1
|
Toci EM, Majumdar A, Meyers CLF. Aldehyde-based Activation of C2α-lactylthiamin Diphosphate Decarboxylation on Bacterial 1-deoxy-d-xylulose 5-phosphate Synthase. Chembiochem 2024:e202400558. [PMID: 39268973 DOI: 10.1002/cbic.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate (donor substrate) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand-gated mechanism in which binding of a small molecule "trigger" activates the first enzyme-bound intermediate, C2α-lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d-GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d-glyceraldehyde (d-GA) can induce LThDP decarboxylation. We hypothesize this ligand-gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α-hydroxy aldehyde moiety of d-GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| |
Collapse
|
2
|
Chan AHY, Ho TCS, Fathoni I, Hamid R, Hirsch AKH, Saliba KJ, Leeper FJ. Evaluation of ketoclomazone and its analogues as inhibitors of 1-deoxy-d-xylulose 5-phosphate synthases and other thiamine diphosphate (ThDP)-dependent enzymes. RSC Med Chem 2024; 15:1773-1781. [PMID: 38784473 PMCID: PMC11110791 DOI: 10.1039/d4md00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
Most pathogenic bacteria, apicomplexan parasites and plants rely on the methylerythritol phosphate (MEP) pathway to obtain precursors of isoprenoids. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS), a thiamine diphosphate (ThDP)-dependent enzyme, catalyses the first and rate-limiting step of the MEP pathway. Due to its absence in humans, DXPS is considered as an attractive target for the development of anti-infectious agents and herbicides. Ketoclomazone is one of the earliest reported inhibitors of DXPS and antibacterial and herbicidal activities have been documented. This study investigated the activity of ketoclomazone on DXPS from various species, as well as the broader ThDP-dependent enzyme family. To gain further insights into the inhibition, we have prepared analogues of ketoclomazone and evaluated their activity in biochemical and computational studies. Our findings support the potential of ketoclomazone as a selective antibacterial agent.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Imam Fathoni
- Research School of Biology, The Australian National University Canberra ACT 2601 Australia
| | - Rawia Hamid
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Kevin J Saliba
- Research School of Biology, The Australian National University Canberra ACT 2601 Australia
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
3
|
Coco LB, Freel Meyers CL. An activity-based probe for antimicrobial target DXP synthase, a thiamin diphosphate-dependent enzyme. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1389620. [PMID: 39544285 PMCID: PMC11562961 DOI: 10.3389/fchbi.2024.1389620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This work reports an alkyl acetylphosphonate (alkylAP) activity-based probe (ABP) for 1-deoxy-d-xylulose 5-phosphate synthase DXPS, a promising antimicrobial target. This essential thiamin diphosphate (ThDP)-dependent enzyme operates at a branchpoint in bacterial central metabolism and is believed to play key roles in pathogen adaptation during infection. How different bacterial pathogens harness DXPS activity to adapt and survive within host environments remains incompletely understood, and tools for probing DXPS function in different contexts of infection are lacking. Here, we have developed alkylAP-based ABP 1, designed to react with the ThDP cofactor on active DXPS to form a stable C2α-phosphonolactylThDP adduct which subsequently crosslinks to the DXPS active site upon photoactivation. ABP 1 displays low micromolar potency against DXPS and dose-dependent labeling of DXPS that is blocked by alkylAP-based inhibitors. The probe displays selectivity for DXPS over ThDP-dependent enzymes and is capable of detecting active DXPS in a complex proteome. These studies represent an important advance toward development of tools to probe DXPS function in different contexts of bacterial infection, and for drug discovery efforts on this target.
Collapse
Affiliation(s)
- Lauren B. Coco
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Coco L, Toci EM, Chen PYT, Drennan CL, Freel Meyers CL. Potent Inhibition of E. coli DXP Synthase by a gem-Diaryl Bisubstrate Analog. ACS Infect Dis 2024; 10:1312-1326. [PMID: 38513073 PMCID: PMC11019550 DOI: 10.1021/acsinfecdis.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.
Collapse
Affiliation(s)
- Lauren
B. Coco
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eucolona M. Toci
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Percival Yang-Ting Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caren L. Freel Meyers
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
5
|
Toci EM, Austin SL, Majumdar A, Woodcock HL, Freel Meyers CL. Disruption of an Active Site Network Leads to Activation of C2α-Lactylthiamin Diphosphate on the Antibacterial Target 1-Deoxy-d-xylulose-5-phosphate Synthase. Biochemistry 2024; 63:671-687. [PMID: 38393327 PMCID: PMC11015862 DOI: 10.1021/acs.biochem.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The bacterial metabolic enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde-3-phosphate (d-GAP). DXP is an essential bacteria-specific metabolite that feeds into the biosynthesis of isoprenoids, pyridoxal phosphate (PLP), and ThDP. DXPS catalyzes the activation of pyruvate to give the C2α-lactylThDP (LThDP) adduct that is long-lived on DXPS in a closed state in the absence of the cosubstrate. Binding of d-GAP shifts the DXPS-LThDP complex to an open state which coincides with LThDP decarboxylation. This gated mechanism distinguishes DXPS in ThDP enzymology. How LThDP persists on DXPS in the absence of cosubstrate, while other pyruvate decarboxylases readily activate LThDP for decarboxylation, is a long-standing question in the field. We propose that an active site network functions to prevent LThDP activation on DXPS until the cosubstrate binds. Binding of d-GAP coincides with a conformational shift and disrupts the network causing changes in the active site that promote LThDP activation. Here, we show that the substitution of putative network residues, as well as nearby residues believed to contribute to network charge distribution, predictably affects LThDP reactivity. Substitutions predicted to disrupt the network have the effect to activate LThDP for decarboxylation, resulting in CO2 and acetate production. In contrast, a substitution predicted to strengthen the network fails to activate LThDP and has the effect to shift DXPS toward the closed state. Network-disrupting substitutions near the carboxylate of LThDP also have a pronounced effect to shift DXPS to an open state. These results offer initial insights to explain the long-lived LThDP intermediate and its activation through disruption of an active site network, which is unique to DXPS. These findings have important implications for DXPS function in bacteria and its development as an antibacterial target.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven L Austin
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - H Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Wang J, Chen F, Chen QY, Wang GJ. Europium- and Black Phosphorus-Functionalized Porphyrin as an l-Arginine Sensor and l-Arginine-Activated PDT/PTT Agent for Bacterial Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41861-41869. [PMID: 37610772 DOI: 10.1021/acsami.3c07354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The attenuation of bacterial metabolism provides an adjunct to the treatment of bacterial infections. To develop a bacterial eradication agent, a bioactivatable material (BP@Eu-TCPP) was designed and synthesized by coordination and reduction of europium(III) with thin-layer black phosphorus (BP) and tetrakis (4-carboxyphenyl) porphyrin (TCPP). The existence of the P-Eu bond and Eu2+ 3d5/2 in X-ray photoelectron spectroscopy confirmed the successful synthesis of BP@Eu-TCPP. This material showed high fluorescence sensitivity to l-Arginine (l-Arg) and the main binding ratio of BP@Eu-TCPP to l-Arg was ca. 1:2 or 1:3, with the limit of detection of 4.0 μM. The material also showed good photothermal properties and stability, with a photothermal conversion efficiency of 37.3%. Although metal coordination has blocked the generation of 1O2, the addition of l-Arg to BP@Eu-TCPP can restore 1O2 generation upon red light-emitting diode (LED) light irradiation due to the formation of water-soluble Arg-TCPP species. Additionally, BP@Eu-TCPP was enabled to change the bacterial membrane and interfered with the bacterial iron absorption that effectively contributes to bacterial eradication. Such BP@Eu-TCPP is promised to be a novel material for the detection of l-Arg and l-Arg-activated photodynamic therapy.
Collapse
Affiliation(s)
- Jun Wang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Feng Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Qiu-Yun Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Gao-Ji Wang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
7
|
Chan AHY, Ho TCS, Irfan R, Hamid RAA, Rudge ES, Iqbal A, Turner A, Hirsch AKH, Leeper FJ. Design of thiamine analogues for inhibition of thiamine diphosphate (ThDP)-dependent enzymes: Systematic investigation through Scaffold-Hopping and C2-Functionalisation. Bioorg Chem 2023; 138:106602. [PMID: 37201323 DOI: 10.1016/j.bioorg.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Thiamine diphosphate (ThDP), the bioactive form of vitamin B1, is an essential coenzyme needed for processes of cellular metabolism in all organisms. ThDP-dependent enzymes all require ThDP as a coenzyme for catalytic activity, although individual enzymes vary significantly in substrate preferences and biochemical reactions. A popular way to study the role of these enzymes through chemical inhibition is to use thiamine/ThDP analogues, which typically feature a neutral aromatic ring in place of the positively charged thiazolium ring of ThDP. While ThDP analogues have aided work in understanding the structural and mechanistic aspects of the enzyme family, at least two key questions regarding the ligand design strategy remain unresolved: 1) which is the best aromatic ring? and 2) how can we achieve selectivity towards a given ThDP-dependent enzyme? In this work, we synthesise derivatives of these analogues covering all central aromatic rings used in the past decade and make a head-to-head comparison of all the compounds as inhibitors of several ThDP-dependent enzymes. Thus, we establish the relationship between the nature of the central ring and the inhibitory profile of these ThDP-competitive enzyme inhibitors. We also demonstrate that introducing a C2-substituent onto the central ring to explore the unique substrate-binding pocket can further improve both potency and selectivity.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Rimsha Irfan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Rawia A A Hamid
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Emma S Rudge
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Amjid Iqbal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Saudi Arabia
| | - Alex Turner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
8
|
Johnston ML, Bonett EM, DeColli AA, Freel Meyers CL. Antibacterial Target DXP Synthase Catalyzes the Cleavage of d-Xylulose 5-Phosphate: a Study of Ketose Phosphate Binding and Ketol Transfer Reaction. Biochemistry 2022; 61:1810-1823. [PMID: 35998648 PMCID: PMC9531112 DOI: 10.1021/acs.biochem.2c00274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) in a thiamin diphosphate (ThDP)-dependent manner. In addition to its role in isoprenoid biosynthesis, DXP is required for ThDP and pyridoxal phosphate biosynthesis. Due to its function as a branch-point enzyme and its demonstrated substrate and catalytic promiscuity, we hypothesize that DXPS could be key for bacterial adaptation in the dynamic metabolic landscape during infection. Prior work in the Freel Meyers laboratory has illustrated that DXPS displays relaxed specificity toward donor and acceptor substrates and varies acceptor specificity according to the donor used. We have reported that DXPS forms dihydroxyethyl (DHE)ThDP from ketoacid or aldehyde donor substrates via decarboxylation and deprotonation, respectively. Here, we tested other DHE donors and found that DXPS cleaves d-xylulose 5-phosphate (X5P) at C2-C3, producing DHEThDP through a third mechanism involving d-GAP elimination. We interrogated DXPS-catalyzed reactions using X5P as a donor substrate and illustrated (1) production of a semi-stable enzyme-bound intermediate and (2) O2, H+, and d-erythrose 4-phosphate act as acceptor substrates, highlighting a new transketolase-like activity of DXPS. Furthermore, we examined X5P binding to DXPS and suggest that the d-GAP binding pocket plays a crucial role in X5P binding and turnover. Overall, this study reveals a ketose-cleavage reaction catalyzed by DXPS, highlighting the remarkable flexibility for donor substrate usage by DXPS compared to other C-C bond-forming enzymes.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eucolona M. Bonett
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Strategies for enhancing terpenoids accumulation in microalgae. Appl Microbiol Biotechnol 2021; 105:4919-4930. [PMID: 34125275 DOI: 10.1007/s00253-021-11368-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Terpenoids represent one of the largest class of chemicals in nature, which play important roles in food and pharmaceutical fields due to diverse biological and pharmacological activities. Microorganisms are recognized as a promising source of terpenoids due to its short growth cycle and sustainability. Importantly, microalgae can fix inorganic carbon through photosynthesis for the growth of themselves and the biosynthesis of various terpenoids. Moreover, microalgae possess effective biosynthesis pathways of terpenoids, both the eukaryotic mevalonic acid (MVA) pathway and the prokaryotic methyl-D-erythritol 4-phosphate (MEP) pathway. In recent years, various genetic engineering strategies have been applied to increase target terpenoid yields, including overexpression of the rate-limited enzymes and inhibition of the competing pathways. However, since gene-editing tools are only built in some model microalgae, fermentation strategies that are easier to be operated have been widely successful in promoting the production of terpenoids, such as changing culture conditions and addition of chemical additives. In addition, an economical and effective downstream process is also an important consideration for the industrial production of terpenoids, and the solvent extraction and the supercritical fluid extraction method are the most commonly used strategies, especially in the industrial production of β-carotene and astaxanthin from microalgae. In this review, recent advancements and novel strategies used for terpenoid production are concluded and discussed, and new insights to move the field forward are proposed. KEY POINTS: • The MEP pathway is more stoichiometrically efficient than the MVA pathway. • Advanced genetic engineering and fermentation strategies can increase terpene yield. • SFE has a higher recovery of carotenoids than solvent extraction.
Collapse
|
10
|
Johnston ML, Freel Meyers CL. Revealing Donor Substrate-Dependent Mechanistic Control on DXPS, an Enzyme in Bacterial Central Metabolism. Biochemistry 2021; 60:929-939. [PMID: 33660509 PMCID: PMC8015787 DOI: 10.1021/acs.biochem.1c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Indexed: 11/28/2022]
Abstract
The thiamin diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate (donor) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor). DXPS is essential in bacteria but absent in human metabolism, highlighting it as a potential antibacterial drug target. The enzyme possesses unique structural and mechanistic features that enable development of selective inhibition strategies and raise interesting questions about DXPS function in bacterial pathogens. DXPS distinguishes itself within the ThDP enzyme class by its exceptionally large active site and random sequential mechanism in DXP formation. In addition, DXPS displays catalytic promiscuity and relaxed acceptor substrate specificity, yet previous studies have suggested a preference for pyruvate as the donor substrate when d-GAP is the acceptor substrate. However, such donor specificity studies are potentially hindered by a lack of knowledge about specific, alternative donor-acceptor pairs. In this study, we exploited the promiscuous oxygenase activity of DXPS to uncover alternative donor substrates for DXPS. Characterization of glycolaldehyde, hydroxypyruvate, and ketobutyrate as donor substrates revealed differences in stabilization of enzyme-bound intermediates and acceptor substrate usage, illustrating the influence of the donor substrate on reaction mechanism and acceptor specificity. In addition, we found that DXPS prevents abortive acetyl-ThDP formation from a DHEThDP carbanion/enamine intermediate, similar to transketolase, supporting the potential physiological relevance of this intermediate on DXPS. Taken together, these results offer clues toward alternative roles for DXPS in bacterial pathogen metabolism.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| |
Collapse
|
11
|
DeColli AA, Zhang X, Heflin KL, Jordan F, Freel Meyers CL. Active Site Histidines Link Conformational Dynamics with Catalysis on Anti-Infective Target 1-Deoxy-d-xylulose 5-Phosphate Synthase. Biochemistry 2019; 58:4970-4982. [PMID: 31724401 DOI: 10.1021/acs.biochem.9b00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The product of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase, DXP, feeds into the bacterial biosynthesis of isoprenoids, thiamin diphosphate (ThDP), and pyridoxal phosphate. DXP is essential for human pathogens but not utilized by humans; thus, DXP synthase is an attractive anti-infective target. The unique ThDP-dependent mechanism and structure of DXP synthase offer ideal opportunities for selective targeting. Upon reaction with pyruvate, DXP synthase uniquely stabilizes the predecarboxylation intermediate, C2α-lactylThDP (LThDP), in a closed conformation. Subsequent binding of d-glyceraldehyde 3-phosphate induces an open conformation that is proposed to destabilize LThDP, triggering decarboxylation. Evidence for the closed and open conformations has been revealed by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography, which indicate that H49 and H299 are involved in conformational dynamics and movement of the fork and spoon motifs away from the active site is important for the closed-to-open transition. Interestingly, H49 and H299 are critical for DXP formation and interact with the predecarboxylation intermediate in the closed conformation. H299 is removed from the active site in the open conformation of the postdecarboxylation state. In this study, we show that substitution at H49 and H299 negatively impacts LThDP formation by shifting the conformational equilibrium of DXP synthase toward an open conformation. We also present a method for monitoring the dynamics of the spoon motif that uncovered a previously undetected role for H49 in coordinating the closed conformation. Overall, our results suggest that H49 and H299 are critical for the closed, predecarboxylation state providing the first direct link between catalysis and conformational dynamics.
Collapse
Affiliation(s)
- Alicia A DeColli
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Xu Zhang
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
| | - Kathryn L Heflin
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Frank Jordan
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| |
Collapse
|
12
|
Chen PYT, DeColli AA, Freel Meyers CL, Drennan CL. X-ray crystallography-based structural elucidation of enzyme-bound intermediates along the 1-deoxy-d-xylulose 5-phosphate synthase reaction coordinate. J Biol Chem 2019; 294:12405-12414. [PMID: 31239351 PMCID: PMC6699841 DOI: 10.1074/jbc.ra119.009321] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/16/2019] [Indexed: 01/07/2023] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) into 1-deoxy-d-xylulose 5-phosphate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attractive antibacterial target. Here, we investigate DXPS from Deinococcus radiodurans (DrDXPS), showing that it has similar kinetic parameters Kmd-GAP and Kmpyruvate (54 ± 3 and 11 ± 1 μm, respectively) and comparable catalytic activity (kcat = 45 ± 2 min-1) with previously studied bacterial DXPS enzymes and employing it to obtain missing structural data on this enzyme family. In particular, we have determined crystallographic snapshots of DrDXPS in two states along the reaction coordinate: a structure of DrDXPS bound to C2α-phosphonolactylThDP (PLThDP), mimicking the native pre-decarboxylation intermediate C2α-lactylThDP (LThDP), and a native post-decarboxylation state with a bound enamine intermediate. The 1.94-Å-resolution structure of PLThDP-bound DrDXPS delineates how two active-site histidine residues stabilize the LThDP intermediate. Meanwhile, the 2.40-Å-resolution structure of an enamine intermediate-bound DrDXPS reveals how a previously unknown 17-Å conformational change removes one of the two histidine residues from the active site, likely triggering LThDP decarboxylation to form the enamine intermediate. These results provide insight into how the bi-substrate enzyme DXPS limits side reactions by arresting the reaction on the less reactive LThDP intermediate when its cosubstrate is absent. They also offer a molecular basis for previous low-resolution experimental observations that correlate decarboxylation of LThDP with protein conformational changes.
Collapse
Affiliation(s)
- Percival Yang-Ting Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alicia A. DeColli
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, To whom correspondence may be addressed:
Dept. of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. Tel.:
410-502-4807; Fax:
410-955-3023; E-mail:
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, A Howard Hughes Medical Institute investigator and a senior fellow of the Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR). To whom correspondence may be addressed:
Depts. of Biology and Chemistry, Massachusetts Institute of Technology, 31 Ames St., Bldg. 68-680, Cambridge, MA 02139. Tel.:
617-253-5622; Fax:
617-258-7847; E-mail:
| |
Collapse
|
13
|
Bartee D, Sanders S, Phillips PD, Harrison MJ, Koppisch AT, Freel Meyers CL. Enamide Prodrugs of Acetyl Phosphonate Deoxy-d-xylulose-5-phosphate Synthase Inhibitors as Potent Antibacterial Agents. ACS Infect Dis 2019; 5:406-417. [PMID: 30614674 DOI: 10.1021/acsinfecdis.8b00307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To fight the growing threat of antibiotic resistance, new antibiotics are required that target essential bacterial processes other than protein, DNA/RNA, and cell wall synthesis, which constitute the majority of currently used antibiotics. 1-Deoxy-d-xylulose-5-phosphate (DXP) synthase is a vital enzyme in bacterial central metabolism, feeding into the de novo synthesis of thiamine diphosphate, pyridoxal phosphate, and essential isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate. While potent and selective inhibitors of DXP synthase in vitro activity have been discovered, their antibacterial activity is modest. To improve the antibacterial activity of selective alkyl acetylphosphonate (alkylAP) inhibitors of DXP synthase, we synthesized peptidic enamide prodrugs of alkylAPs inspired by the natural product dehydrophos, a prodrug of methyl acetylphosphonate. This prodrug strategy achieves dramatic increases in activity against Gram-negative pathogens for two alkylAPs, butyl acetylphosphonate and homopropargyl acetylphosphonate, decreasing minimum inhibitory concentrations against Escherichia coli by 33- and nearly 2000-fold, respectively. Antimicrobial studies and LC-MS/MS analysis of alkylAP-treated E. coli establish that the increased potency of prodrugs is due to increased accumulation of alkylAP inhibitors of DXP synthase via transport of the prodrug through the OppA peptide permease and subsequent amide hydrolysis. This work demonstrates the promise of targeting DXP synthase for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- David Bartee
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Sara Sanders
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Paul D. Phillips
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Mackenzie J. Harrison
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Andrew T. Koppisch
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
14
|
Bartee D, Freel Meyers CL. Toward Understanding the Chemistry and Biology of 1-Deoxy-d-xylulose 5-Phosphate (DXP) Synthase: A Unique Antimicrobial Target at the Heart of Bacterial Metabolism. Acc Chem Res 2018; 51:2546-2555. [PMID: 30203647 DOI: 10.1021/acs.accounts.8b00321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are the cornerstone of modern healthcare. The 20th century discovery of sulfonamides and β-lactam antibiotics altered human society immensely. Simple bacterial infections were no longer a leading cause of morbidity and mortality, and antibiotic prophylaxis greatly reduced the risk of infection from surgery. The current healthcare system requires effective antibiotics to function. However, antibiotic-resistant infections are becoming increasingly prevalent, threatening the emergence of a postantibiotic era. To prevent this public health crisis, antibiotics with novel modes of action are needed. Currently available antibiotics target just a few cellular processes to exert their activity: DNA, RNA, protein, and cell wall biosynthesis. Bacterial central metabolism is underexploited, offering a wealth of potential new targets that can be pursued toward expanding the armamentarium against microbial infections. Discovered in 1997 as the first enzyme in the methylerythritol phosphate (MEP) pathway, 1-deoxy-d-xylulose 5-phosphate (DXP) synthase is a thiamine diphosphate (ThDP)-dependent enzyme that catalyzes the decarboxylative condensation of pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to form DXP. This five-carbon metabolite feeds into three separate essential pathways for bacterial central metabolism: ThDP synthesis, pyridoxal phosphate (PLP) synthesis, and the MEP pathway for isoprenoid synthesis. While it has long been identified as a target for the development of antimicrobial agents, limited progress has been made toward developing selective inhibitors of the enzyme. This Account highlights advances from our lab over the past decade to understand this important and unique enzyme. Unlike all other known ThDP-dependent enzymes, DXP synthase uses a random-sequential mechanism that requires the formation of a ternary complex prior to decarboxylation of the lactyl-ThDP intermediate. Its large active site accommodates a variety of acceptor substrates, lending itself to a number of alternative activities, such as the production of α-hydroxy ketones, hydroxamates, amides, acetolactate, and peracetate. Knowledge gained from mechanistic and substrate-specificity studies has guided the development of selective inhibitors with antibacterial activity and provides a biochemical foundation toward understanding DXP synthase function in bacterial cells. Although it is a promising drug target, the centrality of DXP synthase in bacterial metabolism imparts specific challenges to assessing antibacterial activity of DXP synthase inhibitors, and the susceptibility of most bacteria to current DXP synthase inhibitors is remarkably culture-medium-dependent. Despite these challenges, the study of DXP synthase is poised to reveal the role of DXP synthase in bacterial metabolic adaptability during infection, ultimately providing a more complete picture of how inhibiting this crucial enzyme can be used to develop novel antibiotics.
Collapse
Affiliation(s)
- David Bartee
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|