1
|
Zou R, Xu X, Li F. Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications. J Cell Sci 2025; 138:JCS263489. [PMID: 39846151 DOI: 10.1242/jcs.263489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized. GAG lyases can be classified into hyaluronate lyases, chondroitinases and heparinases based on their substrate spectra, and their functional applications are mainly determined by their substrates, with different lyases exhibiting differing substrate selectivity and preferences. It is thus necessary to understand the properties of the available enzymes to determine strategies for their functional application. Building on previous studies and reviews, this Review highlights small yet crucial differences among or within the various GAG lyases to aid in optimizing their use in future studies. To clarify ideas and strategies for further research, we also discuss several traditional and novel applications of GAG lyases.
Collapse
Affiliation(s)
- Ruyi Zou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| |
Collapse
|
2
|
Peng C, Wang Q, Xu W, Wang X, Zheng Q, Liang X, Dong X, Li F, Peng L. A bifunctional endolytic alginate lyase with two different lyase catalytic domains from Vibrio sp. H204. Front Microbiol 2024; 15:1509599. [PMID: 39735187 PMCID: PMC11671496 DOI: 10.3389/fmicb.2024.1509599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by β-elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium Vibrio sp. Strain H204. The enzyme Aly35 is classified into the polysaccharide lyase 7 superfamily and contains two alginate lyase catalytic domains. The relationship and function of the two lyase domains are not well known. Thus, the full-length recombinant enzyme and its truncated proteins Aly35-CD1 (catalytic domain 1), Aly35-CD2 (catalytic domain 2 domain) were constructed. The three enzymes showed similar biochemical characteristics and exhibited temperature and pH stability. Further research showed that Aly35 and Aly35-CD2 can efficiently degrade alginate, polymannuronate (PM) and polyguluronate (PG) into a series of unsaturated oligosaccharides, while Aly35-CD1 exhibits greater PM-degrading activity than that of Aly35-CD2 but can not degraded PG efficiently. The results suggest that the domain (Trp295-His582) is critical for PG-degrading activity, the domain has (Leu53-Lys286) higher PM-degrading activity, both catalytic domains together confer increased alginate (including M-blocks and G blocks)-degrading activity. The enzyme Aly35 and its truncations Aly35-CD1 and Aly35-CD2 will be useful tools for structural analyses and for preparing bioactive oligosaccharides, especially Aly35-CD1 can be used to prepare G unit-rich oligosaccharides from alginate.
Collapse
Affiliation(s)
- Chune Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qingbin Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Wei Xu
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinkun Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaohui Liang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaodan Dong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
3
|
Zeng L, Li J, Gu J, Hu W, Han W, Li Y. Alginate-Degrading Modes, Oligosaccharide-Yielding Properties, and Potential Applications of a Novel Bacterial Multifunctional Enzyme, Aly16-1. Microorganisms 2024; 12:2374. [PMID: 39597762 PMCID: PMC11596371 DOI: 10.3390/microorganisms12112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Relatively little is known about enzymes with broad substrate spectra, leading to limited applications and progress. Herein, we elucidate Aly16-1 of Streptomyces sp. strain CB16 as a novel multifunctional member of the eighth polysaccharide lyase (PL8) family, although it shared few sequence identities with the characterized enzymes. The recombinant enzyme rAly16-1 showed lyase activities against several acidic polysaccharides, including many glycosaminoglycan types, xanthan, and alginate. It was mannuronate (M)-preferred, endolytic, and optimal at 50 °C and pH 6.0. The smallest substrate was an ∆M-terminal (∆: unsaturated monosaccharide) trisaccharide, and the minimal product was ∆. In the final alginate digestions by rAly16-1, the fractions larger than disaccharides were ∆G-terminal (G: guluronate), while the disaccharides were mainly ∆M, showing an oligosaccharide-yielding property under the succession law. However, when degrading various oligosaccharides, rAly16-1 continued producing ∆M from the non-reducing end even when the substrates increased their sizes, quite different from the elucidated alginate lyases with variable alginate-degrading modes. Thus, co-determined by its M-preference, Aly16-1 is novel for its ∆M-yielding property in oligosaccharide preparations. Additionally, rAly16-1 can be applied in sequencing unsaturated trisaccharides, whether ∆M- or ∆G-terminal. This study provides novel insights into the characteristics and applications of a multifunctional enzyme within the PL8 family for resource explorations.
Collapse
Affiliation(s)
- Lianghuan Zeng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (W.H.); (Y.L.)
| | - Junge Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (W.H.); (Y.L.)
| | - Jingyan Gu
- United Post Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250101, China;
| | - Wei Hu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (W.H.); (Y.L.)
| | - Wenjun Han
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (W.H.); (Y.L.)
| | - Yuezhong Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (W.H.); (Y.L.)
| |
Collapse
|
4
|
Cui X, Fu Z, Wang H, Yu W, Han F. Cloning and characterization of a hyaluronate lyase EsHyl8 from Escherichia sp. A99. Protein Expr Purif 2024; 223:106551. [PMID: 38997076 DOI: 10.1016/j.pep.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Hyaluronidase, an enzyme that degrades hyaluronic acid (HA), is utilized in clinical settings to facilitate drug diffusion, manage extravasation, and address injection-related complications linked to HA-based fillers. In this study, a novel hyaluronate lyase EsHyl8 was cloned, expressed, and characterized from Escherichia sp. A99 of human intestinal origin. This lyase belongs to polysaccharide lyase (PL) family 8, and showed specific activity towards HA. EsHyl8 exhibited optimal degradation at 40 °C and pH 6.0. EsHyl8 exhibited a high activity of 376.32 U/mg among hyaluronidases of human gut microorganisms. EsHyl8 was stable at 37 °C and remained about 70 % of activity after incubation at 37 °C for 24 h, demonstrating excellent thermostability. The activity of EsHyl8 was inhibited by Zn2+, Cu2+, Fe3+, and SDS. EsHyl8 was an endo-type enzyme whose end-product was unsaturated disaccharide. This study enhances our understanding of hyaluronidases from human gut microorganisms.
Collapse
Affiliation(s)
- Xiuli Cui
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Hainan Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
5
|
Wei L, Zou R, Du M, Zhang Q, Lu D, Xu Y, Xu X, Wang W, Zhang YZ, Li F. Discovery of a class of glycosaminoglycan lyases with ultrabroad substrate spectrum and their substrate structure preferences. J Biol Chem 2024; 300:107466. [PMID: 38876302 PMCID: PMC11262172 DOI: 10.1016/j.jbc.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Glycosaminoglycan (GAG) lyases are often strictly substrate specific, and it is especially difficult to simultaneously degrade GAGs with different types of glycosidic bonds. Herein, we found a new class of GAG lyases (GAGases) from different bacteria. These GAGases belong to polysaccharide lyase 35 family and share quite low homology with the identified GAG lyases. The most surprising thing is that GAGases can not only degrade three types of GAGs: hyaluronan, chondroitin sulfate, and heparan sulfate but also even one of them can also degrade alginate. Further investigation of structural preferences revealed that GAGases selectively act on GAG domains composed of non/6-O-/N-sulfated hexosamines and d-glucoronic acids as well as on alginate domains composed of d-mannuronic acids. In addition, GAG lyases were once speculated to have evolved from alginate lyases, but no transitional enzymes have been found. The discovery of GAGases not only broadens the category of GAG lyases, provides new enzymatic tools for the structural and functional studies of GAGs with specific structures, but also provides candidates for the evolution of GAG lyases.
Collapse
Affiliation(s)
- Lin Wei
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Ruyi Zou
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Du
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Qingdong Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Danrong Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xiangyu Xu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Du M, Wei L, Yuan M, Zou R, Xu Y, Wang X, Wang W, Li F. Enzymatic comparison of two homologous enzymes reveals N-terminal domain of chondroitinase ABC I regulates substrate selection and product generation. J Biol Chem 2023; 299:104692. [PMID: 37031818 DOI: 10.1016/j.jbc.2023.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
Chondroitinase ABC-type I (CSase ABC I), which can digest both chondroitin sulfate (CS) and dermatan sulfate (DS) in an endolytic manner, is an essential tool in structural and functional studies of CS/DS. Although a few CSase ABC I have been identified from bacteria, the substrate-degrading pattern and regulatory mechanisms of them have rarely been investigated. Herein, two CSase ABC I, IM3796 and IM1634, were identified from the intestinal metagenome of CS-fed mice. They show high sequence homology (query coverage: 88.00%, percent identity: 90.10%) except for an extra peptide (Met1-His109) at the N-terminus in IM1634, but their enzymatic properties are very different. IM3796 prefers to degrade 6-O-sulfated GalNAc residue-enriched CS into tetra- and disaccharides. In contrast, IM1634 exhibits nearly a thousand times more activity than IM3796, and can completely digest CS/DS with various sulfation patterns to produce disaccharides, unlike most CSase ABC I. Structure modeling showed that IM3796 did not contain an N-terminal domain composed of two β-sheets, which is found in IM1634 and other CSase ABC I. Furthermore, deletion of the N-terminal domain (Met1-His109) from IM1634 caused the enzymatic properties of the variant IM1634-T109 to be similar to those of IM3796, and conversely, grafting this domain to IM3796 increased the similarity of the variant IM3796-A109 to IM1634. In conclusion, the comparative study of the new CSase ABC I provides two unique tools for CS/DS-related studies and applications and, more importantly, reveals the critical role of the N-terminal domain in regulating the substrate binding and degradation of these enzymes.
Collapse
Affiliation(s)
- Min Du
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lin Wei
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Yuan
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Ruyi Zou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xu Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China; College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
7
|
Wei L, Xu Y, Du M, Fan Y, Zou R, Xu X, Zhang Q, Zhang YZ, Wang W, Li F. A novel 4-O-endosulfatase with high potential for the structure-function studies of chondroitin sulfate/dermatan sulfate. Carbohydr Polym 2023; 305:120508. [PMID: 36737182 DOI: 10.1016/j.carbpol.2022.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
The sulfation patterns of chondroitin sulfate (CS)/dermatan sulfate (DS), which encode unique biological information, play critical roles in the various biological functions of CS/DS chains. CS/DS sulfatases, which can specifically hydrolyze sulfate groups, could potentially be essential tools for deciphering and changing the biological information encoded by these sulfation patterns. However, endosulfatase with high activity to efficiently hydrolyze the sulfate groups inside CS/DS polysaccharides have rarely been identified, which hinders the practical applications of CS/DS sulfatases. Herein, a novel CS/DS 4-O-endosulfatase (endoBI4SF) with a strong ability to completely remove 4-O-sulfated groups inside various CS/DS polysaccharides was identified and successfully used to investigate the biological roles of 4-O-sulfated CS/DS in vitro and in vivo. This study provides a much-needed tool to tailor the sulfation patterns and explore the related functions of 4-O-sulfated CS/DS chains in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Wei
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Yingying Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Min Du
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Ying Fan
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao 266071, People's Republic of China
| | - Ruyi Zou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Qingdong Zhang
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang 261053, People's Republic of China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China.
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China; College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China.
| |
Collapse
|
8
|
Wei L, Zhang Q, Lu D, Du M, Xu X, Wang W, Zhang YZ, Yuan X, Li F. Identification and Action Patterns of Two Chondroitin Sulfate Sulfatases From a Marine Bacterium Photobacterium sp. QA16. Front Microbiol 2022; 12:775124. [PMID: 35140691 PMCID: PMC8819143 DOI: 10.3389/fmicb.2021.775124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate (CS)/dermatan sulfate (DS) is a kind of sulfated polyanionic, linear polysaccharide belonging to glycosaminoglycan. CS/DS sulfatases, which specifically hydrolyze sulfate groups from CS/DS oligo-/polysaccharides, are potential tools for structural and functional studies of CD/DS. However, only a few sulfatases have been reported and characterized in detail to date. In this study, two CS/DS sulfatases, PB_3262 and PB_3285, were identified from the marine bacterium Photobacterium sp. QA16 and their action patterns were studied in detail. PB_3262 was characterized as a novel 4-O-endosulfatase that can effectively and specifically hydrolyze the 4-O-sulfate group of disaccharide GlcUAβ1–3GalNAc(4-O-sulfate) but not GlcUAβ1–3GalNAc(4,6-O-sulfate) and IdoUAα1–3GalNAc(4-O-sulfate) in CS/DS oligo-/polysaccharides, which is very different from the identified 4-O-endosulfatases in the substrate profile. In contrast, PB_3285 specifically hydrolyzes the 6-O-sulfate groups of GalNAc(6-O-sulfate) residues located at the reducing ends of the CS chains and is the first recombinantly expressed 6-O-exosulfatase to effectively act on CS oligosaccharides.
Collapse
Affiliation(s)
- Lin Wei
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Qingdong Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
- School of Life Sciences and Technology, Weifang Medical University, Weifang, China
| | - Danrong Lu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
- School of Life Sciences and Technology, Weifang Medical University, Weifang, China
| | - Min Du
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xunyi Yuan
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- *Correspondence: Xunyi Yuan,
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
- Fuchuan Li,
| |
Collapse
|
9
|
Peng C, Wang Q, Jiao R, Xu Y, Han N, Wang W, Zhu C, Li F. A novel chondroitin sulfate E from Dosidicus gigas cartilage and its antitumor metastatic activity. Carbohydr Polym 2021; 262:117971. [PMID: 33838835 DOI: 10.1016/j.carbpol.2021.117971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
Chondroitin sulfate (CS) chains containing GlcUAβ1-3GalNAc(4S,6S) (E unit) have been shown to be involved in various physiological and pathological processes. However, commercial E unit-rich CS (CS-E) is difficult to produce on a large scale due to expensive and limited squid cartilage resources. In this study, a novel CS-E (CS-nE) was isolated from the cheap and abundant cartilage of the giant squid Dosidicus gigas. The CS-nE has a surprisingly large molecular mass of 696 kDa and a relatively high E unit proportion (44.5 %). It can interact with various growth factors, including HGF, bFGF, pleiotrophin, and HB-EGF, with high affinity, and exhibits dose-dependent anti-metastatic activity. Furthermore, the E unit-rich decasaccharide selectively prepared from CS-nE has been shown to be the minimal functional domain with the strongest antitumor metastatic activity. Taken together, CS-nE will be a very promising candidate for the development of CS-E-based pharmaceutical products.
Collapse
Affiliation(s)
- Chune Peng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Qingbin Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Runmiao Jiao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Naihan Han
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; Shandong Police College, Jinan, 250200, People's Republic of China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
10
|
Wang X, Wei Z, Wu H, Li Y, Han F, Yu W. Characterization of a Hyaluronic Acid Utilization Locus and Identification of Two Hyaluronate Lyases in a Marine Bacterium Vibrio alginolyticus LWW-9. Front Microbiol 2021; 12:696096. [PMID: 34177877 PMCID: PMC8222515 DOI: 10.3389/fmicb.2021.696096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Hyaluronic acid (HA) is a negatively charged and linear polysaccharide existing in the tissues and body fluids of all vertebrates. Some pathogenic bacteria target hyaluronic acid for adhesion and/or infection to host cells. Vibrio alginolyticus is an opportunistic pathogen related to infections of humans and marine animals, and the hyaluronic acid-degrading potential of Vibrio spp. has been well-demonstrated. However, little is known about how Vibrio spp. utilize hyaluronic acid. In this study, a marine bacterium V. alginolyticus LWW-9 capable of degrading hyaluronic acid has been isolated. Genetic and bioinformatic analysis showed that V. alginolyticus LWW-9 harbors a gene cluster involved in the degradation, transport, and metabolism of hyaluronic acid. Two novel PL8 family hyaluronate lyases, VaHly8A and VaHly8B, are the key enzymes for the degradation of hyaluronic acid. VaHly8A and VaHly8B have distinct biochemical properties, reflecting the adaptation of the strain to the changing parameters of the aquatic habitats and hosts. Based on genomic and functional analysis, we propose a model for the complete degradation of hyaluronic acid by V. alginolyticus LWW-9. Overall, our study expands our knowledge of the HA utilization paradigm within the Proteobacteria, and the two novel hyaluronate lyases are excellent candidates for industrial applications.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ziwei Wei
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Wu
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yujiao Li
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Han
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wengong Yu
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Wang Q, Peng C, Shi L, Liu Z, Zhou D, Meng H, Zhao H, Li F, Zhang M. A Technical System for the Large-Scale Application of Metabolites From Paecilomyces variotii SJ1 in Agriculture. Front Bioeng Biotechnol 2021; 9:671879. [PMID: 34055763 PMCID: PMC8149806 DOI: 10.3389/fbioe.2021.671879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/31/2023] Open
Abstract
Compared with endophytes, metabolites from endophytes (MEs) have great potential in agriculture. However, a technique for industrializing the production of MEs is still scarce. Moreover, the establishment of effective methods for evaluating the quality of MEs is hampered by the fact that some compounds with beneficial effects on crops have not been clearly identified. Herein, a system was established for the production, quality control and application of MEs by using the extract from Paecilomyces variotii SJ1 (ZNC). First, the extraction conditions of ZNC were optimized through response surface methodology, after which each batch (500 L) met the consumption requirements of crops in 7,467 hectares. Then, chromatographic fingerprinting and enzyme-linked immunosorbent assay were applied to evaluate the similarity and specificity of unknown effective components in ZNC, ensuring a similarity of more than 90% and a quantitative accuracy of greater than 99.9% for the products from different batches. Finally, the bioactivity of industrially produced ZNC was evaluated in the field, and it significantly increased the potato yields by 4.4–10.8%. Overall, we have established a practical technical system for the large-scale application of ZNC in agriculture.
Collapse
Affiliation(s)
- Qingbin Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China.,Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Chune Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Liran Shi
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China
| | - Dafa Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hui Meng
- Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Hongling Zhao
- Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Fuchuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
12
|
Wang X, Zhang S, Wu H, Li Y, Yu W, Han F. Expression and characterization of a thermotolerant and pH-stable hyaluronate lyase from Thermasporomyces composti DSM22891. Protein Expr Purif 2021; 182:105840. [PMID: 33561520 DOI: 10.1016/j.pep.2021.105840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Hyaluronate lyases have received extensive attention due to their applications in medical science, drug and biochemical engineering. However, few thermotolerant and pH-stable hyaluronate lyases have been found. In this study, hyaluronate lyase TcHly8B from Thermasporomyces composti DSM22891 was expressed in Escherichia coli BL21(DE3), purified, and characterized. Phylogenetic analysis revealed that TcHly8B belonged to a new subfamily in PL8. The molecular mass of recombinant TcHly8B determined by SDS-PAGE was approximately 86 kDa. The optimal temperature of TcHly8B was 70 °C, which was higher than that of previously reported hyaluronate lyases. TcHly8B was very stable at temperatures from 0 to 60 °C. The optimal pH of TcHly8B was 6.6. It could retain more than 80% of its original enzyme activity after incubation for 12 h in the pH range of 3.0-10.6. TcHly8B degraded hyaluronic acid into unsaturated disaccharides as the end products. The amino acid sequence and structure analysis of TcHly8B demonstrated that the amino acid composition and salt bridges might contribute to the thermostability of TcHly8B. Overall, this study provides an excellent example for the discovery of thermotolerant hyaluronate lyases and can be applied to the industrialized production and basic research of hyaluronate oligosaccharides.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shilong Zhang
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hao Wu
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yujiao Li
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Feng Han
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
13
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
14
|
Zhang Q, Lu D, Wang S, Wei L, Wang W, Li F. Identification and biochemical characterization of a novel chondroitin sulfate/dermantan sulfate lyase from Photobacterium sp. Int J Biol Macromol 2020; 165:2314-2325. [PMID: 33132124 DOI: 10.1016/j.ijbiomac.2020.10.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Chondroitin sulfate (CS)/dermatan sulfate (DS) lyases play important roles in structural and functional studies of CS/DS. In this study, a novel CS/DS lyase (enCSase) was identified from the genome of the marine bacterium Photobacterium sp. QA16. This enzyme is easily heterologously expressed and purified as highly active form against various CS, DS and hyaluronic acid (HA). Under the optimal conditions, the specific activities of this enzyme towards CSA, CSC, CSD, CSE, DS and HA were 373, 474, 171, 172, 141 and 97 U/mg of proteins, respectively. As an endolytic enzyme, enCSase degrades HA to unsaturated hexa- and tetrasaccharides but CS/DS to unsaturated tetra- and disaccharides as the final products. Sequencing analysis showed that the structures of tetrasaccharides in the final products of CS variants were not unique but were highly variable, indicating the randomness of substrate degradation by this enzyme. Further studies showed that the smallest substrate of enCSase was octasaccharide for HA but hexasaccharide for CS/DS, which could explain why this enzyme cannot degrade HA hexa- and tetrasaccharides and CS/DS tetrasaccharides further. It is believed that enCSase may be a very useful tool for structural and functional studies and related applications of CS/DS and HA.
Collapse
Affiliation(s)
- Qingdong Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Danrong Lu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China; School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Shumin Wang
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), 619 Changcheng Road, Taian 271016, China
| | - Lin Wei
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China.
| |
Collapse
|
15
|
Li A, Luo H, Hu T, Huang J, Alam NU, Meng Y, Meng F, Korkor NL, Hu X, Li O. Screening and enzymatic activity of high-efficiency gellan lyase producing bacteria Pseudoalteromonas hodoensis PE1. Bioengineered 2019; 10:240-249. [PMID: 31181994 PMCID: PMC6592359 DOI: 10.1080/21655979.2019.1628882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 11/06/2022] Open
Abstract
Gellan is a widely used microbial polysaccharide and one of the more effective ways to expand its application value would be to investigate the mechanism of gellan lyase and to produce gellan oligosaccharide. In this study, efficient gellan degrading bacteria were screened. One of the strains with high efficient gellan degradation capacity was labeled PE1. Through physiological and biochemical analysis of 16S rDNA, the species was identified as Pseudoalteromonas hodoensis. The optimum conditions for enzymatic activity and how it was affected by metal ions were determined, and the results showed that the lyase activities were much higher than those of previously reported (about 20 times). The gellan degradation products were determined by thin-layer chromatography and the oligosaccharides were determined by high-efficiency liquid chromatography to analyze the action site of lyase. This study laid a solid foundation which elucidates the production and application of gellan oligosaccharides. Research highlights ● High efficiency gellan lyase producing bacteria ● Optimization of reaction conditions for gellan degradation ● Oligosaccharides were detected by TLC and HPLC to speculate the lyase action sites.
Collapse
Affiliation(s)
- Ang Li
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hangqi Luo
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tingting Hu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jingyu Huang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nafee-Ul Alam
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Meng
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fenbin Meng
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nartey Linda Korkor
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiufang Hu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ou Li
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
16
|
Chondroitin Sulfate-Degrading Enzymes as Tools for the Development of New Pharmaceuticals. Catalysts 2019. [DOI: 10.3390/catal9040322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chondroitin sulfates are linear anionic sulfated polysaccharides found in biological tissues, mainly within the extracellular matrix, which are degraded and altered by specific lyases depending on specific time points. These polysaccharides have recently acquired relevance in the pharmaceutical industry due to their interesting therapeutic applications. As a consequence, chondroitin sulfate (CS) lyases have been widely investigated as tools for the development of new pharmaceuticals based on these polysaccharides. This review focuses on the major breakthrough represented by chondroitin sulfate-degrading enzymes and their structures and mechanisms of function in addition to their major applications.
Collapse
|