1
|
Qu Z, Shi L, Wu Z, Lin P, Zhang G, Cong X, Zhao X, Ge H, Yan S, Jiang L, Wu H. Kinesin light chain 1 stabilizes insulin receptor substrate 1 to regulate the IGF-1-AKT signaling pathway during myoblast differentiation. FASEB J 2024; 38:e23432. [PMID: 38300173 DOI: 10.1096/fj.202201065rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
The IGF signaling pathway plays critical role in regulating skeletal myogenesis. We have demonstrated that KIF5B, the heavy chain of kinesin-1 motor, promotes myoblast differentiation through regulating IGF-p38MAPK activation. However, the roles of the kinesin light chain (Klc) in IGF pathway and myoblast differentiation remain elusive. In this study, we found that Klc1 was upregulated during muscle regeneration and downregulated in senescence mouse muscles and dystrophic muscles from mdx (X-linked muscular dystrophic) mice. Gain- and loss-of-function experiments further displayed that Klc1 promotes AKT-mTOR activity and positively regulates myogenic differentiation. We further identified that the expression levels of IRS1, the critical node of IGF-1 signaling, are downregulated in Klc1-depleted myoblasts. Coimmunoprecipitation study revealed that IRS1 interacted with the 88-154 amino acid sequence of Klc1 via its PTB domain. Notably, the reduced Klc1 levels were found in senescence and osteoporosis skeletal muscle samples from both mice and human. Taken together, our findings suggested a crucial role of Klc1 in the regulation of IGF-AKT pathway during myogenesis through stabilizing IRS1, which might ultimately influence the development of muscle-related disorders.
Collapse
Affiliation(s)
- Zihao Qu
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linjing Shi
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Wu
- Department of Orthopaedic Surgery, The First Clinical Medical College of Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Peng Lin
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangan Zhang
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Cong
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Zhao
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqing Ge
- Department of Respiratory Care, Regional Medical Center for the National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shigui Yan
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangjun Jiang
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haobo Wu
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Identification of key biomarkers and immune infiltration in sporadic vestibular schwannoma basing transcriptome-wide profiling. World Neurosurg 2022; 160:e591-e600. [PMID: 35092815 DOI: 10.1016/j.wneu.2022.01.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vestibular schwannoma (VS) is a common intracranial tumor, with 95% of the cases being sporadic vestibular schwannoma (SVS). The purposed of this study was identifying genes responsible for inflammation in SVS and clarifying its underlying immune mechanisms. METHODS Transcriptional sequencing datasets (GSE141801 and GSE108237) from the Gene Expression Omnibus (GEO) database were used in this study. The candidate modules closely related to SVS and hub genes were screened out by weighted gene co-expression network analysis. Τhe sensitivity and specificity of the hub genes for SVS prediction were evaluated by ROC curve analysis. The CIBERSORT algorithm was subsequently applied to analyze the immune infiltration between SVS and controls. Finally, biological signaling pathways involved in the hub genes were identified via gene set enrichment analysis. RESULTS A total of 39 significantly enriched in myelination and collagen-containing extracellular matrix DEGs were identified at the screening step. Three hub genes (MAPK8IP1, SLC36A2, and OR2AT4) were identified, which mainly enriched in pathways of melanogenesis, GnRH, and calcium signaling pathways. Compared with normal nerves, SVS tissue contained a higher proportion of T cells, monocytes and activated dendritic cells, whereas proportions of M2 macrophages were lower. CONCLUSIONS The intergrated analysis revealed the pattern of immune cell infiltration in SVS and provided a crucial molecular foundation to enhance understanding of SVS. Hub genes MAPK8IP1, SLC36A2 and OR2AT4 are potential biomarkers and therapeutic targets to facilitate the accurate diagnosis, prognosis and therapy of SVS.
Collapse
|
3
|
Benoit B, Baillet A, Poüs C. Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators. Int J Mol Sci 2021; 22:8375. [PMID: 34445080 PMCID: PMC8395060 DOI: 10.3390/ijms22168375] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
This review extensively reports data from the literature concerning the complex relationships between the stress-induced c-Jun N-terminal kinases (JNKs) and the four main cytoskeleton elements, which are actin filaments, microtubules, intermediate filaments, and septins. To a lesser extent, we also focused on the two membrane-associated cytoskeletons spectrin and ESCRT-III. We gather the mechanisms controlling cytoskeleton-associated JNK activation and the known cytoskeleton-related substrates directly phosphorylated by JNK. We also point out specific locations of the JNK upstream regulators at cytoskeletal components. We finally compile available techniques and tools that could allow a better characterization of the interplay between the different types of cytoskeleton filaments upon JNK-mediated stress and during development. This overview may bring new important information for applied medical research.
Collapse
Affiliation(s)
- Béatrice Benoit
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Anita Baillet
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
- Biochimie-Hormonologie, AP-HP Université Paris-Saclay, Site Antoine Béclère, 157 Rue de la Porte de Trivaux, 92141 Clamart, France
| |
Collapse
|
4
|
Chen X, Xu H, Shi W, Wang F, Xu F, Zhang Y, Gan J, Tian X, Chen B, Dai M. 11p11.12p12 duplication in a family with intellectual disability and craniofacial anomalies. BMC Med Genomics 2021; 14:99. [PMID: 33836758 PMCID: PMC8034150 DOI: 10.1186/s12920-021-00945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Potocki-Shaffer syndrome (PSS) is a rare contiguous gene deletion syndrome marked by haploinsufficiency of genes in chromosomal region 11p11.2p12. Approximately 50 cases of PSS have been reported; however, a syndrome with a PSS-like clinical phenotype caused by 11p11.12p12 duplication has not yet been reported. METHODS 11p11.12p12 duplication syndrome was identified and evaluated using a multidisciplinary protocol. Diagnostic studies included intelligence testing, thorough physical examination, electroencephalography (EEG), magnetic resonance imaging (MRI) of the brain, ultrasonography, biochemical tests and karyotype analysis. Next-generation sequencing analysis clarified the location of the chromosomal variations, which was confirmed by chromosome microarray analysis (CMA). Whole-exome sequencing (WES) was performed to exclude single nucleotide variations (SNVs). A wider literature search was performed to evaluate the correlation between the genes contained in the chromosomal region and clinical phenotypes. RESULTS The proband was a 36-year-old mother with intellectual disability (ID) and craniofacial anomalies (CFA). She and her older son, who had a similar clinical phenotype, both carried the same 11p11.12p12 duplication with a copy number increase of approximately 10.5 Mb (chr11:40231033_50762504, GRCh37/hg19) in chromosome bands 11p11.12p12. In addition, she gave birth to a child with a normal phenotype who did not carry the 11p11.12p12 duplication. By literature research and DECIPHER, we identified some shared and some distinct features between this duplication syndrome and PSS. One or more of ALX4, SLC35C1, PHF21A and MAPK8IP1 may be responsible for 11p11.12p12 duplication syndrome. CONCLUSIONS We present the first report of 11p11.12p12 duplication syndrome. It is an interesting case worth reporting. The identification of clinical phenotypes will facilitate genetic counselling. A molecular cytogenetic approach was helpful in identifying the genetic aetiology of the patients and potential candidate genes with triplosensitive effects involved in 11p11.12p12 duplication.
Collapse
Affiliation(s)
- Xuejiao Chen
- Medical Research Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Huihui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Weiwu Shi
- Medical Research Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Feng Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Fenfen Xu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yang Zhang
- Medical Research Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jun Gan
- Medical Research Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xiong Tian
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Baojun Chen
- Department of Mental Health, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Meizhen Dai
- Medical Research Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.
| |
Collapse
|
5
|
Fragment-linking peptide design yields a high-affinity ligand for microtubule-based transport. Cell Chem Biol 2021; 28:1347-1355.e5. [PMID: 33838110 DOI: 10.1016/j.chembiol.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/08/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Synthetic peptides are attractive candidates to manipulate protein-protein interactions inside the cell as they mimic natural interactions to compete for binding. However, protein-peptide interactions are often dynamic and weak. A challenge is to design peptides that make improved interactions with the target. Here, we devise a fragment-linking strategy-"mash-up" design-to deliver a high-affinity ligand, KinTag, for the kinesin-1 motor. Using structural insights from natural micromolar-affinity cargo-adaptor ligands, we have identified and combined key binding features in a single, high-affinity ligand. An X-ray crystal structure demonstrates interactions as designed and reveals only a modest increase in interface area. Moreover, when genetically encoded, KinTag promotes transport of lysosomes with higher efficiency than natural sequences, revealing a direct link between motor-adaptor binding affinity and organelle transport. Together, these data demonstrate a fragment-linking strategy for peptide design and its application in a synthetic motor ligand to direct cellular cargo transport.
Collapse
|
6
|
Fukuda Y, Pazyra-Murphy MF, Silagi ES, Tasdemir-Yilmaz OE, Li Y, Rose L, Yeoh ZC, Vangos NE, Geffken EA, Seo HS, Adelmant G, Bird GH, Walensky LD, Marto JA, Dhe-Paganon S, Segal RA. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. J Cell Biol 2021; 220:e202005051. [PMID: 33284322 PMCID: PMC7721913 DOI: 10.1083/jcb.202005051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Complex neural circuitry requires stable connections formed by lengthy axons. To maintain these functional circuits, fast transport delivers RNAs to distal axons where they undergo local translation. However, the mechanism that enables long-distance transport of RNA granules is not yet understood. Here, we demonstrate that a complex containing RNA and the RNA-binding protein (RBP) SFPQ interacts selectively with a tetrameric kinesin containing the adaptor KLC1 and the motor KIF5A. We show that the binding of SFPQ to the KIF5A/KLC1 motor complex is required for axon survival and is impacted by KIF5A mutations that cause Charcot-Marie Tooth (CMT) disease. Moreover, therapeutic approaches that bypass the need for local translation of SFPQ-bound proteins prevent axon degeneration in CMT models. Collectively, these observations indicate that KIF5A-mediated SFPQ-RNA granule transport may be a key function disrupted in KIF5A-linked neurologic diseases and that replacing axonally translated proteins serves as a therapeutic approach to axonal degenerative disorders.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Maria F. Pazyra-Murphy
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth S. Silagi
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Ozge E. Tasdemir-Yilmaz
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Yihang Li
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Lillian Rose
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Zoe C. Yeoh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gregory H. Bird
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Loren D. Walensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jarrod A. Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Rosalind A. Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|