1
|
Loomis CL, Im SC, Scott EE. Adrenodoxin allosterically alters human cytochrome P450 11B enzymes to accelerate substrate binding and decelerate release. RSC Chem Biol 2024:d4cb00015c. [PMID: 39129792 PMCID: PMC11310744 DOI: 10.1039/d4cb00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Two human mitochondrial membrane CYP11B enzymes play a pivotal role in steroidogenesis. CYP11B1 generates the major glucocorticoid cortisol, while CYP11B2 catalysis yields the primary mineralocorticoid aldosterone. Catalysis by both requires electron delivery by a soluble iron-sulfur adrenodoxin redox partner. However recent studies have shown that adrenodoxin/CYP11B interaction alone allosterically increases substrate and inhibitor affinity as exhibited by decreased dissociation constant (K d) values. The current study moves beyond such equilibrium studies, by defining adrenodoxin effects on the rates of P450 ligand binding and release separately. Stopped-flow data clearly demonstrate that adrenodoxin interaction with the P450 proximal surfaces increases ligand binding in both P450 CYP11B active sites by increasing the on rate constant and decreasing the off rate constant. As substrate entry and exit from the sequestered P450 active site requires conformational changes on the distal side of the P450 enzyme, a likely explanation is that adrenodoxin binding allosterically modulates CYP11B conformational changes. The 93% identical CYP11B enzymes can bind and hydroxylate each other's native substrates differing only by a hydroxyl. However, CYP11B1 exhibits monophasic substrate binding and CYP11B2 biphasic substrate binding, even when the substrates are swapped. This indicates that small differences in amino acid sequence between human CYP11B1 and CYP11B2 enzymes are more functionally important in ligand binding and could suggest avenues for more selective inhibition of these drug targets. Both protein/protein interactions and protein/substrate interactions are most likely to act by modulating CYP11B conformational dynamics.
Collapse
Affiliation(s)
- Cara L Loomis
- Department of Biological Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan Ann Arbor MI USA
- Ann Arbor Veterans Affairs Medical Center Ann Arbor MI USA
| | - Emily E Scott
- Department of Biological Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmacology, University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
2
|
Jay N, McGlohon JE, Estrada DF. Interactions of human mitochondrial Ferredoxin 1 (Adrenodoxin) by NMR; modulation by cytochrome P450 substrate and by truncation of the C-terminal tail. J Inorg Biochem 2023; 249:112370. [PMID: 37734220 PMCID: PMC10798138 DOI: 10.1016/j.jinorgbio.2023.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Human Ferredoxin 1, also referred to as Adrenodoxin (Adx), is the sole electron carrier supporting the function of all seven mitochondrial cytochrome P450 (CYP) enzymes. Adx utilizes conserved negatively charged residues along its α-helix3 to interact with either the proximal surface of CYP enzymes or the binding surface of Adrendodoxin Reductase (AdR). However, in the oxidized state, Adx assumes a monomer-homodimer equilibrium that requires the presence of its unstructured C-terminal tail. Crystallographic structures of full-length human Adx dimers indicate that part of the binding surface necessary for its interactions with CYPs or with AdR is partially occluded by the dimer interface. In this study, protein NMR spectroscopy was used to interrogate the interactions between full-length (2-124) or truncated monomeric (2-108) human Adx and human CYP24A1 (with and without its vitamin-D substrate) as well as interactions with AdR. Here, monomeric Adx induced a similar pattern of peak broadening as that induced by addition of CYP24A1 substrate, consistent with a 1:1 Adx:CYP interaction as the functional complex. Additionally, removal of the C-terminal tail appears to enhance the interaction with AdR, despite removal of some of the AdR contacts in the tail region. This finding was also supported by an NMR competition assay. These findings suggest that the Adx dimers do not undergo meaningful interactions with either CYP or AdR, but may instead be responsible for regulating access to monomeric Adx. These conclusions are discussed in the context of a revised model of the Adx electron shuttle mechanism.
Collapse
Affiliation(s)
- Natalie Jay
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| | - Janie E McGlohon
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
3
|
Dic-Ijiewere EO, Osadolor HB. CYP24A1 and CYP3A4 Levels, Renal, Hepatic Changes, and Incidence of Oxidative Stress in Tramadol-Alcohol Concomitant Misuse. Cureus 2023; 15:e36877. [PMID: 37123794 PMCID: PMC10147408 DOI: 10.7759/cureus.36877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Long-term population-based research has demonstrated a link between heavy drinking and the prevalence of kidney disorders; similarly, alcohol abuse has long been recognized as one of the main causes of liver diseases. A recent trend of concomitant use of the opioid analgesic Tramadol and alcohol among young males in sub-Saharan Africa has emerged. Aim and objectives This study's primary aim was to evaluate the incidence of concomitant use of alcohol and Tramadol among adult males, and observe the role of cytochrome p450 3A4 and CYP24A1 proteins and some oxidative stress indicators such as Malondialdehyde, lactate dehydrogenase, among study participants. The secondary aim was to evaluate the effect of alcohol and Tramadol concomitant use on Liver and kidney indices. Methods Our study population was male subjects with a history of Alcohol and Tramadol concomitant use. Liver enzymes, renal indices, oxidative stress markers, and CYP3A4 and CYP24A1 were determined from the serum of test and control participants. IBM Statistical Package for Social Sciences (SPSS) Statistics (version 21.0) was used to analyze the data obtained. Result One hundred and forty-two male subjects were included in this study. Eighty two (82) were males who admitted to abuse of Alcohol and Tramadol concomitantly for at least a year. The dose of Tramadol commonly used by Test subjects was 200 mg (43.9% of the test population), Tramadol users in the study population were largely Undergraduates (75.6% of Test participants). Gamma-glutamyl transferase and lactate dehydrogenase were significantly higher in Test subjects consuming Tramadol and alcohol combination (43.13±1.02 and 117.29±2.45, respectively) versus control (24.87±0.82; p=0.00 and 101.93±1.25; p=0.00). There was a significant decrease in serum bicarbonate levels of Test subjects (16.19±0.53) versus control (22.60±0.68; p=0.000). Cytochrome P450 24A1, was significantly lower in Test subjects (subjects consuming Tramadol and alcohol combination) (0.90±0.06; p=0.01), and significantly threefold higher in subjects with acute myeloid leukemia (AML) (5.16±0.5; p=0.00), when compared with values of non-drug/alcohol users that served as normal control (1.27±0.07). Conclusion The menace of Tramadol and alcohol concomitant abuse has taken a worrisome dimension in sub-Saharan Africa. In this study 77.4% of participants reported euphoria as reason for combining Alcohol and Tramadol, 6.5% claimed it was for faster pain relief and enhanced sexual performance or prolong penile erection was the response of 58.1% of the test participants. Findings of reduced CYP3A4 with Alcohol and Tramadol concomitant use could be associated with delayed drug inactivation and increased drug euphoric action.
Collapse
|
4
|
Giang PD, Churchman LR, Stok JE, Bell SG, De Voss JJ. Cymredoxin, a [2Fe-2S] ferredoxin, supports catalytic activity of the p-cymene oxidising P450 enzyme CYP108N12. Arch Biochem Biophys 2023; 737:109549. [PMID: 36801262 DOI: 10.1016/j.abb.2023.109549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Rhodococcus globerulus is a metabolically active organism that has been shown to utilise eucalypt oil as its sole source of carbon and energy. This oil includes 1,8-cineole, p-cymene and limonene. Two identified and characterised cytochromes P450 (P450s) from this organism initiate the biodegradation of the monoterpenes 1,8-cineole (CYP176A1) and p-cymene (CYP108N12). Extensive characterisation has been completed for CYP176A1 and it has been successfully reconstituted with its immediate redox partner, cindoxin, and E. coli flavodoxin reductase. Two putative redox partner genes are encoded in the same operon as CYP108N12 and here the isolation, expression, purification, and characterisation of its specific [2Fe-2S] ferredoxin redox partner, cymredoxin is presented. Reconstitution of CYP108N12 with cymredoxin in place of putidaredoxin, a [2Fe-2S] redox partner of another P450, improves both the rate of electron transfer (from 13 ± 2 to 70 ± 1 μM NADH/min/μM CYP108N12) and the efficiency of NADH utilisation (the so-called coupling efficiency increases from 13% to 90%). Cymredoxin improves the catalytic ability of CYP108N12 in vitro. Aldehyde oxidation products of the previously identified substrates p-cymene (4-isopropylbenzaldehyde) and limonene (perillaldehyde) were observed in addition to major hydroxylation products 4-isopropylbenzyl alcohol and perillyl alcohol respectively. These further oxidation products had not previously been seen with putidaredoxin supported oxidation. Furthermore, when supported by cymredoxin CYP108N12 is able to oxidise a wider range of substrates than previously reported. These include o-xylene, α-terpineol, (-)-carveol and thymol yielding o-tolylmethanol, 7-hydroxyterpineol, (4R)-7-hydroxycarveol and 5-hydroxymethyl-2-isopropylphenol, respectively. Cymredoxin is also capable of supporting CYP108A1 (P450terp) and CYP176A1 activity, allowing them to catalyse the hydroxylation of their native substrates α-terpineol to 7-hydroxyterpineol and 1,8-cineole to 6β-hydroxycineole respectively. These results indicate that cymredoxin not only improves the catalytic capability of CYP108N12 but can also support the activity of other P450s and prove useful for their characterisation.
Collapse
Affiliation(s)
- Peter D Giang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Luke R Churchman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia.
| |
Collapse
|
5
|
Jay N, Duffy SR, Estrada DF. Characterization of a Cleavable Fusion of Human CYP24A1 with Adrenodoxin Reveals the Variable Role of Hydrophobics in Redox Partner Binding. Biochemistry 2022; 61:57-66. [PMID: 34979083 DOI: 10.1021/acs.biochem.1c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The improper maintenance of the bioactivated form of vitamin-D (1α,25(OH)2D) may result in vitamin-D insufficiency and therefore compromise the absorption of dietary calcium. A significant regulator of vitamin-D metabolism is the inactivating function of the mitochondrial enzyme cytochrome P450 24A1 (CYP24A1). In humans, CYP24A1 carries out hydroxylation of carbon-23 (C23) or carbon-24 (C24) of the 1α,25(OH)2D side chain, eventually resulting in production of either an antagonist of the vitamin-D receptor (C23 pathway) or calcitroic acid (C24 pathway). Despite its importance to human health, the human isoform (hCYP24A1) remains largely uncharacterized due in part to the difficulty in producing the enzyme using recombinant means. In this study, we utilize a cleavable fusion with the cognate redox partner, human Adx (hAdx), to stabilize hCYP24A1 during production. The subsequent cleavage and isolation of active hCYP24A1 allowed for an investigation of substrate and analog binding, enzymatic activity, and redox partner recognition. We demonstrate involvement of a nonpolar contact involving Leu-80 of hAdx and a nonconserved proximal surface of hCYP24A1. Interestingly, shortening the length of this residue (L80V) results in enhanced binding between the CYP-Adx complex and 1α,25(OH)2D yet unexpectedly results in decreased catalysis. The same mutation has a negligible effect on rat CYP24A1 (a C24-hydroxylase), indicating the presence of a species-specific requirement that may correlate with differences in regioselectivity of the reaction. Taken together, this work presents an example of production of a challenging human CYP as well as providing details regarding hydrophobic modulation of a CYP-Adx complex that is critical to human vitamin-D metabolism.
Collapse
Affiliation(s)
- Natalie Jay
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| | - Sean R Duffy
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| | - D Fernando Estrada
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
6
|
Glass SM, Webb SN, Guengerich FP. Binding of cytochrome P450 27C1, a retinoid desaturase, to its accessory protein adrenodoxin. Arch Biochem Biophys 2021; 714:109076. [PMID: 34732331 DOI: 10.1016/j.abb.2021.109076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/11/2023]
Abstract
Of the 57 human cytochrome P450 (P450) enzymes, seven are mitochondrial: 11A1, 11B1, 11B2, 24A1, 27A1, 27B1, and 27C1. Mitochondrial P450s utilize an electron transport system with adrenodoxin (Adx) and NADPH-adrenodoxin reductase (AdR). AdR reduces Adx, which then transfers electrons to the P450. The interactions between proteins in the mitochondrial P450 system are largely driven by electrostatic interactions, though the specifics vary depending on the P450. Unlike other mitochondrial P450s, the interaction between P450 27C1, a retinoid 3,4-desaturase expressed in the skin, and Adx remains largely uncharacterized. In this work, we utilized an Alexa Fluor 488 C5 maleimide-labeled Adx to measure binding affinities between Adx and P450 27C1 or AdR. Both proteins bound Adx tightly, with Kd values < 100 nM, and binding affinities decreased with increasing ionic strength, supporting the role of electrostatic interactions in mediating these interactions. Cross-linking mass spectrometry and computational modeling were performed to identify interactions between P450 27C1 and Adx. While the residues of Adx identified in interactions were consistent with studies of other mitochondrial P450s, the binding interface of P450 27C1 was quite large and supported multiple Adx binding positions, including ones outside of the canonical Adx binding site. Additionally, Adx did not appear to be an allosteric effector of P450 27C1 substrate binding, in contrast to some other mitochondrial P450s. Overall, we conclude that P450-Adx interactions are P450-specific.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Stephany N Webb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
7
|
Surface hydrophobics mediate functional dimerization of CYP121A1 of Mycobacterium tuberculosis. Sci Rep 2021; 11:394. [PMID: 33431984 PMCID: PMC7801616 DOI: 10.1038/s41598-020-79545-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb) and remains the leading cause of death by infection world-wide. The Mtb genome encodes a disproportionate number of twenty cytochrome P450 enzymes, of which the essential enzyme cytochrome P450 121A1 (CYP121A1) remains a target of drug design efforts. CYP121A1 mediates a phenol coupling reaction of the tyrosine dipeptide cyclo-L-Tyr-L-Tyr (cYY). In this work, a structure and function investigation of dimerization was performed as an overlooked feature of CYP121A1 function. This investigation showed that CYP121A1 dimers form via intermolecular contacts on the distal surface and are mediated by a network of solvent-exposed hydrophobic residues. Disruption of CYP121A1 dimers by site-directed mutagenesis leads to a partial loss of specificity for cYY, resulting in an approximate 75% decrease in catalysis. 19F labeling and nuclear magnetic resonance of the enzyme FG-loop was also combined with protein docking to develop a working model of a functional CYP121A1 dimer. The results obtained suggest that participation of a homodimer interface in substrate selectivity represents a novel paradigm of substrate binding in CYPs, while also providing important mechanistic insight regarding a relevant drug target in the development of novel anti-tuberculosis agents.
Collapse
|
8
|
Pochapsky TC. A dynamic understanding of cytochrome P450 structure and function through solution NMR. Curr Opin Biotechnol 2020; 69:35-42. [PMID: 33360373 DOI: 10.1016/j.copbio.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Many economically important biosyntheses incorporate regiospecific and stereospecific oxidations at unactivated carbons. Such oxidations are commonly catalyzed by cytochrome P450 monooxygenases, heme-containing enzymes that activate molecular oxygen while selectively binding and orienting the substrate for reaction. Despite the plethora of P450-catalyzed reactions, the P450 fold is highly conserved, and static structures are often insufficient for characterizing conformational states that contribute to specificity. High-resolution solution nuclear magnetic resonance (NMR) offers insights into dynamic processes and conformational changes that are required of a P450 in order to attain the combination of specificity and efficiency required for these reactions.
Collapse
Affiliation(s)
- Thomas C Pochapsky
- Departments of Chemistry, Biochemistry and The Rosenstiel Institute for Basic Medical Research, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| |
Collapse
|
9
|
Kumar A, Wilderman PR, Tu C, Shen S, Qu J, Estrada DF. Evidence of Allosteric Coupling between Substrate Binding and Adx Recognition in the Vitamin D Carbon-24 Hydroxylase CYP24A1. Biochemistry 2020; 59:1537-1548. [PMID: 32259445 PMCID: PMC7233526 DOI: 10.1021/acs.biochem.0c00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic inactivation of 1,25(OH)2D3 requires molecular recognition between the mitochondrial enzyme cytochrome P450 24A1 (CYP24A1) and its cognate redox partner adrenodoxin (Adx). Recent evidence supports a model of CYP24A1 function in which substrate binding and Adx recognition are structurally linked. However, the details of this allosteric connection are not clear. In this study, we utilize chemical cross-linking coupled to mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, and CYP24A1 functional assays to inform a working model of a CYP24A1-Adx complex. We report that differential cross-linking internal to CYP24A1 points toward an Adx-induced conformational change that perturbs the F and G helices, which are required for substrate binding. Moreover, the modeled complex suggests that a semiconserved nonpolar interaction at the interface may influence CYP24A1 regioselectivity. Taken together, these findings contribute to our understanding of Adx recognition in a critical vitamin D-inactivating enzyme and provide broader insight regarding the variability inherent in CYP-Adx interactions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine, University at Buffalo, 955 Main Street, Buffalo NY 14203
| | - P. Ross Wilderman
- Department of Pharmaceutical Sciences, School of Pharmacy, 69 North Eagleville Road, University of Connecticut, Storrs, CT 06269
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy, 318 Pharmacy Building, University at Buffalo, Buffalo NY 14214
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, 318 Pharmacy Building, University at Buffalo, Buffalo NY 14214
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy, 318 Pharmacy Building, University at Buffalo, Buffalo NY 14214
| | - D. Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine, University at Buffalo, 955 Main Street, Buffalo NY 14203
| |
Collapse
|
10
|
Kumar A, Estrada DF. Specificity of the Redox Complex between Cytochrome P450 24A1 and Adrenodoxin Relies on Carbon-25 Hydroxylation of Vitamin-D Substrate. Drug Metab Dispos 2019; 47:974-982. [PMID: 31289106 DOI: 10.1124/dmd.119.087759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022] Open
Abstract
Metabolic deactivation of 1,25(OH)2D3 is initiated by modification of the vitamin-D side chain, as carried out by the mitochondrial cytochrome P450 24A1 (CYP24A1). In addition to its role in vitamin-D metabolism, CYP24A1 is involved in catabolism of vitamin-D analogs, thereby reducing their efficacy. CYP24A1 function relies on electron transfer from the soluble ferredoxin protein adrenodoxin (Adx). Recent structural evidence suggests that regioselectivity of the CYP24A1 reaction may correlate with distinct modes of Adx recognition. Here we used nuclear magnetic resonance (NMR) spectroscopy to monitor the structure of 15N-labeled full-length Adx from rat while forming the complex with rat CYP24A1 in the ligand-free state or bound to either 1,25(OH)2D3 or the vitamin-D supplement 1α(OH)D3. Although both vitamin-D ligands were found to induce a reduction in overall NMR peak broadening, thereby suggesting ligand-induced disruption of the complex, a crosslinking analysis suggested that ligand does not have a significant effect on the relative association affinities of the redox complexes. However, a key finding is that, whereas the presence of primary CYP24A1 substrate was found to induce NMR peak broadening focused on the putative recognition site α-helix 3 of rat adrenodoxin, the interaction in the presence of 1α(OH)D3, which is lacking the carbon-25 hydroxyl, results in disruption of the NMR peak broadening pattern, thus indicating a ligand-induced nonspecific protein interaction. These findings provide a structural basis for the poor substrate turnover of side-chain-modified vitamin-D analogs, while also confirming that specificity of the CYP24A1-ligand interaction influences specificity of CYP24A1-Adx recognition. SIGNIFICANCE STATEMENT: Mitochondrial cytochrome P450 enzymes, such as CYP24A1 responsible for catabolizing vitamin-D and its analogs, rely on a protein-protein interaction with a ferredoxin in order to receive delivery of the electrons required for catalysis. In this study, we demonstrate that this protein interaction is influenced by the enzyme-ligand interaction that precedes it. Specifically, vitamin-D missing carbon-25 hydroxylation binds the enzyme active site with high affinity but results in a loss of P450-ferredoxin binding specificity.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo New York
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo New York
| |
Collapse
|
11
|
Increased Phenacetin Oxidation upon the L382V Substitution in Cytochrome P450 1A2 is Associated with Altered Substrate Binding Orientation. Int J Mol Sci 2018; 19:ijms19061580. [PMID: 29799514 PMCID: PMC6032418 DOI: 10.3390/ijms19061580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 11/22/2022] Open
Abstract
Leucine382 of cytochrome P450 1A2 (CYP1A2) plays an important role in binding and O-dealkylation of phenacetin, with the L382V mutation increasing substrate oxidation (Huang and Szklarz, 2010, Drug Metab. Dispos. 38:1039–1045). This was attributed to altered substrate binding orientation, but no direct experimental evidence had been available. Therefore, in the current studies, we employed nuclear magnetic resonance (NMR) longitudinal (T1) relaxation measurements to investigate phenacetin binding orientations within the active site of CYP1A2 wild type (WT) and mutants. Paramagnetic relaxation time (T1P) for each proton of phenacetin was calculated from the T1 value obtained from the enzymes in ferric and ferrous-CO state in the presence of phenacetin, and used to model the orientation of phenacetin in the active site. All aromatic protons of phenacetin were nearly equidistant from the heme iron (6.34–8.03 Å). In contrast, the distance between the proton of the –OCH2– group, which is abstracted during phenacetin oxidation, and the heme iron, was much shorter in the L382V (5.93 Å) and L382V/N312L (5.96 Å) mutants compared to the N312L mutant (7.84 Å) and the wild type enzyme (6.55 Å), consistent with modeling results. These studies provide direct evidence for the molecular mechanism underlying increased oxidation of phenacetin upon the L382V mutation.
Collapse
|