1
|
Zhu M, Yi X, Song S, Yang H, Yu J, Xu C. Principle role of the (pro)renin receptor system in cardiovascular and metabolic diseases: An update. Cell Signal 2024; 124:111417. [PMID: 39321906 DOI: 10.1016/j.cellsig.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
(Pro)renin receptor (PRR), along with its soluble form, sPRR, functions not only as a crucial activator of the local renin-angiotensin system but also engages with and activates various angiotensin II-independent signaling pathways, thus playing complex and significant roles in numerous physiological and pathophysiological processes, including cardiovascular and metabolic disorders. This article reviews current knowledge on the intracellular partners of the PRR system and explores its physiological and pathophysiological impacts on cardiovascular diseases as well as conditions related to glucose and lipid metabolism, such as hypertension, heart disease, liver disease, diabetes, and diabetic complications. Targeting the PRR system could emerge as a promising therapeutic strategy for treating these conditions. Elevated levels of circulating sPRR might indicate the severity of these diseases, potentially serving as a biomarker for diagnosis and prognosis in clinical settings. A comprehensive understanding of the functions and regulatory mechanisms of the PRR system could facilitate the development of novel therapeutic approaches for the prevention and management of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Mengzhi Zhu
- College of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
2
|
Zhang X, Dong X, Jie H, Li S, Li H, Su Y, Li L, Kang L, Dong B, Zhang Y. Downregulation of the (pro)renin receptor alleviates ferroptosis-associated cardiac pathological changes via the NCOA 4-mediated ferritinophagy pathway in diabetic cardiomyopathy. Int Immunopharmacol 2024; 138:112605. [PMID: 38963979 DOI: 10.1016/j.intimp.2024.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxidation, is involved in various cardiovascular diseases. (Pro)renin receptor (PRR) in performs as ligands in the autophagic process, and its function in diabetic cardiomyopathy (DCM) is not fully understood. We investigated whether PRR promotes ferroptosis through the nuclear receptor coactivator 4 (NCOA 4)-mediated ferritinophagy pathway and thus contributes to DCM. We first established a mouse model of DCM with downregulated and upregulated PRR expression and used a ferroptosis inhibitor. Myocardial inflammation and fibrosis levels were then measured, cardiac function and ferroptosis-related indices were assessed. In vitro, neonatal rat ventricular primary cardiomyocytes were cultured with high glucose and transfected with recombinant adenoviruses knocking down or overexpressing the PRR, along with a ferroptosis inhibitor and small interfering RNA for the ferritinophagy receptor, NCOA4. Ferroptosis levels were measured in vitro. The results showed that the knockdown of PRR not only alleviated cardiomyocyte ferroptosis in vivo but also mitigated the HG-induced ferroptosis in vitro. Moreover, administration of Fer-1 can inhibit HG-induced ferroptosis. NCOA4 knockdown blocked the effect of PRR on ferroptosis and improved cell survival. Our result indicated that inhibition of PRR and NCOA4 expression provides a new therapeutic strategy for the treatment of DCM. The effect of PRR on the pathological process of DCM in mice may be in promoting cardiomyocyte ferroptosis through the NCOA 4-mediated ferritinophagy pathway.
Collapse
Affiliation(s)
- XinYu Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - XueFei Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - HaiPeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - ShengNan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - HuiXin Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China
| | - YuDong Su
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China
| | - Lei Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - Li Kang
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China.
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China.
| |
Collapse
|
3
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Cui H, Hu D, Xu J, Zhao S, Song Y, Qin G, Liu Y. Identification of hub genes associated with diabetic cardiomyopathy using integrated bioinformatics analysis. Sci Rep 2024; 14:15324. [PMID: 38961143 PMCID: PMC11222523 DOI: 10.1038/s41598-024-65773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Hailong Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Die Hu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Xu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuiying Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Funke-Kaiser H, Unger T. The (pro)renin receptor as a pharmacological target in cardiorenal diseaes. Hypertens Res 2023; 46:2527-2534. [PMID: 37667044 DOI: 10.1038/s41440-023-01424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
The (pro)renin receptor ((P)RR) is not only a member of the renin-angiotensin system (RAS) but also exerts several RAS-independent functions due to its multiple signal transductions pathways. In this mini-review, we shortly discuss the molecular functions of this receptor and its pathophysiological significance with a focus on cardiorenal diseases. Finally, we provide a short summary regarding a drug discovery and drug development program on small molecule-based renin/ prorenin receptor blockers (RERBs).
Collapse
Affiliation(s)
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Wang B, Jie H, Wang S, Dong B, Zou Y. The role of (pro)renin receptor and its soluble form in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1086603. [PMID: 36824459 PMCID: PMC9941963 DOI: 10.3389/fcvm.2023.1086603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
The renin-angiotensin system (RAS) is a major classic therapeutic target for cardiovascular diseases. In addition to the circulating RAS, local tissue RAS has been identified in various tissues and plays roles in tissue inflammation and tissue fibrosis. (Pro)renin receptor (PRR) was identified as a new member of RAS in 2002. Studies have demonstrated the effects of PRR and its soluble form in local tissue RAS. Moreover, as an important part of vacuolar H+-ATPase, it also contributes to normal lysosome function and cell survival. Evidently, PRR participates in the pathogenesis of cardiovascular diseases and may be a potential therapeutic target of cardiovascular diseases. This review focuses on the effects of PRR and its soluble form on the physiological state, hypertension, myocardial ischemia reperfusion injury, heart failure, metabolic cardiomyopathy, and atherosclerosis. We aimed to investigate the possibilities and challenges of PRR and its soluble form as a new therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Boyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuangxi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China,Shuangxi Wang,
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Bo Dong,
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Yunzeng Zou,
| |
Collapse
|
7
|
Funke-Kaiser H, Unger T. The (Pro)renin Receptor - A Regulatory Nodal Point in Disease Networks. Curr Drug Targets 2023; 24:1093-1098. [PMID: 37885110 DOI: 10.2174/0113894501250617231016052930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Experimental inhibition of the (pro)renin receptor [(P)RR] is a promising therapeutic strategy in different disease models ranging from cardiorenal to oncological entities. Here, we briefly review the direct protein-protein interaction partners of the (P)RR and the plethora of distinct diseases in which the (P)RR is involved. The first structural work on the (P)RR using AlphaFold, which was recently published by Ebihara et al., is the center of this mini-review since it can mechanistically link the protein-protein interaction level with the pathophysiological level. More detailed insights into the 3D structure of the (P)RR and its interaction domains might guide drug discovery on this novel target. Finally, antibody- and small molecule-based approaches to inhibit the (P)RR are shortly discussed.
Collapse
Affiliation(s)
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Zhang J, Cheng YJ, Luo CJ, Yu J. Inhibitory effect of (pro)renin receptor decoy inhibitor PRO20 on endoplasmic reticulum stress during cardiac remodeling. Front Pharmacol 2022; 13:940365. [PMID: 36034809 PMCID: PMC9411812 DOI: 10.3389/fphar.2022.940365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Ectopic activation of renin-angiotensin-system contributes to cardiovascular and renal diseases. (Pro)renin receptor (PRR) binds to renin and prorenin, participating in the progression of nephrology. However, whether PRR could be considered as a therapeutic target for cardiac remodeling and heart failure remains unknown. Materials and methods: Transverse aortic constriction (TAC) surgery was performed to establish a mouse model of chronic pressure overload-induced cardiac remodeling. Neonatal rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs) were isolated and stimulated by Angiotensin II (Ang II). PRR decoy inhibitor PRO20 was synthesized and used to evaluate its effect on cardiac remodeling. Results: Soluble PRR and PRR were significantly upregulated in TAC-induced cardiac remodeling and Ang II-treated CMs and CFs. Results of In vivo experiments showed that suppression of PRR by PRO20 significantly retarded cardiac remodeling and heart failure indicated by morphological and echocardiographic analyses. In vitro experiments, PRO20 inhibited CM hypertrophy, and also alleviated CF activation, proliferation and extracellular matrix synthesis. Mechanically, PRO20 enhanced intracellular cAMP levels, but not affected cGMP levels in CMs and CFs. Moreover, treatment of PRO20 in CFs markedly attenuated the production of reactive oxygen species and phosphorylation of IRE1 and PERK, two well-identified markers of endoplasmic reticulum (ER) stress. Accordingly, administration of PRO20 reversed ER stressor thapsigargin-induced CM hypertrophy and CF activation/migration. Conclusion: Taken together, these findings suggest that inhibition of PRR by PRO20 attenuates cardiac remodeling through increasing cAMP levels and reducing ER stress in both CMs and CFs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang-Jun Luo
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Jia Yu
- Department of General Practice School, Guangxi Medical University, Nanning, China
- *Correspondence: Jia Yu,
| |
Collapse
|
9
|
Knockdown of ILK Alleviates High Glucose-Induced Damage of H9C2 Cells through TLR4/MyD88/NF-κB Pathway. DISEASE MARKERS 2022; 2022:6205190. [PMID: 35571621 PMCID: PMC9098299 DOI: 10.1155/2022/6205190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to explore the role of ILK in an in vitro model of diabetic cardiomyopathy. We used 30 mmol/L high glucose to treat H9C2 cells to construct an in vitro model, knocked down the ILK expression level of H9C2 cells by small interference technology, and detected the activity of antioxidant enzymes and inflammatory factors in the supernatant. The expression levels of SOD1 and IL-1β were detected by immunofluorescence staining. The expression levels of the TLR4/MyD88/NF-κB signaling pathway and its downstream factors were detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Compared with the control group, after high-glucose culture of H9C2 cells, the cell activity decreased, while the apoptosis rate increased, with the TLR4/MyD88/NF-κB signaling pathway activated, thereby inducing oxidative stress and inflammation. Compared with the high-glucose group, the HG+si-ILK group increased cell activity, decreased the apoptosis rate, and inhibited the excessive activation of the TLR4/MyD88/NF-κB signaling pathway, thereby improving oxidative stress and inflammation. Knockdown of ILK expression can protect H9C2 cells from reducing high glucose-induced inflammation, oxidative stress, and apoptosis by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
10
|
Li L, Cui YJ, Liu Y, Li HX, Su YD, Li SN, Wang LL, Zhao YW, Wang SX, Yan F, Dong B. ATP6AP2 knockdown in cardiomyocyte deteriorates heart function via compromising autophagic flux and NLRP3 inflammasome activation. Cell Death Dis 2022; 8:161. [PMID: 35379787 PMCID: PMC8980069 DOI: 10.1038/s41420-022-00967-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Moderate autophagy can remove damaged proteins and organelles. In some inflammatory diseases, autophagy plays a protective role by inhibiting the NOD-like receptor family pyrin domain containing 3(NLRP3). (Pro)renin receptor (PRR, or ATP6AP2) is a critical component of the V-ATPase required for autophagy. It remains controversial about ATP6AP2 in the pathological process. The impact of ATP6AP2 on NLRP3 inflammasome and autophagic flux remains unknown under pressure overload stress. This research explores the potential link between ATP6AP2, autophagic flux, and NLRP3. There was upregulation of ATP6AP2 from 5-day post-TAC, and this expression remained at a high level until 8-weeks post-TAC in wild mice. Meanwhile, autophagic flux switched from early compensatory activation to blocking in the heart failure phase. NLRP3 activation can be seen at 8-week post-TAC. Adenovirus-mediated knockdown of ATP6AP2(shR-ATP6AP2) accelerated the progress of heart failure. After TAC was induced, shR-ATP6AP2 significantly deteriorated heart function and fibrosis compared with the shR-Scr group. Meanwhile, there was an elevated expression of NLRP3 and autophagic flux blockage. A transgenic mouse(Tg) with cardio-restricted ATP6AP2/(P)RR overexpression was constructed. Although high expression in cardiac tissue, there were no spontaneous functional abnormalities under the basal state. Cardiac function, fibrosis, hypertrophy remained identical to the control TAC group. However, SQSTM1/P62 was reduced, which indicated the relief of autophagic flux blockage. Further, Neonatal rat ventricular myocyte (NRVMs) transfected with shR-ATP6AP2 showed more susceptibility than sh-Scr NRVMs to phenylephrine-induced cell death. More reactive oxygen species (ROS) or mito-ROS accumulated in the shR-ATP6AP2 group when phenylephrine stimulation. Blocking NLRP3 activation in vivo partly rescued cardiac dysfunction and fibrosis. In conclusion, ATP6AP2 upregulation is a compensatory response to pressure overload. If not effectively compensated, it compromises autophagic flux, leads to dysfunctional mitochondria accumulation, further produces ROS to activate NLRP3, eventually accelerates heart failure.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Ya-Juan Cui
- Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 250012, Jinan, China
| | - Yu Liu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Hui-Xin Li
- Shandong University of Traditional Chinese Medicine, 250012, Jinan, China
| | - Yu-Dong Su
- Shandong University of Traditional Chinese Medicine, 250012, Jinan, China
| | - Sheng-Nan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Lan-Lan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 250012, Jinan, China
| | - Yue-Wen Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 250012, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Feng Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China. .,Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China. .,Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 250012, Jinan, China.
| |
Collapse
|
11
|
Xu C, Liu C, Xiong J, Yu J. Cardiovascular aspects of the (pro)renin receptor: Function and significance. FASEB J 2022; 36:e22237. [PMID: 35226776 DOI: 10.1096/fj.202101649rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs), including all types of disorders related to the heart or blood vessels, are the major public health problems and the leading causes of mortality globally. (Pro)renin receptor (PRR), a single transmembrane protein, is present in cardiomyocytes, vascular smooth muscle cells, and endothelial cells. PRR plays an essential role in cardiovascular homeostasis by regulating the renin-angiotensin system and several intracellular signals such as mitogen-activated protein kinase signaling and wnt/β-catenin signaling in various cardiovascular cells. This review discusses the current evidence for the pathophysiological roles of the cardiac and vascular PRR. Activation of PRR in cardiomyocytes may contribute to myocardial ischemia/reperfusion injury, cardiac hypertrophy, diabetic or alcoholic cardiomyopathy, salt-induced heart damage, and heart failure. Activation of PRR promotes vascular smooth muscle cell proliferation, endothelial cell dysfunction, neovascularization, and the progress of vascular diseases. In addition, phenotypes of animals transgenic for PRR and the hypertensive actions of PRR in the brain and kidney and the soluble PRR are also discussed. Targeting PRR in local tissues may offer benefits for patients with CVDs, including heart injury, atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chunju Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianhua Xiong
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Wei J, Zhao Y, Liang H, Du W, Wang L. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B 2022; 12:1-17. [PMID: 35127369 PMCID: PMC8799881 DOI: 10.1016/j.apsb.2021.08.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic mellitus (DM) is a common degenerative chronic metabolic disease often accompanied by severe cardiovascular complications (DCCs) as major causes of death in diabetic patients with diabetic cardiomyopathy (DCM) as the most common DCC. The metabolic disturbance in DCM generates the conditions/substrates and inducers/triggers and activates the signaling molecules and death executioners leading to cardiomyocyte death which accelerates the development of DCM and the degeneration of DCM to heart failure. Various forms of programmed active cell death including apoptosis, pyroptosis, autophagic cell death, autosis, necroptosis, ferroptosis and entosis have been identified and characterized in many types of cardiac disease. Evidence has also been obtained for the presence of multiple forms of cell death in DCM. Most importantly, published animal experiments have demonstrated that suppression of cardiomyocyte death of any forms yields tremendous protective effects on DCM. Herein, we provide the most updated data on the subject of cell death in DCM, critical analysis of published results focusing on the pathophysiological roles of cell death, and pertinent perspectives of future studies.
Collapse
Affiliation(s)
- Jinjing Wei
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yongting Zhao
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Weijie Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lihong Wang
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
13
|
Hoffmann N, Peters J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol Res 2021; 173:105922. [PMID: 34607004 DOI: 10.1016/j.phrs.2021.105922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The (pro)renin receptor [(P)RR, Atp6ap2] was initially discovered as a membrane-bound binding partner of prorenin and renin. A soluble (P)RR has additional paracrine effects and is involved in metabolic syndrome and kidney damage. Meanwhile it is clear that most of the effects of the (P)RR are independent of prorenin. In the kidney, (P)RR plays an important role in renal dysfunction by activating proinflammatory and profibrotic molecules. In the brain, (P)RR is expressed in cardiovascular regulatory nuclei and is linked to hypertension. (P)RR is known to be an essential component of the v-ATPase as a key accessory protein and plays an important role in kidney, brain and heart via regulating the pH of the extracellular space and intracellular compartments. V-ATPase and (P)RR together act on WNT and mTOR signalling pathways, which are responsible for cellular homeostasis and autophagy. (P)RR through its role in v-ATPase assembly and function is also important for fast recycling endocytosis by megalin. In the kidney, megalin together with v-ATPase and (P)RR is crucial for endocytic uptake of components of the RAS and their intracellular processing. In the brain, (P)RR, v-ATPases and megalin are important regulators both during development and in the adult. All three proteins are associated with diseases such as XLMR, XMRE, X-linked parkinsonism and epilepsy, cognitive disorders with Parkinsonism, spasticity, intellectual disability, and Alzheimer's Disease which are characterized by impaired neuronal function and/or neuronal loss. The present review focusses on the relevant effects of Atp6ap2 without assigning them necessarily to the RAS. Mechanistically, many effects can be well explained by the role of Atp6ap2 for v-ATPase assembly and function. Furthermore, application of a soluble (P)RR analogue as new therapeutic option is discussed.
Collapse
Affiliation(s)
- Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany.
| |
Collapse
|
14
|
NADPH-Oxidase, Rho-Kinase and Autophagy Mediate the (Pro)renin-Induced Pro-Inflammatory Microglial Response and Enhancement of Dopaminergic Neuron Death. Antioxidants (Basel) 2021; 10:antiox10091340. [PMID: 34572972 PMCID: PMC8472832 DOI: 10.3390/antiox10091340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of the tissue renin–angiotensin system (RAS) is involved in tissue oxidative and inflammatory responses. Among RAS components, renin, its precursor (pro)renin and its specific receptor (PRR) have been less investigated, particularly in the brain. We previously showed the presence of PRR in neurons and glial cells in the nigrostriatal system of rodents and primates, including humans. Now, we used rat and mouse models and cultures of BV2 and primary microglial cells to study the role of PRR in microglial pro-inflammatory responses. PRR was upregulated in the nigral region, particularly in microglia during the neuroinflammatory response. In the presence of the angiotensin type-1 receptor blocker losartan, to exclude angiotensin-related effects, treatment of microglial cells with (pro)renin induces the expression of microglial pro-inflammatory markers, which is mediated by upregulation of NADPH-oxidase and Rho-kinase activities, downregulation of autophagy and upregulation of inflammasome activity. Conditioned medium from (pro)renin-treated microglia increased dopaminergic cell death relative to medium from non-treated microglia. However, these effects were blocked by pre-treatment of microglia with the Rho-kinase inhibitor fasudil. Activation of microglial PRR enhances the microglial pro-inflammatory response and deleterious effects of microglia on dopaminergic cells, and microglial NADPH-oxidase, Rho-Kinase and autophagy are involved in this process.
Collapse
|
15
|
Rajbhandari J, Fernandez CJ, Agarwal M, Yeap BXY, Pappachan JM. Diabetic heart disease: A clinical update. World J Diabetes 2021; 12:383-406. [PMID: 33889286 PMCID: PMC8040078 DOI: 10.4239/wjd.v12.i4.383] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) significantly increases the risk of heart disease, and DM-related healthcare expenditure is predominantly for the management of cardiovascular complications. Diabetic heart disease is a conglomeration of coronary artery disease (CAD), cardiac autonomic neuropathy (CAN), and diabetic cardiomyopathy (DCM). The Framingham study clearly showed a 2 to 4-fold excess risk of CAD in patients with DM. Pathogenic mechanisms, clinical presentation, and management options for DM-associated CAD are somewhat different from CAD among nondiabetics. Higher prevalence at a lower age and more aggressive disease in DM-associated CAD make diabetic individuals more vulnerable to premature death. Although common among diabetic individuals, CAN and DCM are often under-recognised and undiagnosed cardiac complications. Structural and functional alterations in the myocardial innervation related to uncontrolled diabetes result in damage to cardiac autonomic nerves, causing CAN. Similarly, damage to the cardiomyocytes from complex pathophysiological processes of uncontrolled DM results in DCM, a form of cardiomyopathy diagnosed in the absence of other causes for structural heart disease. Though optimal management of DM from early stages of the disease can reduce the risk of diabetic heart disease, it is often impractical in the real world due to many reasons. Therefore, it is imperative for every clinician involved in diabetes care to have a good understanding of the pathophysiology, clinical picture, diagnostic methods, and management of diabetes-related cardiac illness, to reduce morbidity and mortality among patients. This clinical review is to empower the global scientific fraternity with up-to-date knowledge on diabetic heart disease.
Collapse
Affiliation(s)
- Jake Rajbhandari
- College of Medical and Dental Sciences, University of Birmingham Medical School, Birmingham B15 2TH, United Kingdom
| | | | - Mayuri Agarwal
- Department of Endocrinology and Metabolism, Pilgrim Hospital, Boston PE21 9QS, United Kingdom
| | - Beverly Xin Yi Yeap
- Department of Medicine, The University of Manchester Medical School, Manchester M13 9PL, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
16
|
Huang Y, Liu HM, Wu LL, Yu GY, Xiang RL. Long non-coding RNA and mRNA profile analysis in the parotid gland of mouse with type 2 diabetes. Life Sci 2021; 268:119009. [PMID: 33412210 DOI: 10.1016/j.lfs.2020.119009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023]
Abstract
AIMS Salivary gland dysfunction is a common complication of diabetes mellitus (DM). Long non-coding RNA (lncRNA) is evidenced to involve in the functional regulation of salivary gland, however, its role in DM-impaired gland is unknown. Therefore, this study aimed to investigate the expression profiles and functional networks of lncRNA in the parotid glands (PGs) of DM mice. MAIN METHODS Microarray was used to detect lncRNA and messenger RNA (mRNA) expression profiles in the PGs from db/db and db/m mice. Eleven differently expressed (DE) lncRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) network analysis, as well as the following Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Pearson's coefficient correlation analysis was used to analyze the correlations between DE lncRNAs expression and DM pathology. KEY FINDINGS By using a 2-fold change and P < 0.05 as the cutoff criteria, 1650 DE lncRNAs (758 upregulated and 892 downregulated) and 1073 mRNAs (563 upregulated and 510 downregulated) were identified in the PGs of db/db mice compared to db/m mice. GO and KEGG analysis of DE mRNA suggested that activated inflammation response and downregulated ion transport might count for the dysfunction of diabetic PG. CNC and ceRNA networks analysis of 11 DE lncRNAs showed that the inflammation process and its related signaling pathways including advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling pathway in diabetic complications, cytokine-cytokine receptor interaction, chemokine signaling pathway, apoptosis, and cell adhesion molecules were significantly enriched. The alterations of lncRNAs were closely correlated with higher blood glucose and serum insulin levels in mice. SIGNIFICANCE We identified multiple lncRNAs/mRNAs and several signaling pathways that may involve in the pathogenesis of diabetic salivary injury, providing new insight into potential target of diabetic hyposalivation.
Collapse
Affiliation(s)
- Yan Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Hui-Min Liu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, PR China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, PR China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, PR China.
| |
Collapse
|
17
|
Zhou Y, Xie Y, Li T, Zhang P, Chen T, Fan Z, Tan X. P21‑activated kinase 1 mediates angiotensin II‑induced differentiation of human atrial fibroblasts via the JNK/c‑Jun pathway. Mol Med Rep 2021; 23:207. [PMID: 33495806 PMCID: PMC7830933 DOI: 10.3892/mmr.2021.11846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is a common pathophysiological condition involved in numerous types of cardiovascular disease. The renin‑angiotensin system, particularly angiotensin II (AngII), serves an important role in cardiac fibrosis and remodeling. Furthermore, p21‑activated kinase 1 (PAK1) is a highly conserved serine/threonine protein kinase, which is abundantly expressed in all regions of the heart. However, the role of PAK1 in AngII‑mediated activation of cardiac fibroblasts remains unknown. Therefore, the present study aimed to investigate the role of PAK1 in cardiac fibroblasts and its underlying mechanisms. Human cardiac fibroblasts (HCFs) were cultured and treated with PAK1 inhibitor IPA‑3 or transduced with PAK1 short hairpin (sh)RNA by lentiviral particles to silence PAK1 expression levels. Subsequently, the cell proliferation and migration abilities of the HCFs were determined. Western blot analysis was used to detect the phosphorylation status of Janus kinase (JNK) and c‑Jun. A Cell Counting Kit‑8 assay showed that PAK1 inhibition following treatment of HCFs with 5 µM IPA‑3 or PAK1‑shRNA, significantly attenuated AngII‑induced proliferation of fibroblasts. In addition, wound healing and Transwell migration assays demonstrated that inhibition of PAK1 significantly inhibited AngII‑induced cell migration. Finally, decreased PAK1 expression levels downregulated AngII‑mediated upregulation of α‑smooth muscle actin (α‑SMA), collagen I, phosphorylated (p)‑JNK and p‑c‑Jun, a downstream molecule of JNK signaling. These findings indicate that PAK1 contributes to AngII‑induced proliferation, migration and transdifferentiation of HCFs via the JNK/c‑Jun pathway.
Collapse
Affiliation(s)
- Yafei Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ying Xie
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, P.R. China
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhongcai Fan
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
18
|
A. Alanazi W. Role of Carnitine on Hematological Parameters and Attenuation of Cardiac (Pro)renin Receptor and Caspase-3 Expression in Hypoglycemia-induced Cardiac Hypertrophy. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.191.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Jintao X, Nanqian Z, Yuping Y, Yun J, Yue Q, Yanhua L, Junxiu L, Xinqiao T, Yaling Y, Peng L. Puerarin-loaded ultrasound microbubble contrast agent used as sonodynamic therapy for diabetic cardiomyopathy rats. Colloids Surf B Biointerfaces 2020; 190:110887. [PMID: 32113166 DOI: 10.1016/j.colsurfb.2020.110887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/16/2023]
Abstract
In this study, a puerarin-loaded ultrasound sulfur hexafluoride microbubble contrast agent as a sonodynamic therapy (SDT) was developed to improve targeted drug delivery and pharmacodynamic effects in diabetic cardiomyopathy (DCM) treatment. Fluorescence microscope morphology was applied to confirm the fabrication of the puerarin - microbubbles (PMBs). The average size distribution and zeta potential of PMBs were 760.0 ± 101.2 nm and -20.4 ± 6.59 mV, respectively. In vitro and in vivo experiments were carried out to study the pharmacodynamic effects and targeted drug delivery of PMBs. The cytotoxicity, assessed by the cell viability of human umbilical vein endothelial cells (HUVECs), showed that the microbubbles were nontoxic even in high concentration of 2.500 mg/mL, and the wound healing scratch assay proved that PMBs cloud obviously improve the migration ability of HUVECs. Furthermore, streptozotocin (STZ) accompanied with high-energy diets was employed to build the DCM rat model. The blood glucose, histological changes of the pancreas and heart, and cardiac function were used to confirm the obtainment of the DCM rat model. Histological and physiological changes of the PMBs treatment group indicated that PMBs had a significant therapeutic efficacy when compared to the DCM model group. Therefore, PMBs are a promising strategy for a targeted drug delivery system and a novel noninvasive treatment for DCM.
Collapse
Affiliation(s)
- Xue Jintao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Zhou Nanqian
- Department of Ultrasonography, Fuwai Hospital of Central China, Henan Provincial Peoples Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, 450003, PR China
| | - Yang Yuping
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Jing Yun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Qiu Yue
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Liu Yanhua
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Lu Junxiu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Tian Xinqiao
- Department of Ultrasonography, Fuwai Hospital of Central China, Henan Provincial Peoples Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, 450003, PR China.
| | - Yin Yaling
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China.
| | - Li Peng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China.
| |
Collapse
|
20
|
Zhang Y, Wang Y, Yanni J, Qureshi MA, Logantha SJRJ, Kassab S, Boyett MR, Gardiner NJ, Sun H, Howarth FC, Dobrzynski H. Electrical Conduction System Remodeling in Streptozotocin-Induced Diabetes Mellitus Rat Heart. Front Physiol 2019; 10:826. [PMID: 31338036 PMCID: PMC6628866 DOI: 10.3389/fphys.2019.00826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular complications are common in type 1 diabetes mellitus (TIDM) and there is an increased risk of arrhythmias as a result of dysfunction of the cardiac conduction system (CCS). We have previously shown that, in vivo, there is a decrease in the heart rate and prolongation of the QRS complex in streptozotocin-induced type 1 diabetic rats indicating dysfunction of the CCS. The aim of this study was to investigate the function of the ex vivo CCS and key proteins that are involved in pacemaker mechanisms in TIDM. RR interval, PR interval and QRS complex duration were significantly increased in diabetic rats. The beating rate of the isolated sinoatrial node (SAN) preparation was significantly decreased in diabetic rats. The funny current density and cell capacitance were significantly decreased in diabetic nodal cells. Western blot showed that proteins involved in the function of the CCS were significantly decreased in diabetic rats, namely: HCN4, Cav1.3, Cav3.1, Cx45, and NCX1 in the SAN; RyR2 and NCX1 in the atrioventricular junction and Cx40, Cx43, Cx45, and RyR2 in the Purkinje network. We conclude that there are complex functional and cellular changes in the CCS in TIDM. The changes in the proteins involved in the function of this electrical system are expected to adversely affect action potential generation and propagation, and these changes are likely to be arrhythmogenic.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.,Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Yanwen Wang
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Joseph Yanni
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Mohammed Anwar Qureshi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sunil Jit R J Logantha
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Sarah Kassab
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Mark R Boyett
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Natalie J Gardiner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|