1
|
Singh RP, Niharika J, Thakur R, Wagstaff BA, Kumar G, Kurata R, Patel D, Levy CW, Miyazaki T, Field RA. Utilization of dietary mixed-linkage β-glucans by the Firmicute Blautia producta. J Biol Chem 2023; 299:104806. [PMID: 37172725 PMCID: PMC10318527 DOI: 10.1016/j.jbc.2023.104806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The β-glucans are structurally varied, naturally occurring components of the cell walls, and storage materials of a variety of plant and microbial species. In the human diet, mixed-linkage glucans [MLG - β-(1,3/4)-glucans] influence the gut microbiome and the host immune system. Although consumed daily, the molecular mechanism by which human gut Gram-positive bacteria utilize MLG largely remains unknown. In this study, we used Blautia producta ATCC 27340 as a model organism to develop an understanding of MLG utilization. B. producta encodes a gene locus comprising a multi-modular cell-anchored endo-glucanase (BpGH16MLG), an ABC transporter, and a glycoside phosphorylase (BpGH94MLG) for utilizing MLG, as evidenced by the upregulation of expression of the enzyme- and solute binding protein (SBP)-encoding genes in this cluster when the organism is grown on MLG. We determined that recombinant BpGH16MLG cleaved various types of β-glucan, generating oligosaccharides suitable for cellular uptake by B. producta. Cytoplasmic digestion of these oligosaccharides is then performed by recombinant BpGH94MLG and β-glucosidases (BpGH3-AR8MLG and BpGH3-X62MLG). Using targeted deletion, we demonstrated BpSBPMLG is essential for B. producta growth on barley β-glucan. Furthermore, we revealed that beneficial bacteria, such as Roseburia faecis JCM 17581T, Bifidobacterium pseudocatenulatum JCM 1200T, Bifidobacterium adolescentis JCM 1275T, and Bifidobacterium bifidum JCM 1254, can also utilize oligosaccharides resulting from the action of BpGH16MLG. Disentangling the β-glucan utilizing the capability of B. producta provides a rational basis on which to consider the probiotic potential of this class of organism.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India.
| | - Jayashree Niharika
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Raksha Thakur
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Gulshan Kumar
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Dhaval Patel
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Colin W Levy
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Mechanism of cyclic β-glucan export by ABC transporter Cgt of Brucella. Nat Struct Mol Biol 2022; 29:1170-1177. [PMID: 36456825 DOI: 10.1038/s41594-022-00868-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
Abstract
Polysaccharides play critical roles in bacteria, including the formation of protective capsules and biofilms and establishing specific host cell interactions. Their transport across membranes is often mediated by ATP-binding cassette (ABC) transporters, which utilize ATP to translocate diverse molecules. Cyclic β-glucans (CβGs) are critical for host interaction of the Rhizobiales, including the zoonotic pathogen Brucella. CβGs are exported into the periplasmic space by the cyclic glucan transporter (Cgt). The interaction of an ABC transporter with a polysaccharide substrate has not been visualized so far. Here we use single-particle cryoelectron microscopy to elucidate the structures of Cgt from Brucella abortus in four conformational states. The substrate-bound structure reveals an unusual binding pocket at the height of the cytoplasmic leaflet, whereas ADP-vanadate models hint at an alternative mechanism of substrate release. Our work provides insights into the translocation of large, heterogeneous substrates and sheds light on protein-polysaccharide interactions in general.
Collapse
|
3
|
Nakajima M. β-1,2-Glucans and associated enzymes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Novel functional insights into a modified sugar-binding protein from Synechococcus MITS9220. Sci Rep 2022; 12:4805. [PMID: 35314715 PMCID: PMC8938411 DOI: 10.1038/s41598-022-08459-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220. Ligand screening of MsBP shows a specific affinity for zinc (KD ~ 1.3 μM) and a preference for phosphate-modified sugars, such as fructose-1,6-biphosphate, in the presence of zinc (KD ~ 5.8 μM). Our crystal structures of apo MsBP (no zinc or substrate-bound) and Zn-MsBP (with zinc-bound) show that the presence of zinc induces structural differences, leading to a partially-closed substrate-binding cavity. The Zn-MsBP structure also sequesters several sulphate ions from the crystallisation condition, including two in the binding cleft, appropriately placed to mimic the orientation of adducts of a biphosphate hexose. Combined with a previously unseen positively charged binding cleft in our two structures and our binding affinity data, these observations highlight novel molecular variations on the sugar-binding SBP scaffold. Our findings lend further evidence to a proposed sugar acquisition mechanism in picocyanobacteria alluding to a mixotrophic strategy within these ubiquitous photosynthetic bacteria.
Collapse
|
5
|
Kobayashi K, Shimizu H, Tanaka N, Kuramochi K, Nakai H, Nakajima M, Taguchi H. Characterization and structural analyses of a novel glycosyltransferase acting on the β-1,2-glucosidic linkages. J Biol Chem 2022; 298:101606. [PMID: 35065074 PMCID: PMC8861115 DOI: 10.1016/j.jbc.2022.101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/26/2022] Open
|
6
|
Golisch B, Lei Z, Tamura K, Brumer H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem Biol 2021; 16:2087-2102. [PMID: 34709792 DOI: 10.1021/acschembio.1c00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The β-glucans are a disparate group of structurally diverse polysaccharides, whose members are widespread in human diets as components of the cell walls of plants, algae, and fungi (including yeasts), and as bacterial exopolysaccharides. Individual β-glucans from these sources have long been associated with positive effects on human health through metabolic and immunological effects. Remarkably, the β-configured glucosidic linkages that define these polysaccharides render them inaccessible to the limited repertoire of digestive enzymes encoded by the human genome. As a result, the various β-glucans become fodder for the human gut microbiota (HGM) in the lower gastrointestinal tract, where they influence community composition and metabolic output, including fermentation to short chain fatty acids (SCFAs). Only recently, however, have the specific molecular systems that enable the utilization of β-glucans by select members of the HGM been fully elucidated by combined genetic, biochemical, and structural biological approaches. In the context of β-glucan structures and their effects on human nutrition and health, we summarize here the functional characterization of individual polysaccharide utilization loci (PULs) responsible for the saccharification of mixed-linkage β(1→3)/β(1→4)-glucans, β(1→6)-glucans, β(1→3)-glucans, β(1→2)-glucans, and xyloglucans in symbiotic human gut bacteria. These exemplar PULs serve as well-defined biomarkers for the prediction of β-glucan metabolic capability in individual bacterial taxa and across the global human population.
Collapse
|
7
|
Kohno M, Arakawa T, Sunagawa N, Mori T, Igarashi K, Nishimoto T, Fushinobu S. Molecular analysis of cyclic α-maltosyl-(1→6)-maltose binding protein in the bacterial metabolic pathway. PLoS One 2020; 15:e0241912. [PMID: 33211750 PMCID: PMC7676653 DOI: 10.1371/journal.pone.0241912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
Cyclic α-maltosyl-(1→6)-maltose (CMM) is a cyclic glucotetrasaccharide with alternating α-1,4 and α-1,6 linkages. Here, we report functional and structural analyses on CMM-binding protein (CMMBP), which is a substrate-binding protein (SBP) of an ABC importer system of the bacteria Arthrobacter globiformis. Isothermal titration calorimetry analysis revealed that CMMBP specifically bound to CMM with a Kd value of 9.6 nM. The crystal structure of CMMBP was determined at a resolution of 1.47 Å, and a panose molecule was bound in a cleft between two domains. To delineate its structural features, the crystal structure of CMMBP was compared with other SBPs specific for carbohydrates, such as cyclic α-nigerosyl-(1→6)-nigerose and cyclodextrins. These results indicate that A. globiformis has a unique metabolic pathway specialized for CMM.
Collapse
Affiliation(s)
- Masaki Kohno
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- R&D Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Mori
- R&D Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, The University of Tokyo, Tokyo, Japan
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Chandravanshi M, Samanta R, Kanaujia SP. Conformational Trapping of a β-Glucosides-Binding Protein Unveils the Selective Two-Step Ligand-Binding Mechanism of ABC Importers. J Mol Biol 2020; 432:5711-5734. [PMID: 32866452 DOI: 10.1016/j.jmb.2020.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Substrate-binding proteins (SBPs), selectively capture ligand(s) and ensure their translocation via its cognate ATP-binding cassette (ABC) import system. SBPs bind their cognate ligand(s) via an induced-fit mechanism known as the "Venus Fly-trap"; however, this mechanism lacks the atomic details of all conformational landscape as the confirmatory evidence(s) in its support. In this study, we delineate the atomic details of an SBP, β-glucosides-binding protein (βGlyBP) from Thermus thermophilus HB8. The protein βGlyBP is multi-specific and binds to different types of β-glucosides varying in their glycosidic linkages viz. β-1,2; β-1,3; β-1,4 and β-1,6 with a degree of polymerization of 2-5 glucosyl units. Structurally, the protein βGlyBP possesses four subdomains (N1, N2, C1 and C2). The unliganded protein βGlyBP remains in an open state, which closes upon binding to sophorose (SOP2), laminari-oligosaccharides (LAMn), cello-oligosaccharides (CELn), and gentiobiose (GEN2). This study reports, for the first time, four different structural states (open-unliganded, partial-open-unliganded, open-liganded and closed-liganded) of the protein βGlyBP, revealing its conformational changes upon ligand binding and suggesting a two-step induced-fit mechanism. Further, results suggest that the conformational changes of N1 and C1 subdomains drive the ligand binding, unlike that of the whole N- and C-terminal domains (NTD and CTD) as known in the "Venus Fly-trap" mechanism. Additionally, profiling of stereo-selection mechanism for α- and β-glucosides reveals that in the ligand-binding site four secondary structural elements (L1, H1, H2 and H3) drive the ligand selection. In summary, results demonstrate that the details of conformational changes and ligand selection are pre-encoded in the SBPs.
Collapse
Affiliation(s)
- Monika Chandravanshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Reshama Samanta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
9
|
Miyake M, Terada T, Shimokawa M, Sugimoto N, Arakawa T, Shimizu K, Igarashi K, Fujita K, Fushinobu S. Structural analysis of β-L-arabinobiose-binding protein in the metabolic pathway of hydroxyproline-rich glycoproteins in Bifidobacterium longum. FEBS J 2020; 287:5114-5129. [PMID: 32246585 DOI: 10.1111/febs.15315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
Abstract
Bifidobacterium longum is a symbiotic human gut bacterium that has a degradation system for β-arabinooligosaccharides, which are present in the hydroxyproline-rich glycoproteins of edible plants. Whereas microbial degradation systems for α-linked arabinofuranosyl carbohydrates have been extensively studied, little is understood about the degradation systems targeting β-linked arabinofuranosyl carbohydrates. We functionally and structurally analyzed a substrate-binding protein (SBP) of a putative ABC transporter (BLLJ_0208) in the β-arabinooligosaccharide degradation system. Thermal shift assays and isothermal titration calorimetry revealed that the SBP specifically bound Araf-β1,2-Araf (β-Ara2 ) with a Kd of 0.150 μm, but did not bind L-arabinose or methyl-β-Ara2 . Therefore, the SBP was termed β-arabinobiose-binding protein (BABP). Crystal structures of BABP complexed with β-Ara2 were determined at resolutions of up to 1.78 Å. The findings showed that β-Ara2 was bound to BABP within a short tunnel between two lobes as an α-anomeric form at its reducing end. BABP forms extensive interactions with β-Ara2 , and its binding mode was unique among SBPs. A molecular dynamics simulation revealed that the closed conformation of substrate-bound BABP is stable, whereas substrate-free form can adopt a fully open and two distinct semi-open states. The importer system specific for β-Ara2 may contribute to microbial survival in biological niches with limited amounts of digestible carbohydrates. DATABASE: Atomic coordinates and structure factors (codes 6LCE and 6LCF) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Collapse
Affiliation(s)
| | - Tohru Terada
- The Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | - Naohisa Sugimoto
- Department of Biomaterial Sciences, The University of Tokyo, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | | | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, The University of Tokyo, Japan.,VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| |
Collapse
|
10
|
Niki D, Higashitani A, Osada H, Bito T, Shimizu K, Arima J. Chitinolytic proteins secreted by Cellulosimicrobium sp. NTK2. FEMS Microbiol Lett 2020; 367:5815077. [PMID: 32239207 DOI: 10.1093/femsle/fnaa055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Cellulosimicrobium sp. NTK2 (NTK2 strain) was isolated as a chitinolytic bacterium from mature compost derived from chitinous waste. The growth of the NTK2 strain was enhanced by supplementation of the culture medium with 2% crystalline chitin. Approximately 70% of the supplemented crystalline chitin was degraded during cultivation. Whole genome analysis of the NTK2 strain identified eight chitinases and two chitin-binding proteins. The NTK2 strain secreted two bacterial extracellular solute-binding proteins, three family 18 glycosyl hydrolases and one lytic polysaccharide monooxygenase specifically in the presence of crystalline chitin. A chitinolytic enzyme with a molecular mass of 29 kDa on SDS-PAGE under native conditions was also secreted. This chitinolytic enzyme exhibited the largest band upon zymography but could not be identified. In an attempt to identify all the chitinases secreted by the NTK2 strain, we expressed recombinant versions of the proteins exhibiting chitinolytic activity in Escherichia coli. Our results suggest that the 29 kDa protein belonging to family 19 glycosyl hydrolase was expressed specifically in the presence of 2% crystalline chitin.
Collapse
Affiliation(s)
- Daisuke Niki
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Akari Higashitani
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Haruki Osada
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Katsuhiko Shimizu
- Platform for Community-Based Research and Education, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| |
Collapse
|
11
|
Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, Yachi H, Sugiyama Y, Kurihara S, Hirose J, Urashima T, Xiao JZ, Kitaoka M, Fukiya S, Yokota A, Lo Leggio L, Abou Hachem M, Katayama T. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. SCIENCE ADVANCES 2019; 5:eaaw7696. [PMID: 31489370 PMCID: PMC6713505 DOI: 10.1126/sciadv.aaw7696] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/18/2019] [Indexed: 05/10/2023]
Abstract
The human gut microbiota established during infancy has persistent effects on health. In vitro studies have suggested that human milk oligosaccharides (HMOs) in breast milk promote the formation of a bifidobacteria-rich microbiota in infant guts; however, the underlying molecular mechanism remains elusive. Here, we characterized two functionally distinct but overlapping fucosyllactose transporters (FL transporter-1 and -2) from Bifidobacterium longum subspecies infantis. Fecal DNA and HMO consumption analyses, combined with deposited metagenome data mining, revealed that FL transporter-2 is primarily associated with the bifidobacteria-rich microbiota formation in breast-fed infant guts. Structural analyses of the solute-binding protein (SBP) of FL transporter-2 complexed with 2'-fucosyllactose and 3-fucosyllactose, together with phylogenetic analysis of SBP homologs of both FL transporters, highlight a unique adaptation strategy of Bifidobacterium to HMOs, in which the gain-of-function mutations enable FL transporter-2 to efficiently capture major fucosylated HMOs. Our results provide a molecular insight into HMO-mediated symbiosis and coevolution between bifidobacteria and humans.
Collapse
Affiliation(s)
- Mikiyasu Sakanaka
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Morten Ejby Hansen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keisuke Yoshida
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Hiroyuki Yachi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Yuta Sugiyama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Junko Hirose
- School of Human Cultures, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| | - Tadasu Urashima
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Motomitsu Kitaoka
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Satoru Fukiya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Atsushi Yokota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Maher Abou Hachem
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Corresponding author. (T.K.); (M.A.H.)
| | - Takane Katayama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Corresponding author. (T.K.); (M.A.H.)
| |
Collapse
|
12
|
Kobayashi K, Nakajima M, Aramasa H, Kimura S, Iwata T, Nakai H, Taguchi H. Large-scale preparation of β-1,2-glucan using quite a small amount of sophorose. Biosci Biotechnol Biochem 2019; 83:1867-1874. [PMID: 31189457 DOI: 10.1080/09168451.2019.1630257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A large amount of β-1,2-glucan was produced enzymatically from quite a small amount of sophorose as an acceptor material through three synthesis steps using a sucrose phosphorylase and a 1,2-β-oligoglucan phosphorylase. The first synthesis step was performed in a 200 μL of a reaction solution containing 5 mM sophorose and 1.0 M sucrose. β-1,2-Glucan in a part of the resultant solution was hydrolyzed to β-1,2-glucooligosaccharides by a β-1,2-glucanase. The second synthesis was performed in 25 times the volume for the first synthesis. The hydrolysate solution (1% volume of the reaction solution) was used as an acceptor. After treatment with the β-1,2-glucanase again, the third synthesis was performed 200 times the volume for the second synthesis (1 L). The reaction yield of β-1,2-glucan at each synthesis was 93%, 76% and 91%. Finally, more than 140 g of β-1,2-glucan was synthesized using approximately 20 μg of sophorose as the starting acceptor material. Abbreviations: DPs: degrees of polymerization; SOGP: 1,2-β-oligoglucan phosphorylase; Sopns: β-1,2-glucooligosaccharides with DP of n; Glc1P: α-glucose 1-phosphate; SucP: sucrose phosphorylase from Bifidobacterium longum subsp. longum; SGL: β-1,2-glucanase; CaSGL: Chy400_4174 protein; TLC: thin layer chromatography; GOPOD: glucose oxidase/peroxidase; PGM: phosphoglucomutase; G6PDH: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Kaito Kobayashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science , Chiba , Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science , Chiba , Japan
| | - Hiroki Aramasa
- Faculty of Agriculture, Niigata University , Niigata , Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan.,Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University , Gyeonggi-do , Republic of Korea
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University , Niigata , Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science , Chiba , Japan
| |
Collapse
|
13
|
Theilmann MC, Fredslund F, Svensson B, Lo Leggio L, Abou Hachem M. Substrate preference of an ABC importer corresponds to selective growth on β-(1,6)-galactosides in Bifidobacterium animalis subsp. lactis. J Biol Chem 2019; 294:11701-11711. [PMID: 31186348 DOI: 10.1074/jbc.ra119.008843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Bifidobacteria are exposed to substantial amounts of dietary β-galactosides. Distinctive preferences for growth on different β-galactosides are observed within Bifidobacterium members, but the basis of these preferences remains unclear. We previously described the first β-(1,6)/(1,3)-galactosidase from Bifidobacterium animalis subsp. lactis Bl-04. This enzyme is relatively promiscuous, exhibiting only 5-fold higher efficiency on the preferred β-(1,6)-galactobiose than the β-(1,4) isomer. Here, we characterize the solute-binding protein (Bal6GBP) that governs the specificity of the ABC transporter encoded by the same β-galactoside utilization locus. We observed that although Bal6GBP recognizes both β-(1,6)- and β-(1,4)-galactobiose, Bal6GBP has a 1630-fold higher selectivity for the former, reflected in dramatic differences in growth, with several hours lag on less preferred β-(1,4)- and β-(1,3)-galactobiose. Experiments performed in the presence of varying proportions of β-(1,4)/β-(1,6)-galactobioses indicated that the preferred substrate was preferentially depleted from the culture supernatant. This established that the poor growth on the nonpreferred β-(1,4) was due to inefficient uptake. We solved the structure of Bal6GBP in complex with β-(1,6)-galactobiose at 1.39 Å resolution, revealing the structural basis of this strict selectivity. Moreover, we observed a close evolutionary relationship with the human milk disaccharide lacto-N-biose-binding protein from Bifidobacterium longum, indicating that the recognition of the nonreducing galactosyl is essentially conserved, whereas the adjacent position is diversified to fit different glycosidic linkages and monosaccharide residues. These findings indicate that oligosaccharide uptake has a pivotal role in governing selectivity for distinct growth substrates and have uncovered evolutionary trajectories that shape the diversification of sugar uptake proteins within Bifidobacterium.
Collapse
Affiliation(s)
- Mia Christine Theilmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Folmer Fredslund
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Tanaka N, Nakajima M, Narukawa-Nara M, Matsunaga H, Kamisuki S, Aramasa H, Takahashi Y, Sugimoto N, Abe K, Terada T, Miyanaga A, Yamashita T, Sugawara F, Kamakura T, Komba S, Nakai H, Taguchi H. Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem 2019; 294:7942-7965. [PMID: 30926603 DOI: 10.1074/jbc.ra118.007087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/20/2019] [Indexed: 11/06/2022] Open
Abstract
endo-β-1,2-Glucanase (SGL) is an enzyme that hydrolyzes β-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic β-1,2-glucans to sophorose (Glc-β-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified β-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a β-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of β-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Masahiro Nakajima
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510,
| | - Megumi Narukawa-Nara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Hiroki Matsunaga
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shinji Kamisuki
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201
| | - Hiroki Aramasa
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Yuta Takahashi
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Naohisa Sugimoto
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Koichi Abe
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Tohru Terada
- the Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Akimasa Miyanaga
- the Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551
| | | | - Fumio Sugawara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Takashi Kamakura
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shiro Komba
- the Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroyuki Nakai
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Hayao Taguchi
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| |
Collapse
|
15
|
Kuhaudomlarp S, Pergolizzi G, Patron NJ, Henrissat B, Field RA. Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families. J Biol Chem 2019; 294:6483-6493. [PMID: 30819804 PMCID: PMC6484121 DOI: 10.1074/jbc.ra119.007712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
Glycoside phosphorylases (GPs) catalyze the phosphorolysis of glycans into the corresponding sugar 1-phosphates and shortened glycan chains. Given the diversity of natural β-(1→3)-glucans and their wide range of biotechnological applications, the identification of enzymatic tools that can act on β-(1→3)-glucooligosaccharides is an attractive area of research. GP activities acting on β-(1→3)-glucooligosaccharides have been described in bacteria, the photosynthetic excavate Euglena gracilis, and the heterokont Ochromonas spp. Previously, we characterized β-(1→3)-glucan GPs from bacteria and E. gracilis, leading to their classification in glycoside hydrolase family GH149. Here, we characterized GPs from Gram-positive bacteria and heterokont algae acting on β-(1→3)-glucooligosaccharides. We identified a phosphorylase sequence from Ochromonas spp. (OcP1) together with its orthologs from other species, leading us to propose the establishment of a new GH family, designated GH161. To establish the activity of GH161 members, we recombinantly expressed a bacterial GH161 gene sequence (PapP) from the Gram-positive bacterium Paenibacillus polymyxa ATCC 842 in Escherichia coli. We found that PapP acts on β-(1→3)-glucooligosaccharide acceptors with a degree of polymerization (DP) ≥ 2. This activity was distinct from that of characterized GH149 β-(1→3)-glucan phosphorylases, which operate on acceptors with DP ≥ 1. We also found that bacterial GH161 genes co-localize with genes encoding β-glucosidases and ATP-binding cassette transporters, highlighting a probable involvement of GH161 enzymes in carbohydrate degradation. Importantly, in some species, GH161 and GH94 genes were present in tandem, providing evidence that GPs from different CAZy families may work sequentially to degrade oligosaccharides.
Collapse
Affiliation(s)
- Sakonwan Kuhaudomlarp
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Giulia Pergolizzi
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Nicola J Patron
- the Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University, 163 Avenue de Luminy, 13288 Marseille, France.,CNRS, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France, and.,the Department of Biological Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia
| | - Robert A Field
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom,
| |
Collapse
|
16
|
Kobayashi K, Aramasa H, Nakai H, Nakajima M, Taguchi H. Colorimetric determination of β-1,2-glucooligosaccharides for an enzymatic assay using 3-methyl-2-benzothiazolinonehydrazone. Anal Biochem 2018; 560:1-6. [DOI: 10.1016/j.ab.2018.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/06/2018] [Accepted: 08/23/2018] [Indexed: 11/26/2022]
|
17
|
Tanaka N, Nakajima M, Aramasa H, Nakai H, Taguchi H, Tsuzuki W, Komba S. Synthesis of three deoxy-sophorose derivatives for evaluating the requirement of hydroxy groups at position 3 and/or 3' of sophorose by 1,2-β-oligoglucan phosphorylases. Carbohydr Res 2018; 468:13-22. [PMID: 30121414 DOI: 10.1016/j.carres.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Sophorose (Sop2) is known as a powerful inducer of cellulases in Trichoderma reesei, and in recent years 1,2-β-D-oligoglucan phosphorylase (SOGP) has been found to use Sop2 in synthetic reactions. From the structure of the complex of SOGP with Sop2, it was predicted that both the 3-hydroxy group at the reducing end glucose moiety of Sop2 and the 3'-hydroxy group at the non-reducing end glucose moiety of Sop2 were important for substrate recognition. In this study, three kinds of 3- and/or 3'-deoxy-Sop2 derivatives were synthesized to evaluate this mechanism. The deoxygenation of the 3-hydroxy group of D-glucopyranose derivative was performed by radical reduction using a toluoyl group as a leaving group. The utilization of a toluoyl group that plays two roles (a leaving group for the deoxygenation and a protecting group for a hydroxy group) resulted in efficient syntheses of the three target compounds. The NMR spectra of the two final compounds (3-deoxy- and 3,3'-dideoxy-Sop2) suggested that the glucose moiety of the reducing end of Sop2 can easily take on a furanose structure (five-membered ring structure) by deoxygenation of the 3-hydroxy group of Sop2. In addition, the ratio of the five- and six-membered ring structures changed depending on the temperature. The SOGPs exhibited remarkably lower specific activity for 3'-deoxy- and 3,3'-dideoxy-Sop2, indicating that the 3'-hydroxy group of Sop2 is important for substrate recognition by SOGPs.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Aramasa
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Wakako Tsuzuki
- Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Shiro Komba
- Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|