1
|
Ma D, Tan Z, Li S, Zhao B, Yue L, Wei X, Xu S, Jiang N, Lei H, Zhai X. Discovery of Novel 4,5,6,7-Tetrahydro-7 H-pyrazolo[3,4- c]pyridin-7-one Derivatives as Orally Efficacious ATX Allosteric Inhibitors for the Treatment of Pulmonary Fibrosis. J Med Chem 2024. [PMID: 39720950 DOI: 10.1021/acs.jmedchem.4c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1H-indole-3-carboxamide, 4,5,6,7-tetrahydro-7H-pyrazolo[3,4-c]pyridin-7-one, or 4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine cores were designed based on the structure of ATX hydrophobic tunnel. The optimal 31 and 35 inhibited ATX with IC50 values of 2.8 and 0.7 nM, respectively. In a bleomycin-induced mouse PF model, both compounds significantly reduced fibrosis by regulating the TGF-β/Smad signaling pathway and downregulating collagen deposition. Furthermore, 35 exhibited both negligibly low hERG channel inhibition (IC50 > 30 μM) and remarkable microsomal stability. Notably, 35 was characterized by favorable pharmacokinetic properties (F = 69.5%) and excellent safety in vivo. Overall, 35 turned out to be a well-characterized potent and safe ATX inhibitor warranting further investigation for the treatment of PF.
Collapse
Affiliation(s)
- Deyi Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bing Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiujian Wei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sha Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Hyeong Lee S, Jin Park S, Young Lee M, Young Choi J, Dae Jang W, Jang J, Hyun Lee J, Jo Lim C, Oh KS. Design, synthesis and evaluation of 3-(2-(substituted benzyloxy)benzylidene) pyrrolidine-2,5-dione derivatives for novel ATX inhibitor. Bioorg Med Chem Lett 2024; 114:130006. [PMID: 39477127 DOI: 10.1016/j.bmcl.2024.130006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
Autotaxin (ATX) has emerged as a promising therapeutic target for liver diseases. In this study, we identified potential drug candidates through in silico high-throughput screening. Subsequently, we synthesized a series of small molecules, specifically KR-40795 (2c), a pyrrolidine-2,5-dione-based analogue that binds to the allosteric tunnel and hydrophobic pocket of ATX. This compound was designed to inhibit the enzymatic activity of ATX for the treatment of liver diseases. The inhibitory potency of KR-40795 was evaluated using a biochemical assay that measured the hydrolysis of a specific substrate (FS-3). Notably, KR-40795 demonstrated significant inhibition of both collagen formation and lipid accumulation in liver cells, suggesting its potential as a therapeutic agent for liver diseases, particularly fibrosis and steatosis.
Collapse
Affiliation(s)
- Seung Hyeong Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Su Jin Park
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, KRICT School, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Mi Young Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jun Young Choi
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Woo Dae Jang
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, KRICT School, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jidon Jang
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jeong Hyun Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chae Jo Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kwang-Seok Oh
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, KRICT School, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Simonetti J, Ficili M, Sgalla G, Richeldi L. Experimental autotaxin inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2024; 33:133-143. [PMID: 38299617 DOI: 10.1080/13543784.2024.2305126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Idiopathic Pulmonary Fibrosis (IPF) is a progressive, irreversible, and fatal lung disease with unmet medical needs. Autotaxin (ATX) is an extracellular enzyme involved in the generation of lysophosphatidic acid (LPA). Preclinical and clinical data have suggested the ATX-LPAR signaling axis plays an important role in the pathogenesis and the progression of IPF. AREAS COVERED The aim of this review is to provide an update on the available evidence on autotaxin inhibitors in IPF and further details on the ongoing clinical studies involving these molecules. EXPERT OPINION The development of autotaxin inhibitors as a potential therapy for idiopathic pulmonary fibrosis has gained attention due to evidence of their involvement in the disease. Preclinical and early-phase clinical studies have explored these inhibitors' efficacy and safety, offering a novel approach in treating this disease. Combining autotaxin inhibitors with existing anti-fibrotic agents is considered for enhanced therapeutic effects. Large phase III trials assessed Ziritaxestat but yielded disappointing results, highlighting the importance of long-term observation and clinical outcomes in clinical research. Patient stratification and personalized medicine are crucial, as pulmonary fibrosis is a heterogeneous disease. Ongoing research and collaboration are essential for this advancement.
Collapse
Affiliation(s)
- Jacopo Simonetti
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Ficili
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Sgalla
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Richeldi
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Davoudian K, Bhattacharya S, Thompson D, Thompson M. Coupled Electrostatic and Hydrophobic Destabilisation of the Gelsolin-Actin Complex Enables Facile Detection of Ovarian Cancer Biomarker Lysophosphatidic Acid. Biomolecules 2023; 13:1426. [PMID: 37759826 PMCID: PMC10527313 DOI: 10.3390/biom13091426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a promising biomarker candidate to screen for ovarian cancer (OC) and potentially stratify and treat patients according to disease stage. LPA is known to target the actin-binding protein gelsolin which is a key regulator of actin filament assembly. Previous studies have shown that the phosphate headgroup of LPA alone is inadequate to bind to the short chain of amino acids in gelsolin known as the PIP2-binding domain. Thus, the molecular-level detail of the mechanism of LPA binding is poorly understood. Here, we model LPA binding to the PIP2-binding domain of gelsolin in the gelsolin-actin complex through extensive ten-microsecond atomistic molecular dynamics (MD) simulations. We predict that LPA binding causes a local conformational rearrangement due to LPA interactions with both gelsolin and actin residues. These conformational changes are a result of the amphipathic nature of LPA, where the anionic phosphate, polar glycerol and ester groups, and lipophilic aliphatic tail mediate LPA binding via charged electrostatic, hydrogen bonding, and van der Waals interactions. The negatively-charged LPA headgroup binds to the PIP2-binding domain of gelsolin-actin while its hydrophobic tail is inserted into actin, creating a strong LPA-insertion pocket that weakens the gelsolin-actin interface. The computed structure, dynamics, and energetics of the ternary gelsolin-LPA-actin complex confirms that a quantitative OC assay is possible based on LPA-triggered actin release from the gelsolin-actin complex.
Collapse
Affiliation(s)
- Katharina Davoudian
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada;
| | - Shayon Bhattacharya
- SSPC—The Science Foundation Ireland Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland;
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Damien Thompson
- SSPC—The Science Foundation Ireland Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland;
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada;
| |
Collapse
|
5
|
Centonze M, Di Conza G, Lahn M, Fabregat I, Dituri F, Gigante I, Serino G, Scialpi R, Carrieri L, Negro R, Pizzuto E, Giannelli G. Autotaxin inhibitor IOA-289 reduces gastrointestinal cancer progression in preclinical models. J Exp Clin Cancer Res 2023; 42:197. [PMID: 37550785 PMCID: PMC10408149 DOI: 10.1186/s13046-023-02780-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Autotaxin (ATX) is a secreted enzyme that converts lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA stimulates cell proliferation and migration and promotes wound repair following tissue damage. ATX levels are directly correlated with stage and grade in several human cancers. Several small molecule ATX inhibitors have been developed in recent years. IOA-289 is a potent ATX inhibitor, developed to treat cancers containing fibrosis. In this study, we tested IOA-289 treatment on different gastrointestinal tract tumor cell lines, in order to evaluate its effects on viability and motility. METHODS To determine the effects on cell viability and proliferation of treatment with increasing concentrations of IOA-289, we used the crystal violet assay, a clonogenic assay in matrigel, and we evaluated the inhibitor's effect on formation of 3D spheroids in an in vitro model. The effect of IOA-289 on cell cycle phases was analysed with a redox dye reagent. Cell migration capacity was evaluated by wound healing assay and transwell migration assay. To evaluate the pro-apoptotic effect of the inhibitor, cells were stained with Annexin V and immunofluorescence and flow cytometry analysis were performed. An antibody array was also used, to discriminate, in various samples, the differential expression of 43 proteins involved in the apoptosis pathway. RESULTS We found that IOA-289 is able to inhibit both growth and migration of gastrointestinal tract tumor cell lines, both in 2D (crystal violet assay) and 3D in vitro models (spheroid formation and clonogenic assay in matrigel). This effect is dose-dependent, and the drug is most effective when administered in FBS-free culture medium. The inhibitory effect on cell growth is due to a pro-apoptotic effect of IOA-289. Staining with FITC-conjugated Annexin V showed that IOA-289 induced a dose-dependent increase in fluorescence following incubation for 24 h, and apoptotic cells were also distinguished in flow cytometry using Annexin/PI staining. The antibody array shows that treatment with IOA-289 causes the increased expression of several pro-apoptotic proteins in all tested cell lines. CONCLUSIONS These results indicate that IOA-289 may be an effective drug for the treatment of tumors of the gastrointestinal tract, particularly those characterized by a high degree of fibrosis.
Collapse
Affiliation(s)
- Matteo Centonze
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Giusy Di Conza
- iOnctura SA, Avenue Secheron 15, 1202, Geneva, Switzerland
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, 1202, Geneva, Switzerland
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBEREHD - ISCIII, Barcelona, Spain
| | - Francesco Dituri
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Grazia Serino
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Rosanna Scialpi
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Livianna Carrieri
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Roberto Negro
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Elena Pizzuto
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy.
| |
Collapse
|
6
|
Tan L, Ouyang Z, Chen Z, Sun F, Guo H, Wang F, Mulder M, Sun Y, Lu X, Zhang JV, Danser AHJ, Verdonk K, Fan X, Yang Q. Adipokine chemerin overexpression in trophoblasts leads to dyslipidemia in pregnant mice: implications for preeclampsia. Lipids Health Dis 2023; 22:12. [PMID: 36698175 PMCID: PMC9875463 DOI: 10.1186/s12944-023-01777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The adipokine chemerin regulates adipogenesis and the metabolic function of both adipocytes and liver. Chemerin is elevated in preeclamptic women, and overexpression of chemerin in placental trophoblasts induces preeclampsia-like symptoms in mice. Preeclampsia is known to be accompanied by dyslipidemia, albeit via unknown mechanisms. Here, we hypothesized that chemerin might be a contributor to dyslipidemia. METHODS Serum lipid fractions as well as lipid-related genes and proteins were determined in pregnant mice with chemerin overexpression in placental trophoblasts and chemerin-overexpressing human trophoblasts. In addition, a phospholipidomics analysis was performed in chemerin-overexpressing trophoblasts. RESULTS Overexpression of chemerin in trophoblasts increased the circulating and placental levels of cholesterol rather than triglycerides. It also increased the serum levels of lysophosphatidic acid, high-density lipoprotein cholesterol (HDL-C), and and low-density lipoprotein cholesterol (LDL-C), and induced placental lipid accumulation. Mechanistically, chemerin upregulated the levels of peroxisome proliferator-activated receptor g, fatty acid-binding protein 4, adiponectin, sterol regulatory element-binding protein 1 and 2, and the ratio of phosphorylated extracellular signal-regulated protein kinase (ERK)1/2 / total ERK1/2 in the placenta of mice and human trophoblasts. Furthermore, chemerin overexpression in human trophoblasts increased the production of lysophospholipids and phospholipids, particularly lysophosphatidylethanolamine. CONCLUSIONS Overexpression of placental chemerin production disrupts trophoblast lipid metabolism, thereby potentially contributing to dyslipidemia in preeclampsia.
Collapse
Affiliation(s)
- Lunbo Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Zijun Ouyang
- School of Food and Drug, Shenzhen Polytechnic, Institute of Marine Biomedicine, Shenzhen, 518055, China
| | - Zhilong Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fen Sun
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haichun Guo
- Changsha Hospital for Maternal and Child Health Care, Changsha, 410007, China
| | - Feng Wang
- Department of Obstetrics and Gynecology, Shenzhen Hengsheng Hospital, Shenzhen, 518115, China
| | - Monique Mulder
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Yuan Sun
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Xifeng Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Koen Verdonk
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Xiujun Fan
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Salgado-Polo F, Borza R, Matsoukas MT, Marsais F, Jagerschmidt C, Waeckel L, Moolenaar WH, Ford P, Heckmann B, Perrakis A. Autotaxin facilitates selective LPA receptor signaling. Cell Chem Biol 2023; 30:69-84.e14. [PMID: 36640760 DOI: 10.1016/j.chembiol.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/27/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Autotaxin (ATX; ENPP2) produces the lipid mediator lysophosphatidic acid (LPA) that signals through disparate EDG (LPA1-3) and P2Y (LPA4-6) G protein-coupled receptors. ATX/LPA promotes several (patho)physiological processes, including in pulmonary fibrosis, thus serving as an attractive drug target. However, it remains unclear if clinical outcome depends on how different types of ATX inhibitors modulate the ATX/LPA signaling axis. Here, we show that the ATX "tunnel" is crucial for conferring key aspects of ATX/LPA signaling and dictates cellular responses independent of ATX catalytic activity, with a preference for activation of P2Y LPA receptors. The efficacy of the ATX/LPA signaling responses are abrogated more efficiently by tunnel-binding inhibitors, such as ziritaxestat (GLPG1690), compared with inhibitors that exclusively target the active site, as shown in primary lung fibroblasts and a murine model of radiation-induced pulmonary fibrosis. Our results uncover a receptor-selective signaling mechanism for ATX, implying clinical benefit for tunnel-targeting ATX inhibitors.
Collapse
Affiliation(s)
- Fernando Salgado-Polo
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Razvan Borza
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | | | - Florence Marsais
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Ludovic Waeckel
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Wouter H Moolenaar
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paul Ford
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
8
|
Discovery of novel tetrahydropyrido[4,3-d]pyrimidine analogs as potent autotaxin regulators with impressive tumor suppression effects. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Booijink R, Salgado‐Polo F, Jamieson C, Perrakis A, Bansal R. A type IV Autotaxin inhibitor ameliorates acute liver injury and nonalcoholic steatohepatitis. EMBO Mol Med 2022; 14:e16333. [PMID: 35833384 PMCID: PMC9449594 DOI: 10.15252/emmm.202216333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
The lysophosphatidic acid (LPA) signaling axis is an important but rather underexplored pathway in liver disease. LPA is predominantly produced by Autotaxin (ATX) that has gained significant attention with an impressive number of ATX inhibitors (type I-IV) reported. Here, we evaluated the therapeutic potential of a (yet unexplored) type IV inhibitor, Cpd17, in liver injury. We first confirmed the involvement of the ATX-LPA signaling axis in human and murine diseased livers. Then, we evaluated the effects of Cpd17, in comparison with the classic type I inhibitor PF8380, in vitro, where Cpd17 showed higher efficacy. Thereafter, we characterized the mechanism-of-action of both inhibitors and found that Cpd17 was more potent in inhibiting RhoA-mediated cytoskeletal remodeling, and phosphorylation of MAPK/ERK and AKT/PKB. Finally, the therapeutic potential of Cpd17 was investigated in CCl4 -induced acute liver injury and diet-induced nonalcoholic steatohepatitis, demonstrating an excellent potential of Cpd17 in reducing liver injury in both disease models in vivo. We conclude that ATX inhibition, by type IV inhibitor in particular, has an excellent potential for clinical application in liver diseases.
Collapse
Affiliation(s)
- Richell Booijink
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Fernando Salgado‐Polo
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Craig Jamieson
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| | - Anastassis Perrakis
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
10
|
Clark JM, Salgado-Polo F, Macdonald SJF, Barrett TN, Perrakis A, Jamieson C. Structure-Based Design of a Novel Class of Autotaxin Inhibitors Based on Endogenous Allosteric Modulators. J Med Chem 2022; 65:6338-6351. [PMID: 35440138 PMCID: PMC9059126 DOI: 10.1021/acs.jmedchem.2c00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autotaxin (ATX) facilitates the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA), a bioactive phospholipid, which facilitates a diverse range of cellular effects in multiple tissue types. Abnormal LPA expression can lead to the progression of diseases such as cancer and fibrosis. Previously, we identified a potent ATX steroid-derived hybrid (partially orthosteric and allosteric) inhibitor which did not form interactions with the catalytic site. Herein, we describe the design, synthesis, and biological evaluation of a focused library of novel steroid-derived analogues targeting the bimetallic catalytic site, representing an entirely unique class of ATX inhibitors of type V designation, which demonstrate significant pathway-relevant biochemical and phenotypic biological effects. The current compounds modulated LPA-mediated ATX allostery and achieved indirect blockage of LPA1 internalization, in line with the observed reduction in downstream signaling cascades and chemotaxis induction. These novel type V ATX inhibitors represent a promising tool to inactivate the ATX-LPA signaling axis.
Collapse
Affiliation(s)
- Jennifer M Clark
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Fernando Salgado-Polo
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Simon J F Macdonald
- Medicines Design, GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Tim N Barrett
- Medicines Design, GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
11
|
Bitar L, Uphaus T, Thalman C, Muthuraman M, Gyr L, Ji H, Domingues M, Endle H, Groppa S, Steffen F, Koirala N, Fan W, Ibanez L, Heitsch L, Cruchaga C, Lee JM, Kloss F, Bittner S, Nitsch R, Zipp F, Vogt J. Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Sci Transl Med 2022; 14:eabk0135. [PMID: 35442704 DOI: 10.1126/scitranslmed.abk0135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke penumbra injury caused by excess glutamate is an important factor in determining stroke outcome; however, several therapeutic approaches aiming to rescue the penumbra have failed, likely due to unspecific targeting and persistent excitotoxicity, which continued far beyond the primary stroke event. Synaptic lipid signaling can modulate glutamatergic transmission via presynaptic lysophosphatidic acid (LPA) 2 receptors modulated by the LPA-synthesizing molecule autotaxin (ATX) present in astrocytic perisynaptic processes. Here, we detected long-lasting increases in brain ATX concentrations after experimental stroke. In humans, cerebrospinal fluid ATX concentration was increased up to 14 days after stroke. Using astrocyte-specific deletion and pharmacological inhibition of ATX at different time points after experimental stroke, we showed that inhibition of LPA-related cortical excitability improved stroke outcome. In transgenic mice and in individuals expressing a single-nucleotide polymorphism that increased LPA-related glutamatergic transmission, we found dysregulated synaptic LPA signaling and subsequent negative stroke outcome. Moreover, ATX inhibition in the animal model ameliorated stroke outcome, suggesting that this approach might have translational potential for improving the outcome after stroke.
Collapse
Affiliation(s)
- Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Luzia Gyr
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Haichao Ji
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heiko Endle
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nabin Koirala
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Wei Fan
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Laura Ibanez
- Department of Psychiatry, Department of Neurology, NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Heitsch
- Department of Emergency Medicine, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Department of Neurology, NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Department of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Robert Nitsch
- Institute of Translational Neuroscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
12
|
Lei H, Wang X, Zhao G, Li T, Cui Y, Wu H, Yang J, Jiang N, Zhai X. Design, synthesis and promising anti-tumor efficacy of novel imidazo[1,2-a]pyridine derivatives as potent autotaxin allosteric inhibitors. Eur J Med Chem 2022; 236:114307. [DOI: 10.1016/j.ejmech.2022.114307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|
13
|
Lei H, Li Z, Li T, Wu H, Yang J, Yang X, Yang Y, Jiang N, Zhai X. Novel imidazo[1,2-a]pyridine derivatives as potent ATX allosteric inhibitors: Design, synthesis and promising in vivo anti-fibrotic efficacy in mice lung model. Bioorg Chem 2021; 120:105590. [PMID: 34998121 DOI: 10.1016/j.bioorg.2021.105590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
Aiming to develop novel allosteric autotaxin (ATX) inhibitors, hybrid strategy was utilized by assembling the benzyl carbamate fragment in PF-8380 onto the imidazo[1,2-a]pyridine skeleton of GLPG-1690. The piperazine moiety in GLPG-1690 was replaced with phenyl ring to enhance the π-π interactions with adjacent residues. In the light of FS-3 based ATX enzymatic assay, further structure-guided optimizations were implemented by exploring the substituents within the carbamate aromatic moiety and examining the effect of the 2-ethyl. Eventually, 13c bearing 1,3-benzodioxole and 2-hydroxyethyl piperazine group was identified as a powerful ATX inhibitor with an IC50 value of 2.7 nM. Subsequently, 13c was forwarded into an in vivo bleomycin-induced mice lung fibrosis model. In histopathological and immunohistochemical assays, 13c could typically alleviate the severity of fibrosis tissues and effectively reduce the deposition of fibrotic biomarker α-SMA. At a dose of 60 mg/kg, 13c was observed equivalent or even better potency than GLPG-1690 with a significant inhibition of the in vivo ATX activity. Except for the fundamental H-bond and π-π interactions, an extra H-bond between the 1,3-benzodioxole (O atom) and Phe306 offered great rationale in constraining the binding conformation of 13c. Finally, binding free energy calculation was conducted to assist in the efficient identification of allosteric ATX inhibitors.
Collapse
Affiliation(s)
- Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huinan Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinlian Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
14
|
Structure and function of the Ecto-Nucleotide Pyrophosphatase-Phosphodiesterase (ENPP) family: tidying up diversity. J Biol Chem 2021; 298:101526. [PMID: 34958798 PMCID: PMC8808174 DOI: 10.1016/j.jbc.2021.101526] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family members (ENPP1–7) have been implicated in key biological and pathophysiological processes, including nucleotide and phospholipid signaling, bone mineralization, fibrotic diseases, and tumor-associated immune cell infiltration. ENPPs are single-pass transmembrane ecto-enzymes, with notable exceptions of ENPP2 (Autotaxin) and ENNP6, which are secreted and glycosylphosphatidylinositol (GPI)-anchored, respectively. ENNP1 and ENNP2 are the best characterized and functionally the most interesting members. Here, we review the structural features of ENPP1–7 to understand how they evolved to accommodate specific substrates and mediate different biological activities. ENPPs are defined by a conserved phosphodiesterase (PDE) domain. In ENPP1–3, the PDE domain is flanked by two N-terminal somatomedin B-like domains and a C-terminal inactive nuclease domain that confers structural stability, whereas ENPP4–7 only possess the PDE domain. Structural differences in the substrate-binding site endow each protein with unique characteristics. Thus, ENPP1, ENPP3, ENPP4, and ENPP5 hydrolyze nucleotides, whereas ENPP2, ENPP6, and ENNP7 evolved as phospholipases through adaptions in the catalytic domain. These adaptations explain the different biological and pathophysiological functions of individual members. Understanding the ENPP members as a whole advances our insights into common mechanisms, highlights their functional diversity, and helps to explore new biological roles.
Collapse
|
15
|
Phospholipase A1 Member A Activates Fibroblast-like Synoviocytes through the Autotaxin-Lysophosphatidic Acid Receptor Axis. Int J Mol Sci 2021; 22:ijms222312685. [PMID: 34884486 PMCID: PMC8657932 DOI: 10.3390/ijms222312685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.
Collapse
|
16
|
Deng W, Chen F, Zhou Z, Huang Y, Lin J, Zhang F, Xiao G, Liu C, Liu C, Xu L. Hepatitis B Virus Promotes Hepatocellular Carcinoma Progression Synergistically With Hepatic Stellate Cells via Facilitating the Expression and Secretion of ENPP2. Front Mol Biosci 2021; 8:745990. [PMID: 34805271 PMCID: PMC8602366 DOI: 10.3389/fmolb.2021.745990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Hepatitis B virus (HBV) infection is a major risk factor causing hepatocellular carcinoma (HCC) development, but the molecular mechanisms are not fully elucidated. It has been reported that virus infection induces ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) expression, the latter participates in tumor progression. Therefore, the aim of the present study was to investigate whether HBV induced HCC malignancy via ENPP2. Methods: HCC patient clinical data were collected and prognosis was analyzed. Transient transfection and stable ectopic expression of the HBV genome were established in hepatoma cell lines. Immunohistochemical staining, RT-qPCR, western blot, and ELISA assays were used to detect the expression and secretion of ENPP2. Finally, CCK-8, colony formation, and migration assays as well as a subcutaneous xenograft mouse model were used to investigate the influence of HBV infection, ENPP2 expression, and activated hepatic stellate cells (aHSCs) on HCC progression in vitro and in vivo. Results: The data from cancer databases indicated that the level of ENPP2 was significant higher in HCC compared within normal liver tissues. Clinical relevance analysis using 158 HCC patients displayed that ENPP2 expression was positively correlated with poor overall survival and disease-free survival. Statistical analysis revealed that compared to HBV-negative HCC tissues, HBV-positive tissues expressed a higher level of ENPP2. In vitro, HBV upregulated ENPP2 expression and secretion in hepatoma cells and promoted hepatoma cell proliferation, colony formation, and migration via enhancement of ENPP2; downregulation of ENPP2 expression or inhibition of its function suppressed HCC progression. In addition, aHSCs strengthened hepatoma cell proliferation, migration in vitro, and promoted tumorigenesis synergistically with HBV in vivo; a loss-function assay further verified that ENPP2 is essential for HBV/aHSC-induced HCC progression. Conclusion: HBV enhanced the expression and secretion of ENPP2 in hepatoma cells, combined with aHSCs to promote HCC progression via ENPP2.
Collapse
Affiliation(s)
- Wanyu Deng
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,College of Life Science, Shangrao Normal University, Shangrao, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Ziyu Zhou
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yipei Huang
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlong Lin
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fapeng Zhang
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Xiao
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaoqun Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leibo Xu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Jia Y, Li Y, Xu XD, Tian Y, Shang H. Design and Development of Autotaxin Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14111203. [PMID: 34832985 PMCID: PMC8622848 DOI: 10.3390/ph14111203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future.
Collapse
Affiliation(s)
| | | | | | - Yu Tian
- Correspondence: (Y.T.); (H.S.)
| | | |
Collapse
|
18
|
AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation 2021; 45:477-496. [PMID: 34787800 DOI: 10.1007/s10753-021-01589-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.
Collapse
|
19
|
Matas-Rico E, Frijlink E, van der Haar Àvila I, Menegakis A, van Zon M, Morris AJ, Koster J, Salgado-Polo F, de Kivit S, Lança T, Mazzocca A, Johnson Z, Haanen J, Schumacher TN, Perrakis A, Verbrugge I, van den Berg JH, Borst J, Moolenaar WH. Autotaxin impedes anti-tumor immunity by suppressing chemotaxis and tumor infiltration of CD8 + T cells. Cell Rep 2021; 37:110013. [PMID: 34788605 PMCID: PMC8761359 DOI: 10.1016/j.celrep.2021.110013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
Autotaxin (ATX; ENPP2) produces lysophosphatidic acid (LPA) that regulates multiple biological functions via cognate G protein-coupled receptors LPAR1–6. ATX/LPA promotes tumor cell migration and metastasis via LPAR1 and T cell motility via LPAR2, yet its actions in the tumor immune microenvironment remain unclear. Here, we show that ATX secreted by melanoma cells is chemorepulsive for tumor-infiltrating lymphocytes (TILs) and circulating CD8+ T cells ex vivo, with ATX functioning as an LPA-producing chaperone. Mechanistically, T cell repulsion predominantly involves Gα12/13-coupled LPAR6. Upon anti-cancer vaccination of tumor-bearing mice, ATX does not affect the induction of systemic T cell responses but, importantly, suppresses tumor infiltration of cytotoxic CD8+ T cells and thereby impairs tumor regression. Moreover, single-cell data from melanoma tumors are consistent with intratumoral ATX acting as a T cell repellent. These findings highlight an unexpected role for the pro-metastatic ATX-LPAR axis in suppressing CD8+ T cell infiltration to impede anti-tumor immunity, suggesting new therapeutic opportunities. Through LPA production, ATX modulates the tumor microenvironment in autocrine-paracrine manners. Matas-Rico et al. show that ATX/LPA is chemorepulsive for T cells with a dominant inhibitory role for Gα12/13-coupled LPAR6. Upon anticancer vaccination, tumor-intrinsic ATX suppresses the infiltration of CD8+ T cells without affecting their cytotoxic quality.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elselien Frijlink
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Irene van der Haar Àvila
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Apostolos Menegakis
- Oncode Institute, Utrecht, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maaike van Zon
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart Institute and Lexington Veterans Affairs Medical Center, University of Kentucky, Lexington, KY, USA
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Fernando Salgado-Polo
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sander de Kivit
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Telma Lança
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Zoë Johnson
- iOnctura SA, Campus Biotech Innovation Park, Geneva, Switzerland
| | - John Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ton N Schumacher
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Inge Verbrugge
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Joost H van den Berg
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Wouter H Moolenaar
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Tsutsumi T, Ino M, Shimizu Y, Kawabata K, Nishi H, Tokumura A. Altered plasma levels of lysophospholipids in response to adrenalectomy of rats. Prostaglandins Other Lipid Mediat 2021; 156:106579. [PMID: 34245896 DOI: 10.1016/j.prostaglandins.2021.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
The aim of this study was to investigate effects of reduced stress hormone by adrenalectomy on rat plasma levels of lysophosphatidic acid (LPA) and other lysophospholipids. We measured activities of lysophospholipase D (lysoPLD) in plasma and lipid phosphate phosphatase (LPP) in blood by determining choline and inorganic phosphate, respectively. LPA, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylinositol (LPI), lysophosphatidylserine (LPS) and lysophosphatodylglycerol were quantified by LC-MS/MS. In adrenalectomized rats, plasma levels of LPA, LPE, LPS and LPI, but not LPC, were increased. The increased level of LPA were due to decreased LPC level, increases plasma activity of lysoPLD toward LPC and decreased LPP activity toward LPA. Daily injections of deoxycoricosterone into rats selectively reversed increased level of LPS. Our results suggest enzymatic mechanism for increased plasma level of LPA, and indicate that the circulating levels of lysophospholipids including LPA in rats are differently affected by artificial suppression of release of adrenergic hormones.
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshinomachi, Nobeoka, 882-8508, Japan
| | - Masaki Ino
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yoshibumi Shimizu
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Kohei Kawabata
- Department of Pharmacy, Yasuda Women's University, 13-6-1 Yasuhigashi, Asaminamiku, Hiroshima, 731-0153, Japan
| | - Hiroyuki Nishi
- Department of Pharmacy, Yasuda Women's University, 13-6-1 Yasuhigashi, Asaminamiku, Hiroshima, 731-0153, Japan
| | - Akira Tokumura
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan; Department of Pharmacy, Yasuda Women's University, 13-6-1 Yasuhigashi, Asaminamiku, Hiroshima, 731-0153, Japan.
| |
Collapse
|
21
|
2-Carba-lysophosphatidic acid is a novel β-lysophosphatidic acid analogue with high potential for lysophosphatidic acid receptor activation and autotaxin inhibition. Sci Rep 2021; 11:17360. [PMID: 34462512 PMCID: PMC8405639 DOI: 10.1038/s41598-021-96931-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator that, along with its chemically stabilized analogue 2-carba-cyclic phosphatidic acid (2ccPA), induces various biological activities in vitro and in vivo. Although cPA is similar to lysophosphatidic acid (LPA) in structure and synthetic pathway, some of cPA biological functions apparently differ from those reported for LPA. We previously investigated the pharmacokinetic profile of 2ccPA, which was found to be rapidly degraded, especially in acidic conditions, yielding an unidentified compound. Thus, not only cPA but also its degradation compound may contribute to the biological activity of cPA, at least for 2ccPA. In this study, we determined the structure and examined the biological activities of 2-carba-lysophosphatidic acid (2carbaLPA) as a 2ccPA degradation compound, which is a type of β-LPA analogue. Similar to LPA and cPA, 2carbaLPA induced the phosphorylation of the extracellular signal-regulated kinase and showed potent agonism for all known LPA receptors (LPA1–6) in the transforming growth factor-α (TGFα) shedding assay, in particular for LPA3 and LPA4. 2carbaLPA inhibited the lysophospholipase D activity of autotaxin (ATX) in vitro similar to other cPA analogues, such as 2ccPA, 3-carba-cPA, and 3-carba-LPA (α-LPA analogue). Our study shows that 2carbaLPA is a novel β-LPA analogue with high potential for the activation of some LPA receptors and ATX inhibition.
Collapse
|
22
|
Dobersalske C, Grundmann M, Timmermann A, Theisen L, Kölling F, Harris RC, Fuerstner C, Becker MS, Wunder F. Establishment of a novel, cell-based autotaxin assay. Anal Biochem 2021; 630:114322. [PMID: 34343482 DOI: 10.1016/j.ab.2021.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
Autotaxin (ATX) plays an important role in (patho-)physiological lysophosphatidic acid (LPA) signaling. Here we describe the establishment of novel cell-based ATX assay formats. ATX-mediated LPA generation is detected by using a stable LPA receptor reporter cell line. In a first assay variant, ATX-mediated LPA generation is started in the absence of cells and the reaction mix is transferred to the reporter cells after stopping the reaction (two-tube assay). In a second assay variant, ATX is added to the reporter cells expressing the known autotaxin binding partners integrin β1, integrin β3 and the LPA receptor 1. LPA generation is started in the presence of cells and is detected in real-time (one-tube assay). Structurally diverse ATX inhibitors with different binding modes were characterized in both cell-based assay variants and were also tested in the well-established biochemical choline release assay. ATX inhibitors displayed similar potencies, regardless if the assay was performed in the absence or presence of cells, and comparable results were obtained in all three assay formats. In summary, our novel cell-based ATX assay formats are well-suited for sensitive detection of enzyme activity as well as for the characterization of ATX inhibitors in the presence and absence of cells.
Collapse
Affiliation(s)
- Celia Dobersalske
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Manuel Grundmann
- Cardiovascular Research, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Andreas Timmermann
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Laura Theisen
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Florian Kölling
- Computational Molecular Design. Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | | | - Chantal Fuerstner
- Medicinal Chemistry, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Michael S Becker
- Cardiovascular Research, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Frank Wunder
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany.
| |
Collapse
|
23
|
Structure-Based Discovery of Novel Chemical Classes of Autotaxin Inhibitors. Int J Mol Sci 2020; 21:ijms21197002. [PMID: 32977539 PMCID: PMC7582705 DOI: 10.3390/ijms21197002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids, largely responsible for extracellular lysophosphatidic acid (LPA) production. LPA is a bioactive growth-factor-like lysophospholipid that exerts pleiotropic effects in almost all cell types, exerted through at least six G-protein-coupled receptors (LPAR1-6). Increased ATX expression has been detected in different chronic inflammatory diseases, while genetic or pharmacological studies have established ATX as a promising therapeutic target, exemplified by the ongoing phase III clinical trial for idiopathic pulmonary fibrosis. In this report, we employed an in silico drug discovery workflow, aiming at the identification of structurally novel series of ATX inhibitors that would be amenable to further optimization. Towards this end, a virtual screening protocol was applied involving the search into molecular databases for new small molecules potentially binding to ATX. The crystal structure of ATX in complex with a known inhibitor (HA-155) was used as a molecular model docking reference, yielding a priority list of 30 small molecule ATX inhibitors, validated by a well-established enzymatic assay of ATX activity. The two most potent, novel and structurally different compounds were further structurally optimized by deploying further in silico tools, resulting to the overall identification of six new ATX inhibitors that belong to distinct chemical classes than existing inhibitors, expanding the arsenal of chemical scaffolds and allowing further rational design.
Collapse
|
24
|
Structure guided design of potent indole-based ATX inhibitors bearing hydrazone moiety with tumor suppression effects. Eur J Med Chem 2020; 201:112456. [DOI: 10.1016/j.ejmech.2020.112456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
|
25
|
Youssef A, Clark JR, Koschinsky ML, Boffa MB. Lipoprotein(a): Expanding our knowledge of aortic valve narrowing. Trends Cardiovasc Med 2020; 31:305-311. [PMID: 32525013 DOI: 10.1016/j.tcm.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023]
Abstract
Elevated levels of lipoprotein(a) [Lp(a)] have been identified as an independent and causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and, more recently, calcific aortic valve disease (CAVD). CAVD is a slow, progressive disorder presenting as severe trileaflet calcification known as aortic valve stenosis (AS) that impairs valve motion and restricts ventricular outflow. AS afflicts 2% of the aging population (≥ 65 years) and tends to be quite advanced by the time it presents clinical symptoms of exertional angina, syncope, or heart failure. Currently, the only effective clinical therapy for AS patients is surgical or transcatheter aortic valve replacement. Evidence is accumulating that Lp(a) can exacerbate pathophysiological processes in CAVD, specifically, endothelial dysfunction, formation of foam cells, and promotion of a pro-inflammatory state. In the valve milieu, the pro-inflammatory effects of Lp(a) are manifested in valve thickening and mineralization through pro-osteogenic signaling and changes in gene expression in valve interstitial cells that is primarily facilitated by the oxidized phospholipid content of Lp(a). In AS pathogenesis, an incomplete understanding of the role of Lp(a) at the molecular level and the absence of appropriate animal models are barriers for the development of specific and effective clinical interventions designed to mitigate the role of Lp(a) in AS. However, the advent of effective therapies that dramatically lower Lp(a) provides the possibility of the first medical treatment to halt AS progression.
Collapse
Affiliation(s)
| | | | - Marlys L Koschinsky
- Robarts Research Institute, Canada; Department of Physiology & Pharmacology, Canada.
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, Room 2260 Robarts Research Institute, 1151 Richmond Street North London, London N6A 5B7, ON, Canada
| |
Collapse
|
26
|
Lei H, Guo M, Li X, Jia F, Li C, Yang Y, Cao M, Jiang N, Ma E, Zhai X. Discovery of Novel Indole-Based Allosteric Highly Potent ATX Inhibitors with Great In Vivo Efficacy in a Mouse Lung Fibrosis Model. J Med Chem 2020; 63:7326-7346. [DOI: 10.1021/acs.jmedchem.0c00506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaopeng Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Jia
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Changtao Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Cao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Enlong Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
27
|
The Structural Binding Mode of the Four Autotaxin Inhibitor Types that Differentially Affect Catalytic and Non-Catalytic Functions. Cancers (Basel) 2019; 11:cancers11101577. [PMID: 31623219 PMCID: PMC6826961 DOI: 10.3390/cancers11101577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D, catalysing the conversion of lysophosphatidylcholine (LPC) to bioactive lysophosphatidic acid (LPA). LPA acts through two families of G protein-coupled receptors (GPCRs) controlling key cellular responses, and it is implicated in many physiological processes and pathologies. ATX, therefore, has been established as an important drug target in the pharmaceutical industry. Structural and biochemical studies of ATX have shown that it has a bimetallic nucleophilic catalytic site, a substrate-binding (orthosteric) hydrophobic pocket that accommodates the lipid alkyl chain, and an allosteric tunnel that can accommodate various steroids and LPA. In this review, first, we revisit what is known about ATX-mediated catalysis, crucially in light of allosteric regulation. Then, we present the known ATX catalysis-independent functions, including binding to cell surface integrins and proteoglycans. Next, we analyse all crystal structures of ATX bound to inhibitors and present them based on the four inhibitor types that are established based on the binding to the orthosteric and/or the allosteric site. Finally, in light of these data we discuss how mechanistic differences might differentially modulate the activity of the ATX-LPA signalling axis, and clinical applications including cancer.
Collapse
|
28
|
Alarcón-Vila C, Pizzuto M, Pelegrín P. Purinergic receptors and the inflammatory response mediated by lipids. Curr Opin Pharmacol 2019; 47:90-96. [PMID: 30952060 DOI: 10.1016/j.coph.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
The inflammatory response is regulated by the production of different extracellular mediators, including lipids and extracellular nucleotides. In the extracellular environment, intermediate lipids activate specific G-protein-coupled receptors (GPCRs) in target cells and promote cell recruitment and activation. Extracellular nucleotides activate two types of receptors, the ionotropic purinergic P2X and the metabotropic purinergic P2Y receptors, inducing the release of cytokines and promoting cell recruitment. Several P2X receptors are associated with an increase in the production of immunoactive lipids mediators, which in turn are able to interfere with the activation of different P2Y receptors, establishing a tight signalling link between purinergic receptors and lipid mediators. In this review, we summarise recent studies indicating signalling crosstalk between purinergic P2X and P2Y receptor activation and lipid mediators with a focus on inflammatory diseases. Novel concepts arising from this crosstalk would result in the development of combinatorial therapies targeting lipid synthesis together with individual P2 receptors for the management of inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Alarcón-Vila
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Malvina Pizzuto
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.
| |
Collapse
|