1
|
Abdullahi A, Wong TW, Ng SS. Understanding the mechanisms of disease modifying effects of aerobic exercise in people with Alzheimer's disease. Ageing Res Rev 2024; 94:102202. [PMID: 38272266 DOI: 10.1016/j.arr.2024.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Alzheimer's disease (AD) is a very disabling disease. Pathologically, it is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain that results in neurodegeneration. Its clinical manifestations include progressive memory impairment, language decline and difficulty in carrying out activities of daily living (ADL). The disease is managed using interventions such as pharmacological interventions and aerobic exercise. Use of aerobic exercise has shown some promises in reducing the risk of developing AD, and improving cognitive function and the ability to carry out both basic and instrumental ADL. Although, the mechanisms through which aerobic exercise improves AD are poorly understood, improvement in vascular function, brain glucose metabolism and cardiorespiratory fitness, increase in antioxidant capacity and haemoglobin level, amelioration of immune-related and inflammatory responses, modulation of concentration of circulating Neurotrophins and peptides and decrease in concentration of tau protein and cortisol level among others seem to be the possible mechanisms. Therefore, understanding these mechanisms is important to help characterize the dose and the nature of the aerobic exercise to be given. In addition, they may also help in finding ways to optimize other interventions such as the pharmacological interventions. However, more quality studies are needed to verify the mechanisms.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Thomson Wl Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
2
|
Alibayov B, Scasny A, Vidal AGJ, Murin L, Wong S, Edwards KS, Eichembaun Z, Punshon T, Jackson BP, Hopp MT, McDaniel LS, Akerley BJ, Imhof D, Vidal JE. Oxidation of hemoglobin in the lung parenchyma facilitates the differentiation of pneumococci into encapsulated bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567109. [PMID: 38014009 PMCID: PMC10680745 DOI: 10.1101/2023.11.14.567109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pneumococcal pneumonia causes cytotoxicity in the lung parenchyma but the underlying mechanism involves multiple factors contributing to cell death. Here, we discovered that hydrogen peroxide produced by Streptococcus pneumoniae (Spn-H 2 O 2 ) plays a pivotal role by oxidizing hemoglobin, leading to its polymerization and subsequent release of labile heme. At physiologically relevant levels, heme selected a population of encapsulated pneumococci. In the absence of capsule and Spn-H 2 O 2 , host intracellular heme exhibited toxicity towards pneumococci, thus acting as an antibacterial mechanism. Further investigation revealed that heme-mediated toxicity required the ABC transporter GlnPQ. In vivo experiments demonstrated that pneumococci release H 2 O 2 to cause cytotoxicity in bronchi and alveoli through the non-proteolytic degradation of intracellular proteins such as actin, tubulin and GAPDH. Overall, our findings uncover a mechanism of lung toxicity mediated by oxidative stress that favor the growth of encapsulated pneumococci suggesting a therapeutic potential by targeting oxidative reactions. Graphical abstract Highlights Oxidation of hemoglobin by Streptococcus pneumoniae facilitates differentiation to encapsulated pneumococci in vivo Differentiated S. pneumoniae produces capsule and hydrogen peroxide (Spn-H 2 O 2 ) as defense mechanism against host heme-mediated toxicity. Spn-H 2 O 2 -induced lung toxicity causes the oxidation and non-proteolytic degradation of intracellular proteins tubulin, actin, and GAPDH. The ABC transporter GlnPQ is a heme-binding complex that makes Spn susceptible to heme toxicity.
Collapse
|
3
|
Yang SS, Simtchouk S, Gibon J, Klegeris A. Regulation of the phagocytic activity of astrocytes by neuroimmune mediators endogenous to the central nervous system. PLoS One 2023; 18:e0289169. [PMID: 37498903 PMCID: PMC10374099 DOI: 10.1371/journal.pone.0289169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The phagocytic activity of glial cells is essential for maintaining normal brain activity, and its dysfunction may contribute to the central nervous system (CNS) pathologies, including neurodegenerative diseases. Phagocytic activity is one of the well-established neuroimmune functions of microglia. Although emerging evidence indicates that astrocytes can also function as CNS phagocytes in humans and rodents, limited information is available about the molecular mechanism regulating this function. To address this knowledge gap, we studied modulation of the phagocytic activity of human U118 MG astrocytic cells and murine primary astrocytes by four CNS inflammatory mediators and bacterial endotoxin lipopolysaccharide (LPS). LPS and cytochrome c (CytC) upregulated, while interferon (IFN)-γ downregulated, phagocytosis of latex beads by human astrocytic cells and phagocytosis of synaptosomes by murine primary astrocytes. Interleukin (IL)-1β and tumor necrosis factor (TNF)-α had no effect on the phagocytic activity of human astrocytic cells but upregulated this function in murine astrocytes. Varying effects of combinations of the above inflammatory mediators were observed in these two cell types. LPS- and CytC-induced phagocytic activity of human astrocytic cells was partially mediated by activation of toll-like receptor 4 (TLR4). By monitoring other functions of astrocytes, we concluded there were no correlations between the effects of the mediators studied on astrocyte phagocytic activity and their secretion of cytokines, cytotoxins, or glutamate. Our study identified four candidate CNS regulators of astrocyte phagocytic activity. Future investigation of molecular mechanisms behind this regulation could identify novel therapeutic targets allowing modulation of this astrocyte-mediated clearance mechanism in CNS pathologies.
Collapse
Affiliation(s)
- Sijie Shirley Yang
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Svetlana Simtchouk
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
5
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
6
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
7
|
Hanna DA, Moore CM, Liu L, Yuan X, Dominic IM, Fleischhacker AS, Hamza I, Ragsdale SW, Reddi AR. Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. J Biol Chem 2021; 298:101549. [PMID: 34973332 PMCID: PMC8808069 DOI: 10.1016/j.jbc.2021.101549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Heme oxygenases (HOs) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms of HO: the inducible HO-1, which is upregulated in response to excess heme and other stressors, and the constitutive HO-2. Much is known about the regulation and physiological function of HO-1, whereas comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or overexpressed HO-2, as well as various HO-2 mutant alleles, we found that endogenous heme is too limiting a substrate to observe HO-2-dependent heme degradation. Rather, we discovered a novel role for HO-2 in the binding and buffering of heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor that controls heme bioavailability. When heme is in excess, HO-1 is induced, and both HO-2 and HO-1 can provide protection from heme toxicity via enzymatic degradation. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with labile heme being oxidized, thereby providing new insights into heme trafficking and signaling.
Collapse
Affiliation(s)
- David A. Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iramofu M. Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA,For correspondence: Amit R. Reddi
| |
Collapse
|
8
|
Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg? Antioxidants (Basel) 2021; 10:antiox10091479. [PMID: 34573112 PMCID: PMC8468973 DOI: 10.3390/antiox10091479] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of Alzheimer's disease involves β amyloid (Aβ) accumulation known to induce synaptic dysfunction and neurodegeneration. The brain's vulnerability to oxidative stress (OS) is considered a crucial detrimental factor in Alzheimer's disease. OS and Aβ are linked to each other because Aβ induces OS, and OS increases the Aβ deposition. Thus, the answer to the question "which comes first: the chicken or the egg?" remains extremely difficult. In any case, the evidence for the primary occurrence of oxidative stress in AD is attractive. Thus, evidence indicates that a long period of gradual oxidative damage accumulation precedes and results in the appearance of clinical and pathological AD symptoms, including Aβ deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. Moreover, oxidative stress plays a crucial role in the pathogenesis of many risk factors for AD. Alzheimer's disease begins many years before its symptoms, and antioxidant treatment can be an important therapeutic target for attacking the disease.
Collapse
|
9
|
Dienel A, Veettil RA, Matsumura K, Savarraj JPJ, Choi HA, Kumar T P, Aronowski J, Dash P, Blackburn SL, McBride DW. α 7-Acetylcholine Receptor Signaling Reduces Neuroinflammation After Subarachnoid Hemorrhage in Mice. Neurotherapeutics 2021; 18:1891-1904. [PMID: 33970466 PMCID: PMC8609090 DOI: 10.1007/s13311-021-01052-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) causes a robust inflammatory response which leads worse brain injury and poor outcomes. We investigated if stimulation of nicotinic acetylcholine α7 receptors (α7-AChR) (receptors shown to have anti-inflammatory effects) would reduce inflammation and improve outcomes. To investigate the level of peripheral inflammation after aSAH, inflammatory markers were measured in plasma samples collected in a cohort of aSAH patients. To study the effect of α7-AChR stimulation, SAH was induced in adult mice which were then treated with a α7-AChR agonist, galantamine, or vehicle. A battery of motor and cognitive tests were performed 24 h after subarachnoid hemorrhage. Mice were euthanized and tissue collected for analysis of markers of inflammation or activation of α7-AChR-mediated transduction cascades. A separate cohort of mice was allowed to survive for 28 days to assess long-term neurological deficits and histological outcome. Microglia cell culture subjected to hemoglobin toxicity was used to assess the effects of α7-AChR agonism. Analysis of eighty-two patient plasma samples confirmed enhanced systemic inflammation after aSAH. α7-AChR agonism reduced neuroinflammation at 24 h after SAH in male and female mice, which was associated with improved outcomes. This coincided with JAK2/STAT3 and IRAK-M activity modulations and a robust improvement in neurological/cognitive status that was effectively reversed by interfering with various components of these signaling pathways. Pharmacologic inhibition partially reversed the α7-AChR agonist's benefits, supporting α7-AChR as a target of the agonist's therapeutic effect. The cell culture experiment showed that α7-AChR agonism is directly beneficial to microglia. Our results demonstrate that activation of α7-AChR represents an attractive target for treatment of SAH. Our findings suggest that α7-AChR agonists, and specifically galantamine, might provide therapeutic benefit to aSAH patients.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Remya A Veettil
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Kanako Matsumura
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Jude P J Savarraj
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - H Alex Choi
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Peeyush Kumar T
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Pramod Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Spiros L Blackburn
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Devin W McBride
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Huntington TE, Srinivasan R. Adeno-Associated Virus Expression of α-Synuclein as a Tool to Model Parkinson's Disease: Current Understanding and Knowledge Gaps. Aging Dis 2021; 12:1120-1137. [PMID: 34221553 PMCID: PMC8219504 DOI: 10.14336/ad.2021.0517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in the aging population and is characterized by a constellation of motor and non-motor symptoms. The abnormal aggregation and spread of alpha-synuclein (α-syn) is thought to underlie the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc), leading to the development of PD. It is in this context that the use of adeno-associated viruses (AAVs) to express a-syn in the rodent midbrain has become a popular tool to model SNc DA neuron loss during PD. In this review, we summarize results from two decades of experiments using AAV-mediated a-syn expression in rodents to model PD. Specifically, we outline aspects of AAV vectors that are particularly relevant to modeling a-syn dysfunction in rodent models of PD such as changes in striatal neurochemistry, a-syn biochemistry, and PD-related behaviors resulting from AAV-mediated a-syn expression in the midbrain. Finally, we discuss the emerging role of astrocytes in propagating a-syn pathology, and point to future directions for employing AAVs as a tool to better understand how astrocytes contribute to a-syn pathology during the development of PD. We envision that lessons learned from two decades of utilizing AAVs to express a-syn in the rodent brain will enable us to develop an optimized set of parameters for gaining a better understanding of how a-syn leads to the development of PD.
Collapse
Affiliation(s)
- Taylor E Huntington
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX 77843, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX 77843, USA
| |
Collapse
|
11
|
Vidal C, Zhang L. An Analysis of the Neurological and Molecular Alterations Underlying the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10030546. [PMID: 33806317 PMCID: PMC7998384 DOI: 10.3390/cells10030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid beta (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Unfortunately, despite decades of studies being performed on these histological alterations, there is no effective treatment or cure for AD. Identifying the molecular characteristics of the disease is imperative to understanding the pathogenesis of AD. Furthermore, uncovering the key causative alterations of AD can be valuable in developing models for AD treatment. Several alterations have been implicated in driving this disease, including blood–brain barrier dysfunction, hypoxia, mitochondrial dysfunction, oxidative stress, glucose hypometabolism, and altered heme homeostasis. Although these alterations have all been associated with the progression of AD, the root cause of AD has not been identified. Intriguingly, recent studies have pinpointed dysfunctional heme metabolism as a culprit of the development of AD. Heme has been shown to be central in neuronal function, mitochondrial respiration, and oxidative stress. Therefore, dysregulation of heme homeostasis may play a pivotal role in the manifestation of AD and its various alterations. This review will discuss the most common neurological and molecular alterations associated with AD and point out the critical role heme plays in the development of this disease.
Collapse
Affiliation(s)
| | - Li Zhang
- Correspondence: ; Tel.: +1-972-883-5757
| |
Collapse
|
12
|
Ioghen O, Chițoiu L, Gherghiceanu M, Ceafalan LC, Hinescu ME. CD36 - A novel molecular target in the neurovascular unit. Eur J Neurosci 2021; 53:2500-2510. [PMID: 33560561 PMCID: PMC8247892 DOI: 10.1111/ejn.15147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
CD36 is an integral membrane protein primarily known for its function as a fatty acid transporter, yet also playing other biological roles from lipid metabolism to inflammation modulation. These pleiotropic effects are explained by the existence of multiple different ligands and the extensive distribution in numerous cell types. Moreover, the receptor is related to various pathologies and it may prove to be a good target for prospective therapeutic strategies. In the neurovascular unit (NVU), CD36 is expressed in cells like microglia, microvascular endothelial cells, astrocytes and neurons. In the normal brain, CD36 was proven to be involved in phagocytosis of apoptotic cells, oro‐sensory detection of dietary lipids, and fatty acid transport across the blood brain barrier (BBB). CD36 was also acknowledged as a potentially important player in central nervous system (CNS) disorders, such as Alzheimer Disease‐associated vascular dysfunction and oxidative stress and the neuroinflammatory response in stroke. Despite continuous efforts, the therapeutic arsenal for such diseases is still scarce and there is an increasing interest in discovering new molecular targets for more specific therapeutic approaches. In this review, we summarize the role of CD36 in the normal function of the NVU and in several CNS disorders, focusing on the dysregulation of the NVU and the potential therapeutic modulation.
Collapse
Affiliation(s)
- Octavian Ioghen
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Leona Chițoiu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania.,Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania.,Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| |
Collapse
|
13
|
Kim JW, Byun MS, Yi D, Lee JH, Jeon SY, Ko K, Joung H, Jung G, Lee JY, Sohn CH, Lee YS, Kim YK, Lee DY. Blood Hemoglobin, in-vivo Alzheimer Pathologies, and Cognitive Impairment: A Cross-Sectional Study. Front Aging Neurosci 2021; 13:625511. [PMID: 33716712 PMCID: PMC7943867 DOI: 10.3389/fnagi.2021.625511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Despite known associations between low blood hemoglobin level and Alzheimer's disease (AD) or cognitive impairment, the underlying neuropathological links are poorly understood. We aimed to examine the relationships of blood hemoglobin levels with in vivo AD pathologies (i.e., cerebral beta-amyloid [Aβ] deposition, tau deposition, and AD-signature degeneration) and white matter hyperintensities (WMHs), which are a measure of cerebrovascular injury. We also investigated the association between hemoglobin level and cognitive performance, and then assessed whether such an association is mediated by brain pathologies. Methods: A total of 428 non-demented older adults underwent comprehensive clinical assessments, hemoglobin level measurement, and multimodal brain imaging, including Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, fluorodeoxyglucose (FDG)-PET, and magnetic resonance imaging. Episodic memory score and global cognition scores were also measured. Results: A lower hemoglobin level was significantly associated with reduced AD-signature cerebral glucose metabolism (AD-CM), but not Aβ deposition, tau deposition, or WMH volume. A lower hemoglobin level was also significantly associated with poorer episodic memory and global cognition scores, but such associations disappeared when AD-CM was controlled as a covariate, indicating that AD-CM has a moderating effect. Conclusion: The present findings suggest that low blood hemoglobin in older adults is associated with cognitive decline via reduced brain metabolism, which seems to be independent of those aspects of AD-specific protein pathologies and cerebrovascular injury that are reflected in PET and MRI measures.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea.,Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, South Korea
| | - Jun Ho Lee
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, South Korea
| | - So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, South Korea
| | - Kang Ko
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, South Korea
| | - Haejung Joung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Agyemang AA, Kvist SV, Brinkman N, Gentinetta T, Illa M, Ortenlöf N, Holmqvist B, Ley D, Gram M. Cell-free oxidized hemoglobin drives reactive oxygen species production and pro-inflammation in an immature primary rat mixed glial cell culture. J Neuroinflammation 2021; 18:42. [PMID: 33573677 PMCID: PMC7879625 DOI: 10.1186/s12974-020-02052-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with deposition of redox active cell-free hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF), in the cerebrum and cerebellum. In a recent study, using a preterm rabbit pup model of IVH, intraventricularly administered haptoglobin (Hp), a cell-free Hb scavenger, partially reversed the damaging effects observed following IVH. Together, this suggests that cell-free Hb is central in the pathophysiology of the injury to the immature brain following GM-IVH. An increased understanding of the causal pathways and metabolites involved in eliciting the damaging response following hemorrhage is essential for the continued development and implementation of neuroprotective treatments of GM-IVH in preterm infant. Methods We exposed immature primary rat mixed glial cells to hemorrhagic CSF obtained from preterm human infants with IVH (containing a mixture of Hb-metabolites) or to a range of pure Hb-metabolites, incl. oxidized Hb (mainly metHb with iron in Fe3+), oxyHb (mainly Fe2+), or low equivalents of heme, with or without co-administration with human Hp (a mixture of isotype 2-2/2-1). Following exposure, cellular response, reactive oxygen species (ROS) generation, secretion and expression of pro-inflammatory cytokines and oxidative markers were evaluated. Results Exposure of the glial cells to hemorrhagic CSF as well as oxidized Hb, but not oxyHb, resulted in a significantly increased rate of ROS production that positively correlated with the rate of production of pro-inflammatory and oxidative markers. Congruently, exposure to oxidized Hb caused a disintegration of the polygonal cytoskeletal structure of the glial cells in addition to upregulation of F-actin proteins in microglial cells. Co-administration of Hp partially reversed the damaging response of hemorrhagic CSF and oxidized Hb. Conclusion Exposure of mixed glial cells to oxidized Hb initiates a pro-inflammatory and oxidative response with cytoskeletal disintegration. Early administration of Hp, aiming to minimize the spontaneous autoxidation of cell-free oxyHb and liberation of heme, may provide a therapeutic benefit in preterm infant with GM-IVH.
Collapse
Affiliation(s)
| | - Suvi Vallius Kvist
- Lund University, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | | | | | - Miriam Illa
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Universitat de Barcelona, Barcelona, Spain
| | - Niklas Ortenlöf
- Lund University, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | | | - David Ley
- Lund University, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | - Magnus Gram
- Lund University, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden.
| |
Collapse
|
15
|
Qi Y, Cheng X, Gong G, Yan T, Du Y, Wu B, Bi K, Jia Y. Synergistic neuroprotective effect of schisandrin and nootkatone on regulating inflammation, apoptosis and autophagy via the PI3K/AKT pathway. Food Funct 2021; 11:2427-2438. [PMID: 32129354 DOI: 10.1039/c9fo02927c] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that seriously threatens elderly health. Schisandrin (SCH) and nootkatone (NKT) are two core components derived from Alpinia oxyphylla-Schisandra chinensis herb pair (ASHP), a traditional Chinese medicine formulation. Previous studies demonstrated that the combination of NKT and SCH exerted a neuroprotective effect in AD mouse models. The present study was undertaken to investigate whether there was a synergistic effect between NKT and SCH and the possible mechanism in Aβ1-42 induced PC12 cells. SCH (50 μM) and NKT (10 μM) had the most notable inhibitory effect on the level of Aβ secreted by cells. Treatment with NKT + SCH activated the PI3K/AKT/Gsk-3β/mTOR pathway. Inflammation related proteins such as NF-κB, IKK, IL-1β, IL-6 and TNF-α were decreased. The levels of cleaved-Caspase3 and LC3-II were reduced, indicating that apoptosis and autophagy were inhibited. These results revealed that NKT + SCH exerted a neuroprotective effect via the PI3K/AKT pathway, inhibiting inflammation, apoptosis and autophagy.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shengyang 110016, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
16
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
17
|
Mestre-Fos S, Ito C, Moore CM, Reddi AR, Williams LD. Human ribosomal G-quadruplexes regulate heme bioavailability. J Biol Chem 2020; 295:14855-14865. [PMID: 32817343 PMCID: PMC7606673 DOI: 10.1074/jbc.ra120.014332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
The in vitro formation of stable G-quadruplexes (G4s) in human rRNA was recently reported. However, their formation in cells and their cellular roles were not resolved. Here, by taking a chemical biology approach that integrates results from immunofluorescence, G4 ligands, heme-affinity reagents, and a genetically encoded fluorescent heme sensor, we report that human ribosomes can form G4s in vivo that regulate heme bioavailability. Immunofluorescence experiments indicate that the vast majority of extra-nuclear G4s are associated with rRNA. Moreover, titrating human cells with a G4 ligand alters the ability of ribosomes to bind heme and disrupts cellular heme bioavailability as measured by a genetically encoded fluorescent heme sensor. Overall, these results suggest that ribosomes play a role in regulating heme homeostasis.
Collapse
Affiliation(s)
- Santi Mestre-Fos
- Center for the Origin of Life, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chieri Ito
- Center for the Origin of Life, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Courtney M Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Loren Dean Williams
- Center for the Origin of Life, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
18
|
Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer's disease pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:72. [PMID: 32517787 PMCID: PMC7285604 DOI: 10.1186/s13195-020-00634-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Background Heme and iron homeostasis is perturbed in Alzheimer’s disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts. Methods Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures. Results Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit β (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment. Conclusions In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.
Collapse
|
19
|
Kery R, Chen APF, Kirschen GW. Genetic targeting of astrocytes to combat neurodegenerative disease. Neural Regen Res 2020; 15:199-211. [PMID: 31552885 PMCID: PMC6905329 DOI: 10.4103/1673-5374.265541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, glial cells that interact extensively with neurons and other support cells throughout the central nervous system, have recently come under the spotlight for their potential contribution to, or potential regenerative role in a host of neurodegenerative disorders. It is becoming increasingly clear that astrocytes, in concert with microglial cells, activate intrinsic immunological pathways in the setting of neurodegenerative injury, although the direct and indirect consequences of such activation are still largely unknown. We review the current literature on the astrocyte’s role in several neurodegenerative diseases, as well as highlighting recent advances in genetic manipulation of astrocytes that may prove critical to modulating their response to neurological injury, potentially combatting neurodegenerative damage.
Collapse
Affiliation(s)
- Rachel Kery
- Medical Scientist Training Program (MSTP), Stony Brook Medicine; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Allen P F Chen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
20
|
Altinoz MA, Guloksuz S, Schmidt-Kastner R, Kenis G, Ince B, Rutten BPF. Involvement of hemoglobins in the pathophysiology of Alzheimer's disease. Exp Gerontol 2019; 126:110680. [PMID: 31382012 DOI: 10.1016/j.exger.2019.110680] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Hemoglobins (Hbs) are heme-containing proteins binding oxygen, carbon monoxide, and nitric oxide. While erythrocytes are the most well-known location of Hbs, Hbs also exist in neurons, glia and oligodendroglia and they are primarily localized in the inner mitochondrial membrane of neurons with likely roles in cellular respiration and buffering protons. Recently, studies have suggested links between hypoxia and neurodegenerative disorders such as Alzheimer Disease (AD) and furthermore suggested involvement of Hbs in the pathogenesis of AD. While cellular immunohistochemical studies on AD brains have observed reduced levels of Hb in the cytoplasm of pre-tangle and tangle-bearing neurons, other studies on homogenates of AD brain samples observed increased Hb levels. This potential discrepancy may result from differential presence and function of intracellular versus extracellular Hbs. Intracellular Hbs may protect neurons against hypoxia and hyperoxia. On the other hand, extracellular free Hb and its degradation products may trigger inflammatory immune and oxidative reactions against neural macromolecules and/or damage the blood-brain barrier. Therefore, biological processes leading to reduction of Hb transcription (including clinically silent Hb mutations) may influence intra-erythrocytic and neural Hbs, and reduce the transport of oxygen, carbon monoxide and nitric oxide which may be involved in the (patho)physiology of neurodegenerative disorders such as AD. Agents such as erythropoietin, which stimulate both erythropoiesis, reduce eryptosis and induce intracellular neural Hbs may exert multiple beneficial effects on the onset and course of AD. Thus, evidence accumulates for a role of Hbs in the central nervous system while Hbs deserve more attention as possible candidate molecules involved in AD.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Sinan Guloksuz
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rainald Schmidt-Kastner
- Integrated Medical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University (FAU), Boca Raton, FL, USA
| | - Gunter Kenis
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bahri Ince
- Department of Psychiatry, Mazhar Osman Bakirkoy Mental Diseases Research and Education Hospital, Istanbul, Turkey
| | - Bart P F Rutten
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
21
|
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med 2019; 133:88-100. [PMID: 30092350 PMCID: PMC6363905 DOI: 10.1016/j.freeradbiomed.2018.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023]
Abstract
Heme is an essential cofactor and signaling molecule required for virtually all aerobic life. However, excess heme is cytotoxic. Therefore, heme must be safely transported and trafficked from the site of synthesis in the mitochondria or uptake at the cell surface, to hemoproteins in most subcellular compartments. While heme synthesis and degradation are relatively well characterized, little is known about how heme is trafficked and transported throughout the cell. Herein, we review eukaryotic heme transport, trafficking, and mobilization, with a focus on factors that regulate bioavailable heme. We also highlight the role of gasotransmitters and small molecules in heme mobilization and bioavailability, and heme trafficking at the host-pathogen interface.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Courtney M Moore
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - David A Hanna
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Amit R Reddi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Parker Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
22
|
DeGregorio-Rocasolano N, Martí-Sistac O, Gasull T. Deciphering the Iron Side of Stroke: Neurodegeneration at the Crossroads Between Iron Dyshomeostasis, Excitotoxicity, and Ferroptosis. Front Neurosci 2019; 13:85. [PMID: 30837827 PMCID: PMC6389709 DOI: 10.3389/fnins.2019.00085] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
In general, iron represents a double-edged sword in metabolism in most tissues, especially in the brain. Although the high metabolic demands of brain cells require iron as a redox-active metal for ATP-producing enzymes, the brain is highly vulnerable to the devastating consequences of excessive iron-induced oxidative stress and, as recently found, to ferroptosis as well. The blood-brain barrier (BBB) protects the brain from fluctuations in systemic iron. Under pathological conditions, especially in acute brain pathologies such as stroke, the BBB is disrupted, and iron pools from the blood gain sudden access to the brain parenchyma, which is crucial in mediating stroke-induced neurodegeneration. Each brain cell type reacts with changes in their expression of proteins involved in iron uptake, efflux, storage, and mobilization to preserve its internal iron homeostasis, with specific organelles such as mitochondria showing specialized responses. However, during ischemia, neurons are challenged with excess extracellular glutamate in the presence of high levels of extracellular iron; this causes glutamate receptor overactivation that boosts neuronal iron uptake and a subsequent overproduction of membrane peroxides. This glutamate-driven neuronal death can be attenuated by iron-chelating compounds or free radical scavenger molecules. Moreover, vascular wall rupture in hemorrhagic stroke results in the accumulation and lysis of iron-rich red blood cells at the brain parenchyma and the subsequent presence of hemoglobin and heme iron at the extracellular milieu, thereby contributing to iron-induced lipid peroxidation and cell death. This review summarizes recent progresses made in understanding the ferroptosis component underlying both ischemic and hemorrhagic stroke subtypes.
Collapse
Affiliation(s)
- Núria DeGregorio-Rocasolano
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Octavi Martí-Sistac
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
23
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
24
|
He X, Liu Y, Lin X, Yuan F, Long D, Zhang Z, Wang Y, Xuan A, Yang GY. Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice. J Neuroinflammation 2018; 15:268. [PMID: 30227858 PMCID: PMC6145326 DOI: 10.1186/s12974-018-1291-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background Netrin-1 functions largely via combined receptors and downstream effectors. Evidence has shown that astrocytes express netrin-1 receptors, including DCC and UNC5H2. However, whether netrin-1 influences the function of astrocytes was previously unknown. Methods Lipopolysaccharide was used to stimulate the primary cultured astrocytes; interleukin release was used to track astrocyte activation. In vivo, shRNA and netrin-1 protein were injected in the mouse brain. Infarct volume, astrocyte activation, and interleukin release were used to observe the function of netrin-1 in neuroinflammation and brain injury after middle cerebral artery occlusion. Results Our results demonstrated that netrin-1 reduced lipopolysaccharide-induced interleukin-1β and interleukin-12β release in cultured astrocytes, and blockade of the UNC5H2 receptor with an antibody reversed this effect. Additionally, netrin-1 increased p-AKT and PPAR-γ expression in primary cultured astrocytes. In vivo studies showed that knockdown of netrin-1 increased astrocyte activation in the mouse brain after middle cerebral artery occlusion (p < 0.05). Moreover, injection of netrin-1 attenuated GFAP expression (netrin-1 0.27 ± 0.06 vs. BSA 0.62 ± 0.04, p < 0.001) and the release of interleukins and reduced infarct volume after brain ischemia (netrin-1 0.27 ± 0.06 vs. BSA 0.62 ± 0.04 mm3, p < 0.05). Conclusion Our results indicate that netrin-1 is an important molecule in regulating astrocyte activation and neuroinflammation in cerebral ischemia and provides a potential target for ischemic stroke therapy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1291-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaosong He
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaohong Lin
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Falei Yuan
- Hailisheng Biomarine Research Institute, Zhoushan, China
| | - Dahong Long
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China. .,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China. .,Department of Anatomy, Guangzhou Medical college, Guangzhou, 511546, China.
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Med-X Research Institute and School of Biomedical Engineering, 1954 Hua-shan Road, Shanghai, 200030, China.
| |
Collapse
|