1
|
Németh BZ, Kiss B, Sahin-Tóth M, Magyar C, Pál G. The High-Affinity Chymotrypsin Inhibitor Eglin C Poorly Inhibits Human Chymotrypsin-Like Protease: Gln192 and Lys218 Are Key Determinants. Proteins 2025; 93:543-554. [PMID: 39301701 DOI: 10.1002/prot.26750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Eglin C, a small protein from the medicinal leech, has been long considered a general high-affinity inhibitor of chymotrypsins and elastases. Here, we demonstrate that eglin C inhibits human chymotrypsin-like protease (CTRL) weaker by several orders of magnitude than other chymotrypsins. In order to identify the underlying structural aspects of this unique deviation, we performed comparative molecular dynamics simulations on experimental and AlphaFold model structures of bovine CTRA and human CTRL. Our results indicate that in CTRL, the primary determinants of the observed weak inhibition are amino-acid positions 192 and 218 (using conventional chymotrypsin numbering), which participate in shaping the S1 substrate-binding pocket and thereby affect the stability of the protease-inhibitor complexes.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, California, Los Angeles, USA
| | - Csaba Magyar
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
3
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
4
|
Gullipalli D, Miwa T, Golla M, Sato S, Angampalli S, Song WC. MASP3 Deficiency in Mice Reduces but Does Not Abrogate Alternative Pathway Complement Activity Due to Intrinsic Profactor D Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1543-1551. [PMID: 36988282 PMCID: PMC10159988 DOI: 10.4049/jimmunol.2200932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Complement factor D (FD) is a rate-limiting enzyme of the alternative pathway (AP). Recent studies have suggested that it is synthesized as an inactive precursor and that its conversion to enzymatically active FD is catalyzed by mannan-binding lectin-associated serine protease 3 (MASP3). However, whether MASP3 is essential for AP complement activity remains uncertain. It has been shown that Masp1/3 gene knockout did not prevent AP complement overactivation in a factor H-knockout mouse, and a human patient lacking MASP3 still retained AP complement activity. In this study, we have assessed AP complement activity in a Masp3-knockout mouse generated by CRISPR/Cas9 editing of the Masp1/3 gene. We confirmed specific Masp3 gene inactivation by showing intact MASP1 protein expression and absence of mature FD in the mutant mice. Using several assays, including LPS- and zymosan-induced C3b deposition and rabbit RBC lysis tests, we detected plasma concentration-dependent AP complement activity in Masp3 gene-inactivated mice. Thus, although not measurable in 5% plasma, significant AP complement activity was detected in 20-50% plasma of Masp3 gene-inactivated mice. Furthermore, whereas FD gene deletion provided more than 90% protection of CD55/Crry-deficient RBCs from AP complement-mediated extravascular hemolysis, Masp3 gene deletion only provided 30% protection in the same study. We also found pro-FD to possess intrinsic catalytic activity, albeit at a much lower level than mature FD. Our data suggest that MASP3 deficiency reduces but does not abrogate AP complement activity and that this is explained by intrinsic pro-FD activity, which can be physiologically relevant in vivo.
Collapse
Affiliation(s)
- Damodar Gullipalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sree Angampalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Németh BZ, Demcsák A, Micsonai A, Kiss B, Schlosser G, Geisz A, Hegyi E, Sahin-Tóth M, Pál G. Arg236 in human chymotrypsin B2 (CTRB2) is a key determinant of high enzyme activity, trypsinogen degradation capacity, and protection against pancreatitis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140831. [PMID: 35934298 PMCID: PMC9426946 DOI: 10.1016/j.bbapap.2022.140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Pancreatic chymotrypsins (CTRs) are digestive proteases that in humans include CTRB1, CTRB2, CTRC, and CTRL. The highly similar CTRB1 and CTRB2 are the products of gene duplication. A common inversion at the CTRB1-CTRB2 locus reverses the expression ratio of these isoforms in favor of CTRB2. Carriers of the inversion allele are protected against the inflammatory disorder pancreatitis presumably via their increased capacity for CTRB2-mediated degradation of harmful trypsinogen. To reveal the protective molecular determinants of CTRB2, we compared enzymatic properties of CTRB1, CTRB2, and bovine CTRA (bCTRA). By evolving substrate-like Schistocerca gregaria proteinase inhibitor 2 (SGPI-2) inhibitory loop variants against the chymotrypsins, we found that the substrate binding groove of the three enzymes had overlapping specificities. Based on the selected sequences, we produced eight SGPI-2 variants. Remarkably, CTRB2 and bCTRA bound these inhibitors with significantly higher affinity than CTRB1. Moreover, digestion of peptide substrates, beta casein, and human anionic trypsinogen unequivocally confirmed that CTRB2 is a generally better enzyme than CTRB1 while the potency of bCTRA lies between those of the human isoforms. Unexpectedly, mutation D236R alone converted CTRB1 to a CTRB2-like high activity protease. Modeling indicated that in CTRB1 Met210 partially obstructed the substrate binding groove, which was relieved by the D236R mutation. Taken together, we identify CTRB2 Arg236 as a key positive determinant, while CTRB1 Asp236 as a negative determinant for chymotrypsin activity. These findings strongly support the concept that in carriers of the CTRB1-CTRB2 inversion allele, the superior trypsinogen degradation capacity of CTRB2 protects against pancreatitis.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California 90095, USA
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Andrea Geisz
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
6
|
Dürvanger Z, Boros E, Nagy ZA, Hegedüs R, Megyeri M, Dobó J, Gál P, Schlosser G, Ángyán AF, Gáspári Z, Perczel A, Harmat V, Mező G, Menyhárd DK, Pál G. Directed Evolution-Driven Increase of Structural Plasticity Is a Prerequisite for Binding the Complement Lectin Pathway Blocking MASP-Inhibitor Peptides. ACS Chem Biol 2022; 17:969-986. [PMID: 35378038 PMCID: PMC9016712 DOI: 10.1021/acschembio.2c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
MASP-1 and MASP-2
are key activator proteases of the complement
lectin pathway. The first specific mannose-binding lectin-associated
serine protease (MASP) inhibitors had been developed from the 14-amino-acid
sunflower trypsin inhibitor (SFTI) peptide by phage display, yielding
SFTI-based MASP inhibitors, SFMIs. Here, we present the crystal structure
of the MASP-1/SFMI1 complex that we analyzed in comparison to other
existing MASP-1/2 structures. Rigidified backbone structure has long
been accepted as a structural prerequisite for peptide inhibitors
of proteases. We found that a hydrophobic cluster organized around
the P2 Thr residue is essential for the structural stability of wild-type
SFTI. We also found that the same P2 Thr prevents binding of the rigid
SFTI-like peptides to the substrate-binding cleft of both MASPs as
the cleft is partially blocked by large gatekeeper enzyme loops. Directed
evolution removed this obstacle by replacing the P2 Thr with a Ser,
providing the SFMIs with high-degree structural plasticity, which
proved to be essential for MASP inhibition. To gain more insight into
the structural criteria for SFMI-based MASP-2 inhibition, we systematically
modified MASP-2-specific SFMI2 by capping its two termini and by replacing
its disulfide bridge with varying length thioether linkers. By doing
so, we also aimed to generate a versatile scaffold that is resistant
to reducing environment and has increased stability in exopeptidase-containing
biological environments. We found that the reduction-resistant disulfide-substituted l-2,3-diaminopropionic acid (Dap) variant possessed near-native
potency. As MASP-2 is involved in the life-threatening thrombosis
in COVID-19 patients, our synthetic, selective MASP-2 inhibitors could
be relevant coronavirus drug candidates.
Collapse
Affiliation(s)
- Zsolt Dürvanger
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Zoltán Attila Nagy
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Rózsa Hegedüs
- MTA-ELTE Research Group of Peptide Chemistry, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Márton Megyeri
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Budapest, Hungary
| | - Annamária F. Ángyán
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, H-1083 Budapest, Hungary
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, H-1083 Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös
Loránd Research Network, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös
Loránd Research Network, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Department of Organic Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös
Loránd Research Network, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol 2021; 43:757-771. [PMID: 34698894 PMCID: PMC8547127 DOI: 10.1007/s00281-021-00892-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The ability of the complement system to rapidly and broadly react to microbial intruders, apoptotic cells and other threats by inducing forceful elimination responses is indispensable for its role as host defense and surveillance system. However, the danger sensing versatility of complement may come at a steep price for patients suffering from various immune, inflammatory, age-related, or biomaterial-induced conditions. Misguided recognition of cell debris or transplants, excessive activation by microbial or damaged host cells, autoimmune events, and dysregulation of the complement response may all induce effector functions that damage rather than protect host tissue. Although complement has long been associated with disease, the prevalence, impact and complexity of complement’s involvement in pathological processes is only now becoming fully recognized. While complement rarely constitutes the sole driver of disease, it acts as initiator, contributor, and/or exacerbator in numerous disorders. Identifying the factors that tip complement’s balance from protective to damaging effects in a particular disease continues to prove challenging. Fortunately, however, molecular insight into complement functions, improved disease models, and growing clinical experience has led to a greatly improved understanding of complement’s pathological side. The identification of novel complement-mediated indications and the clinical availability of the first therapeutic complement inhibitors has also sparked a renewed interest in developing complement-targeted drugs, which meanwhile led to new approvals and promising candidates in late-stage evaluation. More than a century after its description, complement now has truly reached the clinic and the recent developments hold great promise for diagnosis and therapy alike.
Collapse
|
8
|
Talsma DT, Poppelaars F, Dam W, Meter-Arkema AH, Vivès RR, Gál P, Boons GJ, Chopra P, Naggi A, Seelen MA, Berger SP, Daha MR, Stegeman CA, van den Born J. MASP-2 Is a Heparin-Binding Protease; Identification of Blocking Oligosaccharides. Front Immunol 2020; 11:732. [PMID: 32425936 PMCID: PMC7212410 DOI: 10.3389/fimmu.2020.00732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
It is well-known that heparin and other glycosaminoglycans (GAGs) inhibit complement activation. It is however not known whether fractionation and/or modification of GAGs might deliver pathway-specific inhibition of the complement system. Therefore, we evaluated a library of GAGs and their derivatives for their functional pathway specific complement inhibition, including the MASP-specific C4 deposition assay. Interaction of human MASP-2 with heparan sulfate/heparin was evaluated by surface plasmon resonance, ELISA and in renal tissue. In vitro pathway-specific complement assays showed that highly sulfated GAGs inhibited all three pathways of complement. Small heparin- and heparan sulfate-derived oligosaccharides were selective inhibitors of the lectin pathway (LP). These small oligosaccharides showed identical inhibition of the ficolin-3 mediated LP activation, failed to inhibit the binding of MBL to mannan, but inhibited C4 cleavage by MASPs. Hexa- and pentasulfated tetrasaccharides represent the smallest MASP inhibitors both in the functional LP assay as well in the MASP-mediated C4 assay. Surface plasmon resonance showed MASP-2 binding with heparin and heparan sulfate, revealing high Kon and Koff rates resulted in a Kd of ~2 μM and confirmed inhibition by heparin-derived tetrasaccharide. In renal tissue, MASP-2 partially colocalized with agrin and heparan sulfate, but not with activated C3, suggesting docking, storage, and potential inactivation of MASP-2 by heparan sulfate in basement membranes. Our data show that highly sulfated GAGs mediated inhibition of all three complement pathways, whereas short heparin- and heparan sulfate-derived oligosaccharides selectively blocked the lectin pathway via MASP-2 inhibition. Binding of MASP-2 to immobilized heparan sulfate/heparin and partial co-localization of agrin/heparan sulfate with MASP, but not C3b, might suggest that in vivo heparan sulfate proteoglycans act as a docking platform for MASP-2 and possibly prevent the lectin pathway from activation.
Collapse
Affiliation(s)
- Ditmer T Talsma
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Felix Poppelaars
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Wendy Dam
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Anita H Meter-Arkema
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | | | - Peter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | | | - Marc A Seelen
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Stephan P Berger
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Mohamed R Daha
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Coen A Stegeman
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
9
|
Nagy ZA, Szakács D, Boros E, Héja D, Vígh E, Sándor N, Józsi M, Oroszlán G, Dobó J, Gál P, Pál G. Ecotin, a microbial inhibitor of serine proteases, blocks multiple complement dependent and independent microbicidal activities of human serum. PLoS Pathog 2019; 15:e1008232. [PMID: 31860690 PMCID: PMC6944378 DOI: 10.1371/journal.ppat.1008232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/06/2020] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Ecotin is a serine protease inhibitor produced by hundreds of microbial species, including pathogens. Here we show, that ecotin orthologs from Escherichia coli, Yersinia pestis, Pseudomonas aeruginosa and Leishmania major are potent inhibitors of MASP-1 and MASP-2, the two key activator proteases of the complement lectin pathway. Factor D is the key activator protease of another complement activation route, the alternative pathway. We show that ecotin inhibits MASP-3, which is the sole factor D activator in resting human blood. In pathway-specific ELISA tests, we found that all ecotin orthologs are potent lectin pathway inhibitors, and at high concentration, they block the alternative pathway as well. In flow cytometry experiments, we compared the extent of complement-mediated opsonization and lysis of wild-type and ecotin-knockout variants of two E. coli strains carrying different surface lipopolysaccharides. We show, that endogenous ecotin provides significant protections against these microbicidal activities for both bacteria. By using pathway specific complement inhibitors, we detected classical-, lectin- and alternative pathway-driven complement attack from normal serum, with the relative contributions of the activation routes depending on the lipopolysaccharide type. Moreover, in cell proliferation experiments we observed an additional, complement-unrelated antimicrobial activity exerted by heat-inactivated serum. While ecotin-knockout cells are highly vulnerable to these activities, endogenous ecotin of wild-type bacteria provides complete protection against the lectin pathway-related and the complement-unrelated attack, and partial protection against the alternative pathway-related damage. In all, ecotin emerges as a potent, versatile self-defense tool that blocks multiple antimicrobial activities of the serum. These findings suggest that ecotin might be a relevant antimicrobial drug target. Bloodstream infections are major cause of morbidity and mortality in many countries around the globe. As the number of multi-drug resistant pathogenic strains is growing, it is urgent to identify their virulence factors and unveil the corresponding mechanisms of action that enable the pathogen to avoid potent immune response. A microbial inhibitor of serine proteases, ecotin was previously implicated in protecting various pathogenic bacteria and eukaryotic Leishmania species against the host immune system by inhibiting leukocyte elastase. However, the interaction of ecotin with the complement system, which provides a first line defense against pathogens, remained unexplored. We found that ecotin blocks activation of the complement lectin pathway by inhibiting its key activator enzymes, MASP-1 and MASP-2. Furthermore, by inhibiting MASP-3, ecotin also disrupts a fundamental link between the lectin- and the alternative pathways. We provide evidence that E. coli cells devoid of ecotin are extremely vulnerable to complement-mediated lysis and they are also potently killed by some complement-independent antimicrobial factors of human serum. These findings could explain the observations of other research groups reporting that ecotin is crucial for the survival of pathogenic microbes in the host. Our results therefore also highlight ecotin as a potential target of future antimicrobial therapies.
Collapse
Affiliation(s)
- Zoltán Attila Nagy
- Department of Biochemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Szakács
- Department of Biochemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Eszter Boros
- Department of Biochemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Héja
- Department of Biochemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
- Department of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eszter Vígh
- Department of Biochemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Noémi Sándor
- Department of Immunology, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Oroszlán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
10
|
Kim H, Conway EM. Platelets and Complement Cross-Talk in Early Atherogenesis. Front Cardiovasc Med 2019; 6:131. [PMID: 31555668 PMCID: PMC6742699 DOI: 10.3389/fcvm.2019.00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis remains a ubiquitous and serious threat to human health. The initial formation of the atherosclerotic lesion (atheroma) is driven by pro-inflammatory signaling involving monocytes and vascular endothelial cells; later stages of the disease involve rupture of well-established atherosclerotic plaques, thrombosis, and blood vessel occlusion. While the central role of platelets in thrombosis is undisputed, platelets exhibit pro-inflammatory activities, and contribute to early-stage atheroma formation. Platelets also engage components of the complement system, an essential element of innate immunity that contributes to vascular inflammation. Here we provide an overview of the complex interplay between platelets and the complement system, with a focus on how the crosstalk between them may impact on the initiation of atheroma formation.
Collapse
Affiliation(s)
- Hugh Kim
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|