects of MCR-1 function, its variants and homologs, and how they are relevant to polymyxin resistance. Specifically, we discuss work on polymyxin-mediated disruption of the outer and inner membranes, computational studies on the catalytic mechanism of MCR-1, mutagenesis and structural analysis concerning residues important for substrate binding in MCR-1, and finally, advancements in inhibitors targeting MCR-1.
Collapse
Affiliation(s)
- Isabel Cristina Materon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Jia M, Li P, Zhang J, Chen Z, Gao L, Sun Y, Zhang X, Yan Y, Zhu G. Characteristics of Two mcr-1-Harboring IncHI2 Plasmids from Clinical Salmonella Isolates in Jiaxing City. Foodborne Pathog Dis 2023; 20:467-476. [PMID: 37699240 DOI: 10.1089/fpd.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Salmonella is a primary cause of foodborne diseases, and the increasing prevalence of mcr-1-carrying plasmids, which confer colistin resistance to Salmonella, poses significant global health concerns. As the frequency of occurrence of the mcr-1 gene is increasing globally, we studied the prevalence of mcr-1 in clinical Salmonella isolates by analyzing 195 clinical strains isolated in 2020. Of the 195 Salmonella isolates, 41 isolates were resistant to colistin. We found mcr-1 in two strains (Salmonella Typhimurium ZJJX20006 and Salmonella Kentucky ZJJX20014), which we analyzed in detail via whole-genome sequencing and antibiotic susceptibility testing. Two strains displayed resistance to ampicillin, ampicillin-sulbactam, tetracycline, chloramphenicol, and cotrimoxazole, while ZJJX20006 displayed resistance to colistin and ZJJX20014 was sensitive. Genomic analysis revealed that these strains had plasmid-encoded mcr-1 in IncHI2 plasmids, which were not similar to the mcr-1-IncX4 identified in 2016. These two strains also harbored other drug resistance genes, including blaOXA-1 and blaCTX-M-14. Our findings may help clarify the molecular mechanisms of mcr-1 dissemination among Salmonella strains in Jiaxing City and offer insights into the evolution of mcr-1 in Salmonella.
Collapse
Affiliation(s)
- Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Junyan Zhang
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yangming Sun
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Xiaofei Zhang
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| |
Collapse
|
15
|
Rogga V, Kosalec I. Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance. Arh Hig Rada Toksikol 2023; 74:145-166. [PMID: 37791675 PMCID: PMC10549895 DOI: 10.2478/aiht-2023-74-3717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/01/2023] [Accepted: 07/01/2023] [Indexed: 10/05/2023] Open
Abstract
Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes.
Collapse
Affiliation(s)
- Vanessa Rogga
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, Zagreb, Croatia
| | - Ivan Kosalec
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, Zagreb, Croatia
| |
Collapse
|
16
|
Guo M, Tian P, Li Q, Meng B, Ding Y, Liu Y, Li Y, Yu L, Li J. Gallium Nitrate Enhances Antimicrobial Activity of Colistin against Klebsiella pneumoniae by Inducing Reactive Oxygen Species Accumulation. Microbiol Spectr 2023; 11:e0033423. [PMID: 37272820 PMCID: PMC10434156 DOI: 10.1128/spectrum.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Klebsiella pneumoniae, a pathogen of critical clinical concern, urgently demands effective therapeutic options owing to its drug resistance. Polymyxins are increasingly regarded as a last-line therapeutic option for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. However, polymyxin resistance in K. pneumoniae is an emerging issue. Here, we report that gallium nitrate (GaNt), an antimicrobial candidate, exhibits a potentiating effect on colistin against MDR K. pneumoniae clinical isolates. To further confirm this, we investigated the efficacy of combined GaNt and colistin in vitro using spot dilution and rapid time-kill assays and growth curve inhibition tests and in vivo using a murine lung infection model. The results showed that GaNt significantly increased the antimicrobial activity of colistin, especially in the iron-limiting media. Mechanistic studies demonstrated that bacterial antioxidant activity was repressed by GaNt, as revealed by RNA sequencing (RNA-seq), leading to intracellular accumulation of reactive oxygen species (ROS) in K. pneumoniae, which was enhanced in the presence of colistin. Therefore, oxidative stress induced by GaNt and colistin augments the colistin-mediated killing of wild-type cells, which can be abolished by dimethyl sulfoxide (DMSO), an effective ROS scavenger. Collectively, our study indicates that GaNt has a notable impact on the antimicrobial activity of colistin against K. pneumoniae, revealing the potential of GaNt as a novel colistin adjuvant to improve the treatment outcomes of bacterial infections. IMPORTANCE This study aimed to determine the antimicrobial activity of GaNt combined with colistin against Klebsiella pneumoniae in vitro and in vivo. Our results suggest that by combining GaNt with colistin, antioxidant activity was suppressed and reactive oxygen species accumulation was induced in bacterial cells, enhancing antimicrobial activity against K. pneumoniae. We found that GaNt functioned as an antibiotic adjuvant when combined with colistin by inhibiting the growth of multidrug-resistant K. pneumoniae. Our study provides insight into the use of an adjuvant to boost the antibiotic potential of colistin for treating infections caused by multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Mingjuan Guo
- Department of Infectious Disease, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping Tian
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingqing Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bao Meng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuting Ding
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Yasheng Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Liang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Jiabin Li
- Department of Infectious Disease, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
Gaballa A, Wiedmann M, Carroll LM. More than mcr: canonical plasmid- and transposon-encoded mobilized colistin resistance genes represent a subset of phosphoethanolamine transferases. Front Cell Infect Microbiol 2023; 13:1060519. [PMID: 37360531 PMCID: PMC10285318 DOI: 10.3389/fcimb.2023.1060519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI's National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to "colistin resistance genes" through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Keeratikunakorn K, Kaewchomphunuch T, Kaeoket K, Ngamwongsatit N. Antimicrobial activity of cell free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen. Sci Rep 2023; 13:5995. [PMID: 37046067 PMCID: PMC10097705 DOI: 10.1038/s41598-023-33062-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
The use of antibiotics with semen extender appears to be a practical solution to minimise bacterial growth in fresh boar semen preservation. Unfortunately, the excessive use of antibiotics promotes antimicrobial resistance (AMR). This becomes a worldwide concern due to the antimicrobial resistance genes transmitted to animals, environment, and humans. Probiotics are one of the alternative methods to reduce antibiotic use. They could inhibit pathogenic bacteria by producing antimicrobial substances in cell free supernatants (CFS). Nevertheless, there is no comprehensive study undertaken on inhibitory activity against pathogenic bacteria isolated from boar semen origin. Our study investigated the efficacy of CFS produced from selected probiotics: Bacillus spp., Enterococcus spp., Weissella spp., Lactobacillus spp., and Pediococcus spp. inhibiting pathogenic bacteria isolated from fresh boar semen. Besides, the semen-origin pathogenic bacteria are subjected to identification, antimicrobial resistance genes detection, and antibiotic susceptibility test (AST). Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis are the most common pathogens identified in boar semen with resistance to numerous antibiotics used in pig industry. The CFS with its antimicrobial peptides and/or bacteriocin constituent derived from selected probiotics could inhibit the growth of pathogenic bacteria carrying antimicrobial resistance genes (mcr-3 and int1 genes). The inhibition zones for Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis provided more efficient results in the CFS derived from Lactobacillus spp. and Pediococcus spp. than those of the CFS produced from Enterococcus spp., Weissella spp. and Bacillus spp., respectively. It is worth noted that as the incubation time increased, the antibacterial activity decreased conversely. Our results on CFS with its antimicrobial peptides and/or bacteriocin constituent inhibits semen-origin pathogenic bacteria guide the direction as a promising alternative method used in the semen extender preservation of the pig industry.
Collapse
Affiliation(s)
- Krittika Keeratikunakorn
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Thotsapol Kaewchomphunuch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
19
|
Rashid F, Dubinkina V, Ahmad S, Maslov S, Irudayaraj JMK. Gut Microbiome-Host Metabolome Homeostasis upon Exposure to PFOS and GenX in Male Mice. TOXICS 2023; 11:281. [PMID: 36977046 PMCID: PMC10051855 DOI: 10.3390/toxics11030281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Alterations of the normal gut microbiota can cause various human health concerns. Environmental chemicals are one of the drivers of such disturbances. The aim of our study was to examine the effects of exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS)-specifically, perfluorooctane sulfonate (PFOS) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX)-on the microbiome of the small intestine and colon, as well as on liver metabolism. Male CD-1 mice were exposed to PFOS and GenX in different concentrations and compared to controls. GenX and PFOS were found to have different effects on the bacterial community in both the small intestine and colon based on 16S rRNA profiles. High GenX doses predominantly led to increases in the abundance of Clostridium sensu stricto, Alistipes, and Ruminococcus, while PFOS generally altered Lactobacillus, Limosilactobacillus, Parabacteroides, Staphylococcus, and Ligilactobacillus. These treatments were associated with alterations in several important microbial metabolic pathways in both the small intestine and colon. Untargeted LC-MS/MS metabolomic analysis of the liver, small intestine, and colon yielded a set of compounds significantly altered by PFOS and GenX. In the liver, these metabolites were associated with the important host metabolic pathways implicated in the synthesis of lipids, steroidogenesis, and in the metabolism of amino acids, nitrogen, and bile acids. Collectively, our results suggest that PFOS and GenX exposure can cause major perturbations in the gastrointestinal tract, aggravating microbiome toxicity, hepatotoxicity, and metabolic disorders.
Collapse
Affiliation(s)
- Faizan Rashid
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Veronika Dubinkina
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Saeed Ahmad
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Maria Kumar Irudayaraj
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Hanpaibool C, Ngamwongsatit N, Ounjai P, Yotphan S, Wolschann P, Mulholland AJ, Spencer J, Rungrotmongkol T. Pyrazolones Potentiate Colistin Activity against MCR-1-Producing Resistant Bacteria: Computational and Microbiological Study. ACS OMEGA 2023; 8:8366-8376. [PMID: 36910942 PMCID: PMC9996792 DOI: 10.1021/acsomega.2c07165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The polymyxin colistin is a last line antibiotic for extensively resistant Gram-negative bacteria. Colistin binding to lipid A disrupts the Gram-negative outer membrane, but mobile colistin resistance (mcr) gene family members confer resistance by catalyzing phosphoethanolamine (PEA) transfer onto lipid A, neutralizing its negative charge to reduce colistin interactions. Multiple mcr isoforms have been identified in clinical and environmental isolates, with mcr-1 being the most widespread and mcr-3 being common in South and East Asia. Preliminary screening revealed that treatment with pyrazolones significantly reduced mcr-1, but not mcr-3, mediated colistin resistance. Molecular dynamics (MD) simulations of the catalytic domains of MCR-1 and a homology model of MCR-3, in different protonation states of active site residues H395/H380 and H478/H463, indicate that the MCR-1 active site has greater water accessibility than MCR-3, but that this is less influenced by changes in protonation. MD-optimized structures of MCR-1 and MCR-3 were used in virtual screening of 20 pyrazolone derivatives. Docking of these into the MCR-1/MCR-3 active sites identifies common residues likely to be involved in protein-ligand interactions, specifically the catalytic threonine (MCR-1 T285, MCR-3 T277) site of PEA addition, as well as differential interactions with adjacent amino acids. Minimal inhibitory concentration assays showed that the pyrazolone with the lowest predicted binding energy (ST3f) restores colistin susceptibility of mcr-1, but not mcr-3, expressing Escherichia coli. Thus, simulations indicate differences in the active site structure between MCR-1 and MCR-3 that may give rise to differences in pyrazolone binding and so relate to differential effects upon producer E. coli. This work identifies pyrazolones as able to restore colistin susceptibility of mcr-1-producing bacteria, laying the foundation for further investigations of their activity as phosphoethanolamine transferase inhibitors as well as of their differential activity toward mcr isoforms.
Collapse
Affiliation(s)
- Chonnikan Hanpaibool
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Natharin Ngamwongsatit
- Department
of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Laboratory
of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Puey Ounjai
- Department
of Biology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- Center
of Excellence on Environmental Health and Toxicology, Office of Higher
Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Sirilata Yotphan
- Center of
Excellence for Innovation in Chemistry (PERCH-CIC), Department of
Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Peter Wolschann
- Institute
of Theoretical Chemistry, University of
Vienna, Vienna 1090, Austria
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10400, Thailand
| |
Collapse
|
21
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Sheng Q, Hou X, Wang Y, Wang N, Deng X, Wen Z, Li D, Li L, Zhou Y, Wang J. Naringenin Microsphere as a Novel Adjuvant Reverses Colistin Resistance via Various Strategies against Multidrug-Resistant Klebsiella pneumoniae Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16201-16217. [PMID: 36530172 DOI: 10.1021/acs.jafc.2c06615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficacy of colistin, the last option against multidrug-resistant (MDR) Gram-negative bacteria, is severely threatened by the prevalence of plasmid- or chromosome-mediated colistin resistance genes. Herein, naringenin has dramatically restored colistin sensitivity against colistin-resistant Klebsiella pneumoniae infection without affecting bacterial viability, inducing resistance and causing obvious cell toxicity. Mechanism analysis reveals that naringenin potentiates colistin activity by multiple strategies including inhibition of mobilized colistin resistance gene activity, repression of two-component system regulation, and acceleration of reactive oxygen species-mediated oxidative damage. A lung-targeted delivery system of naringenin microspheres has been designed to facilitate naringenin bioavailability, accompanied by an effective potentiation of colistin for Klebsiella pneumoniae infection. Consequently, a new recognition of naringenin microspheres has been elucidated to restore colistin efficacy against colistin-resistant Gram-negative pathogens, which may be an effective strategy of developing potential candidates for MDR Gram-negative bacteria infection.
Collapse
Affiliation(s)
- Qiushuang Sheng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Xiaoning Hou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100107, China
| | - Nan Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Li Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yonglin Zhou
- College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- Wang-College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
23
|
Mmatli M, Mbelle NM, Osei Sekyere J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Front Cell Infect Microbiol 2022; 12:941358. [PMID: 36093193 PMCID: PMC9462459 DOI: 10.3389/fcimb.2022.941358] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mobile colistin resistance (mcr) genes modify Lipid A molecules of the lipopolysaccharide, changing the overall charge of the outer membrane. Results and discussion Ten mcr genes have been described to date within eleven Enterobacteriaceae species, with Escherichia coli, Klebsiella pneumoniae, and Salmonella species being the most predominant. They are present worldwide in 72 countries, with animal specimens currently having the highest incidence, due to the use of colistin in poultry for promoting growth and treating intestinal infections. The wide dissemination of mcr from food animals to meat, manure, the environment, and wastewater samples has increased the risk of transmission to humans via foodborne and vector-borne routes. The stability and spread of mcr genes were mediated by mobile genetic elements such as the IncHI2 conjugative plasmid, which is associated with multiple mcr genes and other antibiotic resistance genes. The cost of acquiring mcr is reduced by compensatory adaptation mechanisms. MCR proteins are well conserved structurally and via enzymatic action. Thus, therapeutics found effective against MCR-1 should be tested against the remaining MCR proteins. Conclusion The dissemination of mcr genes into the clinical setting, is threatening public health by limiting therapeutics options available. Combination therapies are a promising option for managing and treating colistin-resistant Enterobacteriaceae infections whilst reducing the toxic effects of colistin.
Collapse
Affiliation(s)
- Masego Mmatli
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
- Department of Dermatology, School of Medicine, University of Pretoria, Pretoria, South Africa
- *Correspondence: John Osei Sekyere, ;
| |
Collapse
|
24
|
Zhu L, Shuai XY, Lin ZJ, Sun YJ, Zhou ZC, Meng LX, Zhu YG, Chen H. Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics. WATER RESEARCH 2022; 209:117907. [PMID: 34864622 DOI: 10.1016/j.watres.2021.117907] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater contains abundant antibiotics, antibiotic resistance genes (ARGs), and pathogens. Last-resort antibiotic resistance genes (LARGs) include the New Delhi metallo-β-lactamase gene blaNDM, mobile colistin resistance gene mcr and tigecycline resistance gene tet(X) which confers resistance to carbapenems, colistin and tigecycline. The presence and significance of LARGs in hospital wastewater treatment systems (HWTS) have not yet been systematically explored. Here, LARG variants were shown to be prevalent both influents and effluents of HWTS. A total of 989 Enterobacteriaceae isolates that confer resistance to last-resort antibiotics were collected from effluents and multiple genetic contexts of LARGs were analyzed. LARGs-carrying plasmids were confirmed to show high multidrug phenotypes and transferability. We also discovered the co-occurrence of plasmids harboring blaNDM-1 and mcr-1 in single Escherichia coli, as well as E. coli HM016 containing two unique mcr-1-carrying plasmids. This result might accelerate co-dissemination of LARGs under environmental selection pressure. Different core genetic arrangements in these strains suggest several evolutionary pathways in HWTS. The resistance functions of LARGs were confirmed in vitro and in vivo by mass spectrometry. This study provides novel insights into the diversity, genetic context and function of critical ARGs in HWTS. The results raise the concern that LARGs may further spread into the environment, thus, more stringent discharge standards and regulations for hospital wastewater are urgently needed.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Xin-Yi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Ze-Jun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Yu-Jie Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Zhen-Chao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Ling-Xuan Meng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR. China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR. China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China.
| |
Collapse
|
25
|
He Z, Yang Y, Li W, Ma X, Zhang C, Zhang J, Sun B, Ding T, Tian GB. Comparative genomic analyses of Polymyxin-resistant Enterobacteriaceae strains from China. BMC Genomics 2022; 23:88. [PMID: 35100991 PMCID: PMC8805313 DOI: 10.1186/s12864-022-08301-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mobile colistin resistance like gene (mcr-like gene) is a new type of polymyxin resistance gene that can be horizontally transferred in the Enterobacteriaceae. This has brought great challenges to the treatment of multidrug-resistant Escherichia coli and K. pneumoniae. RESULTS K. pneumoniae 16BU137 and E. coli 17MR471 were isolated from the bus and subway handrails in Guangzhou, China. K. pneumoniae 19PDR22 and KP20191015 were isolated from patients with urinary tract infection and severe pneumonia in Anhui, China. Sequence analysis indicated that the mcr-1.1 gene was present on the chromosome of E. coli 17MR471, and the gene was in the gene cassette containing pap2 and two copies of ISApl1.The mcr-1.1 was found in the putative IncX4 type plasmid p16BU137_mcr-1.1 of K. pneumoniae 16BU137, but ISApl1 was not found in its flanking sequence. Mcr-8 variants were found in the putative IncFIB/ IncFII plasmid pKP20191015_mcr-8 of K. pneumoniae KP20191015 and flanked by ISEcl1 and ISKpn26. CONCLUSION This study provides timely information on Enterobacteriaceae bacteria carrying mcr-like genes, and provides a reference for studying the spread of mcr-1 in China and globally.
Collapse
Affiliation(s)
- Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Xiaoling Ma
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Changfeng Zhang
- Clinical Laboratory of the First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Jingxiang Zhang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China.
| | - Tao Ding
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
- Xizang Minzu University School of Medicine, Xianyang, China.
| |
Collapse
|
26
|
Deep Mutational Scanning Reveals the Active-Site Sequence Requirements for the Colistin Antibiotic Resistance Enzyme MCR-1. mBio 2021; 12:e0277621. [PMID: 34781730 PMCID: PMC8593676 DOI: 10.1128/mbio.02776-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Colistin (polymyxin E) and polymyxin B have been used as last-resort agents for treating infections caused by multidrug-resistant Gram-negative bacteria. However, their efficacy has been challenged by the emergence of the mobile colistin resistance gene mcr-1, which encodes a transmembrane phosphoethanolamine (PEA) transferase enzyme, MCR-1. The enzyme catalyzes the transfer of the cationic PEA moiety of phosphatidylethanolamine (PE) to lipid A, thereby neutralizing the negative charge of lipid A and blocking the binding of positively charged polymyxins. This study aims to facilitate understanding of the mechanism of the MCR-1 enzyme by investigating its active-site sequence requirements. For this purpose, 23 active-site residues of MCR-1 protein were randomized by constructing single-codon randomization libraries. The libraries were individually selected for supporting Escherichia coli cell growth in the presence of colistin or polymyxin B. Deep sequencing of the polymyxin-resistant clones revealed that wild-type residues predominates at 17 active-site residue positions, indicating these residues play critical roles in MCR-1 function. These residues include Zn2+-chelating residues as well as residues that may form a hydrogen bond network with the PEA moiety or make hydrophobic interactions with the acyl chains of PE. Any mutations at these residues significantly decrease polymyxin resistance levels and the PEA transferase activity of the MCR-1 enzyme. Therefore, deep sequencing of the randomization libraries of MCR-1 enzyme identifies active-site residues that are essential for its polymyxin resistance function. Thus, these residues may be utilized as targets to develop inhibitors to circumvent MCR-1-mediated polymyxin resistance.
Collapse
|
27
|
Du R, Lv Q, Hu W, Hou X, Zhou Y, Deng X, Sun L, Li L, Deng Y, Wang J. Phloretin potentiates polymyxin E activity against gram-negative bacteria. Life Sci 2021; 287:120085. [PMID: 34699905 DOI: 10.1016/j.lfs.2021.120085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023]
Abstract
AIMS The spread of plasmid-mediated polymyxin resistance has jeopardized the use of polymyxin, the last defender that combats infections caused by multidrug-resistant (MDR) gram-negative pathogens. MAIN METHODS In this study, phloretin, as a monomeric compound extracted from natural plants, showed a good synergistic effect with polymyxin E against gram-negative bacteria, as evaluated by minimal inhibit concentration (MIC) assay and a series of assays, including growth curve, time-killing, and Western blot assays. A model of mice infected by Salmonella sp. stain HYM2 was established to further identify the synergistic effect of phloretin with polymyxin E. KEY FINDINGS The results suggested that phloretin had the potential ability to recover the antibacterial sensitivity of polymyxin E from 64 μg/mL to no more than 2 μg/mL in E. coli ZJ478 or in Salmonella sp. stain HYM2 with a 32-fold decrease. A series of strains, including mcr-1-positive and mcr-1-negative strains, were treated with a combination of phloretin and polymyxin E, and the fractional inhibitory concentration (FIC) values were all found to be below 0.5. However, the combination of phloretin and polymyxin E did not lead to bacterial resistance. In vivo, the survival rate of infected mice reached nearly 80% with the combination treatment, and the cecal colony value also decreased significantly. SIGNIFICANCE All the above results indicated that phloretin is a potential polymyxin potentiator to combat gram-negative stains.
Collapse
Affiliation(s)
- Runbao Du
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoning Hou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liping Sun
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Li Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanhong Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China..
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China..
| |
Collapse
|
28
|
Yin W, Ling Z, Dong Y, Qiao L, Shen Y, Liu Z, Wu Y, Li W, Zhang R, Walsh TR, Dai C, Li J, Yang H, Liu D, Wang Y, Gao GF, Shen J. Mobile Colistin Resistance Enzyme MCR-3 Facilitates Bacterial Evasion of Host Phagocytosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101336. [PMID: 34323389 PMCID: PMC8456205 DOI: 10.1002/advs.202101336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/12/2021] [Indexed: 05/10/2023]
Abstract
Mobile colistin resistance enzyme MCR-3 is a phosphoethanolamine transferase modifying lipid A in Gram-negative bacteria. MCR-3 generally mediates low-level (≤8 mg L-1 ) colistin resistance among Enterobacteriaceae, but occasionally confers high-level (>128 mg L-1 ) resistance in aeromonads. Herein, it is determined that MCR-3, together with another lipid A modification mediated by the arnBCADTEF operon, may be responsible for high-level colistin resistance in aeromonads. Lipid A is the critical site of pathogens for Toll-like receptor 4 recognizing. However, it is unknown whether or how MCR-3-mediated lipid A modification affects the host immune response. Compared with the wild-type strains, increased mortality is observed in mice intraperitoneally-infected with mcr-3-positive Aeromonas salmonicida and Escherichia coli strains, along with sepsis symptoms. Further, mcr-3-positive strains show decreased clearance rates than wild-type strains, leading to bacterial accumulation in organs. The increased mortality is tightly associated with the increased tissue hypoxia, injury, and post-inflammation. MCR-3 expression also impairs phagocytosis efficiency both in vivo and in vitro, contributing to the increased persistence of mcr-3-positive bacteria in tissues compared with parental strains. This study, for the first time, reveals a dual function of MCR-3 in bacterial resistance and pathogenicity, which calls for caution in treating the infections caused by mcr-positive pathogens.
Collapse
Affiliation(s)
- Wenjuan Yin
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- College of Basic Medical ScienceKey Laboratory of Pathogenesis Mechanism and Control of Inflammatory‐Autoimmune Diseases of Hebei ProvinceHebei UniversityBaoding071002China
| | - Zhuoren Ling
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yanjun Dong
- Department of Basic Veterinary MedicineCollege of Veterinary MedicineChina Agricultural UniversityHaidianBeijing100193China
| | - Lu Qiao
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yingbo Shen
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences (CAS)Beijing100101China
| | - Zhihai Liu
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Agricultural Bio‐Pharmaceutical LaboratoryCollege of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Yifan Wu
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Wan Li
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang UniversityZhejiang UniversityHangzhou310009China
| | | | - Chongshan Dai
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Juan Li
- State Key Laboratory of Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionChangpingBeijing102206China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk AssessmentChina National Center for Food Safety Risk AssessmentNo. 7 Panjiayuan NanliBeijing100021China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences (CAS)Beijing100101China
- College of Veterinary MedicineChina Agricultural UniversityHaidianBeijing100193China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
29
|
Wang Y, Lyu N, Liu F, Liu WJ, Bi Y, Zhang Z, Ma S, Cao J, Song X, Wang A, Zhang G, Hu Y, Zhu B, Gao GF. More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. ENVIRONMENT INTERNATIONAL 2021; 153:106534. [PMID: 33799229 DOI: 10.1016/j.envint.2021.106534] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Poultry farms and LPMs are a reservoir of antimicrobial resistant bacteria and resistance genes from feces. The LPM is an important interface between humans, farm animals, and environments in a typical urban environment, and it is considered a reservoir for ARGs and viruses. However, the antibiotic resistomes shared between chicken farms and LPMs, and that of LPM workers and people who have no contact with the LPMs remains unknown. METHODS We characterized the resistome and bacterial microbiome of farm chickens and LPMs and LPM workers and control subjects. The mobile ARGs identified in chickens and the distribution of the mcr-family genes in publicly bacterial genomes and chicken gut metagenomes was analyzed, respectively. In addition, the prevalence of mcr-1 in LPMs following the ban on colistin-positive additives in China was explored. RESULTS By profiling the microbiomes and resistomes in chicken farms, LPMs, LPM workers, and LPM environments, we found that the bacterial community composition and resistomes were significantly different between the farms and the LPMs, and the LPM samples possessed more diversified ARGs (59 types) than the farms. Some mobile ARGs, such as mcr-1 and tet(X3), identified in chicken farms, LPMs, LPM workers, and LPM environments were also harbored by human clinical pathogens. Moreover, we found that the resistomes were significantly different between the LPM workers and those who have no contact with the LPMs, and more diversified ARGs (188 types) were observed in the LPM workers. It is also worth noting that mcr-10 was identified in both human (5.2%, 96/1,859) and chicken (1.5%, 14/910) gut microbiomes. Although mcr-1 prevalence decreased significantly in the LPMs across the eight provinces in China, from 190/333 (57.1%) samples in September 2016-March 2017 to 208/544 (38.2%) samples in August 2018-May 2019, it is widespread and continuous in the LPMs. CONCLUSION Live poultry trade has a significant effect on the diversity of ARGs in LPM workers, chickens, and environments in China, driven by human selection with the live poultry trade. Our findings highlight the live poultry trade as ARG disseminators into LPMs, which serve as an interface of LPM environments even LPM workers, and that could urge Government to have better control of LPMs in China. Further studies on the factors that promote antibiotic resistance exchange between LPM environments, human commensals, and pathogens, are warranted.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Lyu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Zewu Zhang
- Dongguan Municipal Center for Disease Control and Prevention, Dongguan 523129, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Song
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing 100101, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
The MCR-3 inside linker appears as a facilitator of colistin resistance. Cell Rep 2021; 35:109135. [PMID: 34010644 DOI: 10.1016/j.celrep.2021.109135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
An evolving family of mobile colistin resistance (MCR) enzymes is threatening public health. However, the molecular mechanism by which the MCR enzyme as a rare member of lipid A-phosphoethanolamine (PEA) transferases gains the ability to confer phenotypic colistin resistance remains enigmatic. Here, we report an unusual example that genetic duplication and amplification produce a functional variant (Ah762) of MCR-3 in certain Aeromonas species. The lipid A-binding cavity of Ah762 is functionally defined. Intriguingly, we locate a hinge linker of Ah762 (termed Linker 59) that determines the MCR. Genetic and biochemical characterization reveals that Linker 59 behaves as a facilitator to render inactive MCR variants to regain the ability of colistin resistance. Along with molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC) suggests that this facilitator guarantees the formation of substrate phosphatidylethanolamine (PE)-accessible pocket within MCR-3-like enzymes. Therefore, our finding defines an MCR-3 inside facilitator for colistin resistance.
Collapse
|
31
|
Xu Y, Liu L, Zhang H, Feng Y. Co-production of Tet(X) and MCR-1, two resistance enzymes by a single plasmid. Environ Microbiol 2021; 23:7445-7464. [PMID: 33559156 DOI: 10.1111/1462-2920.15425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Tigecycline and colistin are few of 'last-resort' antibiotic defences used in anti-infection therapies against carbapenem-resistant bacterial pathogens. The successive emergence of plasmid-borne tet(X) tigecycline resistance mechanism and mobile colistin resistance (mcr) determinant, renders them clinically useless. Here, we report that co-carriage of tet(X6) and mcr-1 gives co-resistance to both classes of antibiotics by a single plasmid in Escherichia coli. Tet(X6), the new tigecycline resistance enzyme is functionally defined. Both Tet(X6) and MCR-1 robustly interfere accumulation of antibiotic-induced reactive oxygen species (ROS). Unlike that mcr-1 exerts fitness cost in E. coli, tet(X6) does not. In the tet(X6)-positive strain that co-harbors mcr-1, tigecycline resistance is independently of colistin resistance caused by MCR-1-mediated lipid A remodelling, and vice versa. In general consistency with that of MCR-1, Tet(X6) leads to the failure of tigecycline treatment in the infection model of G. mellonella. Taken together, the co-production of Tet(X) and MCR-1 appears as a major clinic/public health concern.
Collapse
Affiliation(s)
- Yongchang Xu
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Lizhang Liu
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
32
|
Imtiaz W, Syed Z, Rafaque Z, Andrews SC, Dasti JI. Analysis of Antibiotic Resistance and Virulence Traits (Genetic and Phenotypic) in Klebsiella pneumoniae Clinical Isolates from Pakistan: Identification of Significant Levels of Carbapenem and Colistin Resistance. Infect Drug Resist 2021; 14:227-236. [PMID: 33531820 PMCID: PMC7846821 DOI: 10.2147/idr.s293290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background The emergence of carbapenem-resistant and hypervirulent hypermucoviscous Klebsiella pneumoniae strains poses a significant public health challenge. We determined the MDR profiles, antibiotic resistance factors, virulence gene complement, and hypermucoviscous features of 200 clinical K. pneumoniae isolates from two major tertiary care hospitals in Islamabad and Rawalpindi, Pakistan. Methods Susceptibility profiling and phenotypic analysis were performed according to the CLSI guidelines. Genetic determinants of antibiotic resistance and virulence were detected by PCR. Biofilm formation analysis was performed by microtiter plate assay. Results The isolates displayed a high degree of antibiotic resistance: 36% MDR-CRKP; 38% carbapenem resistance; 55% gentamicin resistance; 53% ciprofloxacin resistance; and 59% aztreonam resistance. In particular, the level of resistance against fosfomycin (22%) and colistin (15%) is consistent with previous reports of increased resistance levels. Combined resistance to carbapenem and colistin was 7%. Genetic factors associated with colistin resistance (mcr-1 and mcr-2 genes) were detected in 12 and 9% of the isolates, respectively. Significant differences in resistance to gentamicin and levofloxacin were observed between the 200 isolates. Many of the isolates harbored genes specifying extended-spectrum and/or carbapenem-resistant β-lactamases: bla CTX-M-15 (46%), bla NDM-1 (39%), and bla OXA-48 (24%). The prevalence of the hypermucoviscous phenotype was 22% and 13% of the MDR isolates carried the rmpA gene (regulator for mucoid phenotype). Key virulence factor genes detected include those encoding: porins (ompK35 and ompK36; at 56 and 55% prevalence, respectively); adhesins (fimH, mrkD, and ycfM; at 19, 18, and 22% prevalence, respectively); and the polysaccharide regulator, bss, at 16% prevalence. Conclusion This report highlights carbapenem-resistant K. pneumoniae (CRKP) prevalence, emerging resistance to fosfomycin, and the presence of mcr-1 and mcr-2 in colistin-resistant isolates. Further, the detection of rmpA signifies the prevalence of the hypermucoviscous trait in CRKP clinical isolates from Pakistan.
Collapse
Affiliation(s)
- Wajiha Imtiaz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.,School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 6AJ, UK
| | - Zainab Syed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zara Rafaque
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Simon Colin Andrews
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 6AJ, UK
| | - Javid Iqbal Dasti
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
33
|
Dou Y, Li W, Xia Y, Chen Z, Wu Z, Ge Y, Lin Z, Zhang M, Yang K, Yuan B, Kang Z. Photo-Voltage Transients for Real-Time Analysis of the Interactions between Molecules and Membranes. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yujiang Dou
- College of Electronics and Information, Soochow University, Suzhou 215006, Jiangsu, China
- Suzhou Weimu Intelligent System Co. Ltd., Suzhou 215163, Jiangsu, China
| | - Wenwen Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yu Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhonglan Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenyu Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuke Ge
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhao Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Institute of Advanced Materials, Northeast Normal University, 5268 Renmin Street, Changchun 130024, Jilin, China
| |
Collapse
|
34
|
Li JY, Gao TT, Wang Q. Comparative and Functional Analyses of Two Sequenced Paenibacillus polymyxa Genomes Provides Insights Into Their Potential Genes Related to Plant Growth-Promoting Features and Biocontrol Mechanisms. Front Genet 2020; 11:564939. [PMID: 33391337 PMCID: PMC7773762 DOI: 10.3389/fgene.2020.564939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
Many bacteria belonging to Paenibacillus polymyxa are plant growth-promoting rhizobacteria (PGPR) with the potential to promote plant growth and suppress phytopathogens and have been used as biological control agents (BCAs). However, the growth promotion and biocontrol mechanisms of P. polymyxa have not been thoroughly elucidated thus far. In this investigation, the genome sequences of two P. polymyxa strains, ZF129 and ZF197, with broad anti-pathogen activities and potential for growth promotion were comparatively studied. Comparative and functional analyses of the two sequenced P. polymyxa genomes showed that the ZF129 genome consists of one 5,703,931 bp circular chromosome and two 79,020 bp and 37,602 bp plasmids, designated pAP1 and pAP2, respectively. The complete genome sequence of ZF197 consists of one 5,507,169 bp circular chromosome and one 32,065 bp plasmid, designated pAP197. Phylogenetic analysis revealed that ZF129 is highly similar to two P. polymyxa strains, HY96-2 and SQR-21, while ZF197 is highly similar to P. polymyxa strain J. The genes responsible for secondary metabolite synthesis, plant growth-promoting traits, and systemic resistance inducer production were compared between strains ZF129 and ZF197 as well as other P. polymyxa strains. The results indicated that the variation of the corresponding genes or gene clusters between strains ZF129 and ZF197 may lead to different antagonistic activities of their volatiles or cell-free supernatants against Fusarium oxysporum. This work indicates that plant growth promotion by P. polymyxa is largely mediated by phytohormone production, increased nutrient availability and biocontrol mechanisms. This study provides an in-depth understanding of the genome architecture of P. polymyxa, revealing great potential for the application of this bacterium in the fields of agriculture and horticulture as a PGPR.
Collapse
Affiliation(s)
- Jin-Yi Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tan-Tan Gao
- Key Laboratory for Northern Urban Agriculture, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Qi Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Gabale U, Peña Palomino PA, Kim H, Chen W, Ressl S. The essential inner membrane protein YejM is a metalloenzyme. Sci Rep 2020; 10:17794. [PMID: 33082366 PMCID: PMC7576196 DOI: 10.1038/s41598-020-73660-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
Recent recurrent outbreaks of Gram-negative bacteria show the critical need to target essential bacterial mechanisms to fight the increase of antibiotic resistance. Pathogenic Gram-negative bacteria have developed several strategies to protect themselves against the host immune response and antibiotics. One such strategy is to remodel the outer membrane where several genes are involved. yejM was discovered as an essential gene in E. coli and S. typhimurium that plays a critical role in their virulence by changing the outer membrane permeability. How the inner membrane protein YejM with its periplasmic domain changes membrane properties remains unknown. Despite overwhelming structural similarity between the periplasmic domains of two YejM homologues with hydrolases like arylsulfatases, no enzymatic activity has been previously reported for YejM. Our studies reveal an intact active site with bound metal ions in the structure of YejM periplasmic domain. Furthermore, we show that YejM has a phosphatase activity that is dependent on the presence of magnesium ions and is linked to its function of regulating outer membrane properties. Understanding the molecular mechanism by which YejM is involved in outer membrane remodeling will help to identify a new drug target in the fight against the increased antibiotic resistance.
Collapse
Affiliation(s)
- Uma Gabale
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S Hawthrone Dr, Bloomington, IN, 47405, USA.
| | - Perla Arianna Peña Palomino
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S Hawthrone Dr, Bloomington, IN, 47405, USA
| | - HyunAh Kim
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S Hawthrone Dr, Bloomington, IN, 47405, USA
| | - Wenya Chen
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S Hawthrone Dr, Bloomington, IN, 47405, USA
| | - Susanne Ressl
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S Hawthrone Dr, Bloomington, IN, 47405, USA.
- Department of Neuroscience, The University of Texas At Austin, 100 E. 24th St., NHB 2.504, Austin, TX, 78712, USA.
| |
Collapse
|
36
|
Wang Y, Liu X, Sun X, Wen Z, Wang D, Peng L. A Potential Inhibitor of MCR-1: An Attempt to Enhance the Efficacy of Polymyxin Against Multidrug-Resistant Bacteria. Curr Microbiol 2020; 77:3256-3263. [PMID: 32857196 DOI: 10.1007/s00284-020-02096-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
The irrational use of broad-spectrum antibiotics has led to increasing resistance of bacteria to antibiotics, and the emergence of the plasmid-mediated colistin resistance gene mcr-1 has led to the dilemma of infections with no available cure. Here, we have found a potential MCR-1 inhibitor for use against infections caused by MCR-1 positive resistant bacteria. A checkerboard MIC (minimum inhibitory concentration) assay, growth curve assay, kill curve assay, cytotoxicity assay, molecular dynamics simulation analysis, Western blot assay and mouse pneumonia model in vivo protection rate assay were used to evaluate the synergy effect between genistein and polymyxins. The results showed that genistein could restore the bactericidal activity against MCR-1-positive strains for which there was no antibacterial activity, and reduce the bacterial load to some extent. Genistein does not inhibit the expression of MCR-1, but inhibits the binding of MCR-1 to its substrate by binding to the amino acids of the active region of MCR-1, thereby inhibiting the biological activity of MCR-1. The in vivo results also showed that the protection rate of mice treated with the combination therapy of genistein and polymyxins increased by 20% compared to that of mice treated with polymyxins alone. Our results confirm that genistein is an inhibitor of MCR-1 and promote its potential use in combination with polymyxins to treat severe infections caused by MCR-1 positive Enterobacteriaceae.
Collapse
Affiliation(s)
- Yanling Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xingqi Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Sun
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China.
| | - Liping Peng
- Department of Respiratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
37
|
Ullah S, Ji K, Li J, Xu Y, Jiang C, Zhang H, Huang M, Feng Y. Characterization of NMCR-2, a new non-mobile colistin resistance enzyme: implications for an MCR-8 ancestor. Environ Microbiol 2020; 23:844-860. [PMID: 32686285 DOI: 10.1111/1462-2920.15171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
MCR-4 and MCR-8 are two recently identified members of an ongoing MCR family of colistin resistance. Although that aquatic reservoir for MCR-4 is proposed, the origin and mechanism of MCR-8 is poorly understood. Here we report a previously unrecognized non-mobile colistin resistance enzyme, termed NMCR-2, originating from the plant pathogen Kosakonia pseudosacchari. NMCR-2 (551aa) gives 67.3% identity to MCR-8 (565aa). NMCR-2 is placed as a progenitor/ancestor for MCR-8 in phylogeny of MCR members. Genetic study reveals that nmcr-2 is comparable to mcr-8 in the ability of producing phenotypic colistin resistance. Biochemical analyses determine that these two enzymes catalyse the transfer of PEA from the donor PE lipid substrate to the recipient lipid A molecule by a putative 'ping-pong' trade-off. Further experiment of protein engineering demonstrates that the two motifs (TM region and catalytic domain) of NMCR-2 are functionally exchangeable with that of MCR-8, rather than MCR-1. Physiological impacts of nmcr-2 and/or mcr-8 are detected in Escherichia coli, featuring with fitness cost. Evidently, the action and mechanism of NMCR-2 is analogous to that of MCR-8. Therefore, our finding underlines that NMCR-2 might be a possible progenitor of MCR-8.
Collapse
Affiliation(s)
- Saif Ullah
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China
| | - Kai Ji
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Jun Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Yongchang Xu
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Chengjian Jiang
- Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Man Huang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, 610500, China.,College of Animal Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| |
Collapse
|
38
|
Chang J, Tang B, Chen Y, Xia X, Qian M, Yang H. Two IncHI2 Plasmid-Mediated Colistin-Resistant Escherichia coli Strains from the Broiler Chicken Supply Chain in Zhejiang Province, China. J Food Prot 2020; 83:1402-1410. [PMID: 32294180 DOI: 10.4315/jfp-20-041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT Colistin is used as one of the last-resort drugs against lethal infections caused by carbapenem-resistant pathogens of the Enterobacteriaceae family. Enterobacteriaceae bacteria carrying the mcr-1 colistin resistance gene are emerging in livestock and poultry, posing a serious threat to human health. However, there have been few reports about the prevalence and transmission of mcr-1 along the regional chicken supply chain. In this study, the complete sequences of mcr-1-positive Escherichia coli ST2705 and ST206 isolates obtained by screening 129 chilled chicken samples and 251 chicken fecal samples were investigated. Both of these isolates showed resistance to colistin, and importantly, the complete sequence of the mcr-1-positive E. coli ST2705 in China was reported for the first time. The mcr-1 gene was located on the IncHI2 plasmids pTBMCR421 (254,365 bp) and pTBMCR401 (230,964 bp) in strains ECCNB20-2 and ECZP248, respectively. Comparative analysis of mcr-1-bearing IncHI2 plasmids showed a marked similarity, indicating that these plasmids are very common and have the ability to be efficient vehicles for mcr-1 dissemination among humans, animals, and food. Furthermore, an insertion (ISKpn26) in Tn6330 (ISApl1-mcr-1-pap2-ISApl1) was identified in the plasmid pTBMCR401 and then compared; this insertion might affect the adaptability and stability of Tn6330. Taken together, these findings suggest that the IncHI2 plasmid might be a main factor affecting the transmission of mcr-1 in the chicken supply chain and that the genetic context of the mcr-1-bearing IncHI2 plasmid is constantly evolving. HIGHLIGHTS
Collapse
Affiliation(s)
- Jiang Chang
- Institute of Quality and Standard for Agro-products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-9145-7713 [J.C.]).,State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Biao Tang
- Institute of Quality and Standard for Agro-products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China
| | - Yifei Chen
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Mingrong Qian
- Institute of Quality and Standard for Agro-products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China
| |
Collapse
|
39
|
Tang B, Chang J, Zhang L, Liu L, Xia X, Hassan BH, Jia X, Yang H, Feng Y. Carriage of Distinct
mcr‐1
‐Harboring Plasmids by Unusual Serotypes of
Salmonella. ACTA ACUST UNITED AC 2020; 4:e1900219. [DOI: 10.1002/adbi.201900219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/14/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Biao Tang
- Institute of Quality and Standard for Agro‐Products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsZhejiang Academy of Agricultural Sciences Hangzhou Zhejiang 310021 China
| | - Jiang Chang
- Institute of Quality and Standard for Agro‐Products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsZhejiang Academy of Agricultural Sciences Hangzhou Zhejiang 310021 China
- College of Food Science and EngineeringNorthwest Agriculture and Forestry University Yangling Shaanxi 712100 China
| | - Ling Zhang
- College of Food Science and EngineeringNorthwest Agriculture and Forestry University Yangling Shaanxi 712100 China
| | - Lizhang Liu
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang 310058 China
| | - Xiaodong Xia
- College of Food Science and EngineeringNorthwest Agriculture and Forestry University Yangling Shaanxi 712100 China
| | - Bachar H. Hassan
- Stony Brook University 101 Nicolls Road Stony Brook NY 11794 USA
| | - Xu Jia
- Non‐Coding RNA and Drug Discovery Key Laboratory of Sichuan ProvinceChengdu Medical College Chengdu Sichuan 610500 China
| | - Hua Yang
- Institute of Quality and Standard for Agro‐Products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsZhejiang Academy of Agricultural Sciences Hangzhou Zhejiang 310021 China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang 310058 China
- Non‐Coding RNA and Drug Discovery Key Laboratory of Sichuan ProvinceChengdu Medical College Chengdu Sichuan 610500 China
- College of Animal SciencesZhejiang University Hangzhou Zhejiang 310058 China
| |
Collapse
|
40
|
Shedko ED, Timoshina O, Azyzov IS. Molecular epidemiology of mcr gene group. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2020. [DOI: 10.36488/cmac.2020.4.287-300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colistin and polymyxin B are the “last reserve” antimicrobials for the treatment of extensively drug-resistant Gram-negative bacterial infections. The rapidly increasing prevalence of polymyxin resistance mediated by the mcr gene localized on plasmid DNA currently poses a high epidemiological threat. In order to control a distribution of mcr genes, it is necessary to develop highly accurate, highly sensitive and easy-to-use diagnostic tools. This paper provides a review of the most relevant studies on the molecular epidemiology as well as current approaches to microbiological and molecular detection of mcr group genes.
Collapse
|
41
|
Recent progress on elucidating the molecular mechanism of plasmid-mediated colistin resistance and drug design. Int Microbiol 2019; 23:355-366. [PMID: 31872322 PMCID: PMC7347692 DOI: 10.1007/s10123-019-00112-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Antibiotic resistance is a growing global challenge to public health. Polymyxin is considered to be the last-resort antibiotic against most gram-negative bacteria. Recently, discoveries of a plasmid-mediated, transferable mobilized polymyxin resistance gene (mcr-1) in many countries have heralded the increased threat of the imminent emergence of pan-drug-resistant super bacteria. MCR-1 is an inner membrane protein that enables bacteria to develop resistance to polymyxin by transferring phosphoethanolamine to lipid A. However, the mechanism associated with polymyxin resistance has yet to be elucidated, and few drugs exist to address this issue. Here, we review our current understanding regarding MCR-1 and small molecule inhibitors to provide a detailed enzymatic mechanism of MCR-1 and the associated implications for drug design.
Collapse
|
42
|
Lan XJ, Yan HT, Lin F, Hou S, Li CC, Wang GS, Sun W, Xiao JH, Li S. Design, Synthesis and Biological Evaluation of 1-Phenyl-2-(phenylamino) Ethanone Derivatives as Novel MCR-1 Inhibitors. Molecules 2019; 24:molecules24152719. [PMID: 31357453 PMCID: PMC6696459 DOI: 10.3390/molecules24152719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
Polymyxins are considered to be the last-line antibiotics that are used to treat infections caused by multidrug-resistant (MDR) gram-negative bacteria; however, the plasmid-mediated transferable colistin resistance gene (mcr-1) has rendered polymyxins ineffective. Therefore, the protein encoded by mcr-1, MCR-1, could be a target for structure-based design of inhibitors to tackle polymyxins resistance. Here, we identified racemic compound 3 as a potential MCR-1 inhibitor by virtual screening, and 26 compound 3 derivatives were synthesized and evaluated in vitro. In the cell-based assay, compound 6g, 6h, 6i, 6n, 6p, 6q, and 6r displayed more potent activity than compound 3. Notably, 25 μΜ of compound 6p or 6q combined with 2 μg·mL-1 colistin could completely inhibit the growth of BL21(DE3) expressing mcr-1, which exhibited the most potent activity. In the enzymatic assay, we elucidate that 6p and 6q could target the MCR-1 to inhibit the activity of the protein. Additionally, a molecular docking study showed that 6p and 6q could interact with Glu246 and Thr285 via hydrogen bonds and occupy well the cavity of the MCR-1 protein. These results may provide a potential avenue to overcome colistin resistance, and provide some valuable information for further investigation on MCR-1 inhibitors.
Collapse
Affiliation(s)
- Xiu-Juan Lan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hai-Tao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Feng Lin
- School of Life Sciences, Jilin University, Changchun 130021, China
| | - Shi Hou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Chen-Chen Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Guang-Shu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Wei Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jun-Hai Xiao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Song Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
43
|
Zhang H, Srinivas S, Xu Y, Wei W, Feng Y. Genetic and Biochemical Mechanisms for Bacterial Lipid A Modifiers Associated with Polymyxin Resistance. Trends Biochem Sci 2019; 44:973-988. [PMID: 31279652 DOI: 10.1016/j.tibs.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023]
Abstract
Polymyxins are a group of detergent-like antimicrobial peptides that are the ultimate line of defense against carbapenem-resistant pathogens in clinical settings. Polymyxin resistance primarily originates from structural remodeling of lipid A anchored on bacterial surfaces. We integrate genetic, structural, and biochemical aspects of three major types of lipid A modifiers that have been shown to confer intrinsic colistin resistance. Namely, we highlight ArnT, a glycosyltransferase, EptA, a phosphoethanolamine transferase, and the AlmEFG tripartite system, which is restricted to EI Tor biotype of Vibrio cholerae O1. We also discuss the growing family of mobile colistin resistance (MCR) enzymes, each of which is analogous to EptA, and which pose great challenges to global public health.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Swaminath Srinivas
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongchang Xu
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenhui Wei
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Animal Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
44
|
Zhang H, Wei W, Huang M, Umar Z, Feng Y. Definition of a Family of Nonmobile Colistin Resistance (NMCR-1) Determinants Suggests Aquatic Reservoirs for MCR-4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900038. [PMID: 31179218 PMCID: PMC6548957 DOI: 10.1002/advs.201900038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Polymyxins, a family of cationic antimicrobial peptides, are recognized as a last-resort clinical option used in the treatment of lethal infections with carbapenem-resistant pathogens. A growing body of mobile colistin resistance (MCR) determinants renders colistin ineffective in the clinical and human sectors, posing a challenge to human health and food security. However, the origin and reservoir of the MCR family enzymes is poorly understood. Herein, a new family of nonmobile colistin resistance (from nmcr-1 to nmcr-1.8) from the aquatic bacterium Shewanella is reported. NMCR-1 (541aa) displays 62.78% identity to MCR-4. Genetic and structural analyses reveal that NMCR-1 shares a similar catalytic mechanism and functional motifs, both of which are required for MCR action and its resultant phenotypic resistance to polymyxin. Phylogeny and domain-swapping demonstrate that NMCR-1 is a progenitor of MCR-4 rather than MCR-1/2. Additionally, the experiment of bacterial growth and viability reveals that NMCR-1 promotes fitness cost as MCR-1/4 does in the recipient Escherichia coli. In summary, the finding suggests that the aquatic bacterium Shewanella (and even its associated aquaculture) is a reservoir for MCR-4 mobile colistin resistance.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Wenhui Wei
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Man Huang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Zeeshan Umar
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| |
Collapse
|
45
|
Zhang H, Zong Z, Lei S, Srinivas S, Sun J, Feng Y, Huang M, Feng Y. A Genomic, Evolutionary, and Mechanistic Study of MCR-5 Action Suggests Functional Unification across the MCR Family of Colistin Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900034. [PMID: 31179217 PMCID: PMC6548960 DOI: 10.1002/advs.201900034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/14/2019] [Indexed: 02/05/2023]
Abstract
A growing number of mobile colistin resistance (MCR) proteins is threatening the renewed interest of colistin as a "last-resort" defense against carbapenem-resistant pathogens. Here, the comparative genomics of a large plasmid harboring mcr-5 from Aeromonas hydrophila and the structural/functional perspectives of MCR-5 action are reported. Whole genome sequencing has identified the loss of certain parts of the Tn3-type transposon typically associated with mcr-5, providing a clue toward its mobilization. Phylogeny of MCR-5 suggests that it is distinct from the MCR-1/2 sub-lineage, but might share a common ancestor of MCR-3/4. Domain-swapping analysis of MCR-5 elucidates that its two structural motifs (transmembrane domain and catalytic domain) are incompatible with its counterparts in MCR-1/2. Like the rest of the MCR family, MCR-5 exhibits a series of conservative features, including zinc-dependent active sites, phosphatidylethanolamine-binding cavity, and the mechanism of enzymatic action. In vitro and in vivo evidence that MCR-5 catalyzes the addition of phosphoethanolamine to the suggestive 4'-phosphate of lipid A moieties is integrated, and results in the consequent polymyxin resistance. In addition, MCR-5 alleviates the colistin-induced formation of reactive oxygen species in E. coli. Taken together, the finding suggests that a growing body of MCR family resistance enzymes are functionally unified.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- Carl R. Woese Institute for Genomic Biology and Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Zhiyong Zong
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengdu610041China
| | - Sheng Lei
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Swaminath Srinivas
- Carl R. Woese Institute for Genomic Biology and Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhou510642China
| | - Yu Feng
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengdu610041China
| | - Man Huang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhou510642China
- College of Animal SciencesZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
46
|
Lei S, Lv J, Gao S, Srinivas S, Feng Y. Developing an efficient multiplex PCR method to detect mcr-like genes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:705-707. [PMID: 30953265 DOI: 10.1007/s11427-019-9512-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/26/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Sheng Lei
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiali Lv
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shuai Gao
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Swaminath Srinivas
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Youjun Feng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Zhang H, Hou M, Xu Y, Srinivas S, Huang M, Liu L, Feng Y. Action and mechanism of the colistin resistance enzyme MCR-4. Commun Biol 2019; 2:36. [PMID: 30701201 PMCID: PMC6347640 DOI: 10.1038/s42003-018-0278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Colistin is the last-resort antibiotic against lethal infections with multidrug-resistant bacterial pathogens. A rainbow coalition of mobile colistin resistance (mcr) genes raises global health concerns. Here, we describe the action and mechanism of colistin resistance imparted by MCR-4, a recently-identified member from the broader MCR family. We found that MCR-4 originates from the silenced variant of Shewanella frigidimarina via progressive evolution and forms a phylogenetically-distinct group from the well-studied MCR-1/2 family. Domain-swapping experiments further confirmed that MCR-1 and MCR-4 transmembrane and catalytic domains are not functionally-interchangeable. However, structural and functional analyses demonstrated that MCR-4 possesses a similar PE lipid substrate-recognizable cavity and exploits an almost-identical ping-pong catalysis mechanism. MCR-4 also can alleviate colistin-triggered accumulation of reactive oxygen species (ROS). Taken together, this finding constitutes a functional proof that MCR-4 proceeds in a distinct evolutionary path to fulfill a consistent molecular mechanism, resulting in phenotypic colistin resistance.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Mengyun Hou
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Yongchang Xu
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Swaminath Srinivas
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Lizhang Liu
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 China
| |
Collapse
|
48
|
MCR-1: a promising target for structure-based design of inhibitors to tackle polymyxin resistance. Drug Discov Today 2019; 24:206-216. [DOI: 10.1016/j.drudis.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 11/18/2022]
|
49
|
Zhao Y, Meng Q, Lai Y, Wang L, Zhou D, Dou C, Gu Y, Nie C, Wei Y, Cheng W. Structural and mechanistic insights into polymyxin resistance mediated by EptC originating from Escherichia coli. FEBS J 2018; 286:750-764. [PMID: 30537137 DOI: 10.1111/febs.14719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 02/05/2023]
Abstract
Gram-negative bacteria defend against the toxicity of polymyxins by modifying their outer membrane lipopolysaccharide (LPS). This modification mainly occurs through the addition of cationic molecules such as phosphoethanolamine (PEA). EcEptC is a PEA transferase from Escherichia coli (E. coli). However, unlike its homologs CjEptC (Campylobacter jejuni) and MCR-1, EcEptC is unable to mediate polymyxin resistance when overexpressed in E. coli. Here, we report crystal structures of the C-terminal putative catalytic domain (EcEptCΔN, 205-577 aa) of EcEptC in apo and Zn2+ -bound states at 2.10 and 2.60 Å, respectively. EcEptCΔN is arranged into an α-β-α fold and equipped with the zinc ion in a conserved mode. Coupled with isothermal titration calorimetry (ITC) data, we provide insights into the mechanism by which EcEptC recognizes Zn2+ . Furthermore, structure comparison analysis indicated that disulfide bonds, which play a key role in polymyxin resistance, were absent in EcEptCΔN. Supported by structural and biochemical evidence, we reveal mechanistic implications for disulfide bonds in PEA transferase-mediated polymyxin resistance. Significantly, because the structural effects exhibited by disulfide bonds are absent in EcEptC, it is impossible for this protein to participate in polymyxin resistance in E. coli. DATABASE: Structural data are available in the PDB under the accession numbers 6A82 and 6A83. ENZYME: EC 2.7.8.43.
Collapse
Affiliation(s)
- Yanqun Zhao
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qiang Meng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yujie Lai
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Li Wang
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dan Zhou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chao Dou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yijun Gu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Pudong District, Shanghai, China
| | - Chunlai Nie
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuquan Wei
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Pathophysiology, the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
50
|
Lv J, Mohsin M, Lei S, Srinivas S, Wiqar RT, Lin J, Feng Y. Discovery of a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from healthy broilers in Faisalabad, Pakistan. Virulence 2018; 9:994-999. [PMID: 29667494 PMCID: PMC6037438 DOI: 10.1080/21505594.2018.1462060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jiali Lv
- a School of Food and Biological Engineering, Shaanxi University of Science and Technology , Xi'an , Shaanxi , China
| | - Mashkoor Mohsin
- b Institute of Microbiology, University of Agriculture , Faisalabad , Pakistan
| | - Sheng Lei
- a School of Food and Biological Engineering, Shaanxi University of Science and Technology , Xi'an , Shaanxi , China.,c Department of Medical Microbiology and Parasitology , Zhejiang University School of Medicine , Hangzhou , Zhejiang , China
| | | | - Raja Talish Wiqar
- b Institute of Microbiology, University of Agriculture , Faisalabad , Pakistan
| | - Jingxia Lin
- c Department of Medical Microbiology and Parasitology , Zhejiang University School of Medicine , Hangzhou , Zhejiang , China
| | - Youjun Feng
- a School of Food and Biological Engineering, Shaanxi University of Science and Technology , Xi'an , Shaanxi , China.,c Department of Medical Microbiology and Parasitology , Zhejiang University School of Medicine , Hangzhou , Zhejiang , China.,e College of Animal Sciences, Zhejiang University , Hangzhou , Zhejiang , China
| |
Collapse
|