1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Ling Z, Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Protective role of madecassoside from Centella asiatica against protein L-isoaspartyl methyltransferase deficiency-induced neurodegeneration. Neuropharmacology 2024; 246:109834. [PMID: 38181970 DOI: 10.1016/j.neuropharm.2023.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Protein L-isoaspartyl methyltransferase (PIMT/PCMT1) could repair l-isoaspartate (L-isoAsp) residues formed by deamidation of asparaginyl (Asn) residues or isomerization of aspartyl (Asp) residues in peptides and proteins during aging. Aside from abnormal accumulation of L-isoAsp, PIMT knockout (KO) mice mirrors some neuropathological hallmarks such as anxiety-like behaviors, impaired spatial memory and aberrant synaptic plasticity in the hippocampus of neurodegenerative diseases (NDs), including Alzheimer's disease (AD) and related dementias, and Parkinson's disease (PD). While some reports indicate the neuroprotective effect of madecassoside (MA) as a triterpenoid saponin component of Centella asiatica, its role against NDs-related anxiety and cognitive impairment remains unclear. Therefore, we investigated the effect of MA against anxiety-related behaviors in PIMT deficiency-induced mouse model of NDs. Results obtained from the elevated plus maze (EPM) test revealed that MA treatment alleviated anxiety-like behaviors in PIMT knockout mice. Furthermore, Real-time PCR, electroencephalogram (EEG) recordings, transmission electron microscopy analysis and ELISA were carried out to evaluate the expression of clock genes, sleep and synaptic function, respectively. The PIMT knockout mice were characterized by abnormal clock patterns, sleep disturbance and synaptic dysfunction, which could be improved by MA administration. Collectively, these findings suggest that MA exhibits neuroprotective effects associated with improved circadian rhythms sleep-wake cycle and synaptic plasticity in PIMT deficient mice, which could be translated to ameliorate anxiety-related symptoms and cognitive impairments in NDs.
Collapse
Affiliation(s)
- Zicheng Ling
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Heath SL, Guseman AJ, Gronenborn AM, Horne WS. Probing effects of site-specific aspartic acid isomerization on structure and stability of GB1 through chemical protein synthesis. Protein Sci 2024; 33:e4883. [PMID: 38143426 PMCID: PMC10868458 DOI: 10.1002/pro.4883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Chemical modifications of long-lived proteins, such as isomerization and epimerization, have been evoked as prime triggers for protein-damage related diseases. Deamidation of Asn residues, which results in formation of a mixture of l- and d-Asp and isoAsp via an intermediate aspartyl succinimide, can result in the disruption of cellular proteostasis and toxic protein depositions. In contrast to extensive data on the biological prevalence and functional implications of aspartyl succinimide formation, much less is known about the impact of the resulting altered backbone composition on properties of individual proteins at a molecular level. Here, we report the total chemical synthesis, biophysical characterization, and NMR structural analysis of a series of variants of the B1 domain of protein G from Streptococcal bacteria (GB1) in which all possible Asp isomers as well as an aspartyl succinimide were individually incorporated at a defined position in a solvent-exposed loop. Subtle local structural effects were observed; however, these were accompanied by notable differences in thermodynamic folded stability. Surprisingly, the noncanonical backbone connectivity of d-isoAsp led to a variant that exhibited enhanced stability relative to the natural protein.
Collapse
Affiliation(s)
- Shelby L. Heath
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alex J. Guseman
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Angela M. Gronenborn
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - W. Seth Horne
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Kalailingam P, Mohd‐Kahliab K, Ngan SC, Iyappan R, Melekh E, Lu T, Zien GW, Sharma B, Guo T, MacNeil AJ, MacPherson REK, Tsiani EL, O'Leary DD, Lim KL, Su IH, Gao Y, Richards AM, Kalaria RN, Chen CP, McCarthy NE, Sze SK. Immunotherapy targeting isoDGR-protein damage extends lifespan in a mouse model of protein deamidation. EMBO Mol Med 2023; 15:e18526. [PMID: 37971164 PMCID: PMC10701600 DOI: 10.15252/emmm.202318526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Aging results from the accumulation of molecular damage that impairs normal biochemical processes. We previously reported that age-linked damage to amino acid sequence NGR (Asn-Gly-Arg) results in "gain-of-function" conformational switching to isoDGR (isoAsp-Gly-Arg). This integrin-binding motif activates leukocytes and promotes chronic inflammation, which are characteristic features of age-linked cardiovascular disorders. We now report that anti-isoDGR immunotherapy mitigates lifespan reduction of Pcmt1-/- mouse. We observed extensive accumulation of isoDGR and inflammatory cytokine expression in multiple tissues from Pcmt1-/- and naturally aged WT animals, which could also be induced via injection of isoDGR-modified plasma proteins or synthetic peptides into young WT animals. However, weekly injection of anti-isoDGR mAb (1 mg/kg) was sufficient to significantly reduce isoDGR-protein levels in body tissues, decreased pro-inflammatory cytokine concentrations in blood plasma, improved cognition/coordination metrics, and extended the average lifespan of Pcmt1-/- mice. Mechanistically, isoDGR-mAb mediated immune clearance of damaged isoDGR-proteins via antibody-dependent cellular phagocytosis (ADCP). These results indicate that immunotherapy targeting age-linked protein damage may represent an effective intervention strategy in a range of human degenerative disorders.
Collapse
Affiliation(s)
| | | | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Evelin Melekh
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Tian Lu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouChina
| | - Gan Wei Zien
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Bhargy Sharma
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Tiannan Guo
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouChina
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Rebecca EK MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Evangelia Litsa Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Kah Leong Lim
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - I Hsin Su
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Yong‐Gui Gao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - A Mark Richards
- Department of CardiologyNational University Heart CentreSingaporeSingapore
- Department of CardiologyUniversity of OtagoChristchurchNew Zealand
| | - Raj N Kalaria
- Institute of Neuroscience, Campus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Christopher P Chen
- Memory, Aging and Cognition CentreNational University Health SystemSingaporeSingapore
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| |
Collapse
|
5
|
Panja S, Nahomi RB, Rankenberg J, Michel CR, Gaikwad H, Nam M, Nagaraj RH. Aggrelyte-2 promotes protein solubility and decreases lens stiffness through lysine acetylation and disulfide reduction: Implications for treating presbyopia. Aging Cell 2023; 22:e13797. [PMID: 36823285 PMCID: PMC10086532 DOI: 10.1111/acel.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65-75 years) were incubated with aggrelyte-2 (500 μM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%-30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC-MS/MS results showed Nε -acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Ophthalmology, School of Medicine, Sue Anschutz‐Rodgers Eye CenterUniversity of Colorado Anschutz Medical CampusColoradoAuroraUSA
| | - Rooban B. Nahomi
- Department of Ophthalmology, School of Medicine, Sue Anschutz‐Rodgers Eye CenterUniversity of Colorado Anschutz Medical CampusColoradoAuroraUSA
| | - Johanna Rankenberg
- Department of Ophthalmology, School of Medicine, Sue Anschutz‐Rodgers Eye CenterUniversity of Colorado Anschutz Medical CampusColoradoAuroraUSA
| | - Cole R. Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Hanmant Gaikwad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Mi‐Hyun Nam
- Department of Ophthalmology, School of Medicine, Sue Anschutz‐Rodgers Eye CenterUniversity of Colorado Anschutz Medical CampusColoradoAuroraUSA
| | - Ram H. Nagaraj
- Department of Ophthalmology, School of Medicine, Sue Anschutz‐Rodgers Eye CenterUniversity of Colorado Anschutz Medical CampusColoradoAuroraUSA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
6
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
7
|
Norton-Baker B, Rocha MA, Granger-Jones J, Fishman DA, Martin RW. Human γS-Crystallin Resists Unfolding Despite Extensive Chemical Modification from Exposure to Ionizing Radiation. J Phys Chem B 2022; 126:679-690. [PMID: 35021623 PMCID: PMC9977691 DOI: 10.1021/acs.jpcb.1c08157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionizing radiation has dramatic effects on living organisms, causing damage to proteins, DNA, and other cellular components. γ radiation produces reactive oxygen species (ROS) that damage biological macromolecules. Protein modification due to interactions with hydroxyl radical is one of the most common deleterious effects of radiation. The human eye lens is particularly vulnerable to the effects of ionizing radiation, as it is metabolically inactive and its proteins are not recycled after early development. Therefore, radiation damage accumulates and eventually can lead to cataract formation. Here we explore the impact of γ radiation on a long-lived structural protein. We exposed the human eye lens protein γS-crystallin (HγS) to high doses of γ radiation and investigated the chemical and structural effects. HγS accumulated many post-translational modifications (PTMs), appearing to gain significant oxidative damage. Biochemical assays suggested that cysteines were affected, with the concentration of free thiol reduced with increasing γ radiation exposure. SDS-PAGE analysis showed that irradiated samples form protein-protein cross-links, including nondisulfide covalent bonds. Tandem mass spectrometry on proteolytic digests of irradiated samples revealed that lysine, methionine, tryptophan, leucine, and cysteine were oxidized. Despite these chemical modifications, HγS remained folded past 10.8 kGy of γ irradiation as evidenced by circular dichroism and intrinsic tryptophan fluorescence spectroscopy.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Megan A. Rocha
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
8
|
Twum K, Bhattacharjee A, Laryea ET, Esposto J, Omolloh G, Mortensen S, Jaradi M, Stock NL, Schileru N, Elias B, Pszenica E, McCormick TM, Martic S, Beyeh NK. Functionalized resorcinarenes effectively disrupt the aggregation of αA66-80 crystallin peptide related to cataracts. RSC Med Chem 2021; 12:2022-2030. [PMID: 35028562 PMCID: PMC8672818 DOI: 10.1039/d1md00294e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Cataracts, an eye lens clouding disease, are debilitating and while operable, remain without a cure. αA66-80 crystallin peptide abundant in cataracted eye lenses contributes to aggregation of αA-crystallin protein leading to cataracts. Inspired by the versatility of macrocycles and programmable guest selectivity through discrete functionalizations, we report on three water-soluble ionic resorcinarene receptors (A, B, and C) that disrupt the aggregation of αA66-80 crystallin peptide. A and B each possess four anionic sulfonate groups, while C includes four cationic ammonium groups with four flexible extended benzyl groups. Through multiple non-covalent attractions, these receptors successfully disrupt and reverse the aggregation of αA66-80 crystallin peptide, which was studied through spectroscopic, spectrometric, calorimetric, and imaging techniques. The αA66-80·receptor complexes were also explored using molecular dynamics simulation, and binding energies were calculated. Even though each of the three receptors can bind with the peptide, receptor C was characterized by the highest binding energy and affinity for three different domains of the peptide. In effect, the most efficient inhibitor was a cationic receptor C via extended aromatic interactions. These results highlight the potential of versatile and tunable functionalized resorcinarenes as potential therapeutics to reverse the aggregation of α-crystallin dominant in eye cataracts.
Collapse
Affiliation(s)
- Kwaku Twum
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Avik Bhattacharjee
- Department of Chemistry, Portland State University 1710 SW 10th Ave Portland OR 97201 USA
| | - Erving T Laryea
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Josephine Esposto
- Department of Forensic Science and Environmental and Life Sciences Program, Trent University ON K9 L0G2 Canada
| | - George Omolloh
- Department of Chemistry, Portland State University 1710 SW 10th Ave Portland OR 97201 USA
| | - Shaelyn Mortensen
- Department of Forensic Science and Environmental and Life Sciences Program, Trent University ON K9 L0G2 Canada
| | - Maya Jaradi
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Naomi L Stock
- Water Quality Centre, Trent University ON K9L 0G2 Canada
| | - Nicholas Schileru
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
- Department of Osteopathic Medicine, Midwestern University 555 31st St. Downers Grove IL 60515 USA
| | - Bianca Elias
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Elan Pszenica
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Theresa M McCormick
- Department of Chemistry, Portland State University 1710 SW 10th Ave Portland OR 97201 USA
| | - Sanela Martic
- Department of Forensic Science and Environmental and Life Sciences Program, Trent University ON K9 L0G2 Canada
- Water Quality Centre, Trent University ON K9L 0G2 Canada
| | - Ngong Kodiah Beyeh
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| |
Collapse
|
9
|
Beckman JS, Voinov VG, Hare M, Sturgeon D, Vasil’ev Y, Oppenheimer D, Shaw JB, Wu S, Glaskin R, Klein C, Schwarzer C, Stafford G. Improved Protein and PTM Characterization with a Practical Electron-Based Fragmentation on Q-TOF Instruments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2081-2091. [PMID: 33914527 PMCID: PMC8343505 DOI: 10.1021/jasms.0c00482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Electron-based dissociation (ExD) produces uncluttered mass spectra of intact proteins while preserving labile post-translational modifications. However, technical challenges have limited this option to only a few high-end mass spectrometers. We have developed an efficient ExD cell that can be retrofitted in less than an hour into current LC/Q-TOF instruments. Supporting software has been developed to acquire, process, and annotate peptide and protein ExD fragmentation spectra. In addition to producing complementary fragmentation, ExD spectra enable many isobaric leucine/isoleucine and isoaspartate/aspartate pairs to be distinguished by side-chain fragmentation. The ExD cell preserves phosphorylation and glycosylation modifications. It also fragments longer peptides more efficiently to reveal signaling cross-talk between multiple post-translational modifications on the same protein chain and cleaves disulfide bonds in cystine knotted proteins and intact antibodies. The ability of the ExD cell to combine collisional activation with electron fragmentation enables more complete sequence coverage by disrupting intramolecular electrostatic interactions that can hold fragments of large peptides and proteins together. These enhanced capabilities made possible by the ExD cell expand the size of peptides and proteins that can be analyzed as well as the analytical certainty of characterizing their post-translational modifications.
Collapse
Affiliation(s)
- Joseph S. Beckman
- e-MSion,
Inc, Corvallis, Oregon 97330, United
States
- Department
of Biochemistry and Biophysics, Linus Pauling Institute 2011 ALS, Oregon State University Corvallis, Oregon 97330, United States
| | - Valery G. Voinov
- e-MSion,
Inc, Corvallis, Oregon 97330, United
States
- Department
of Biochemistry and Biophysics, Linus Pauling Institute 2011 ALS, Oregon State University Corvallis, Oregon 97330, United States
| | - Michael Hare
- e-MSion,
Inc, Corvallis, Oregon 97330, United
States
| | | | - Yury Vasil’ev
- e-MSion,
Inc, Corvallis, Oregon 97330, United
States
- Department
of Biochemistry and Biophysics, Linus Pauling Institute 2011 ALS, Oregon State University Corvallis, Oregon 97330, United States
| | | | - Jared B. Shaw
- e-MSion,
Inc, Corvallis, Oregon 97330, United
States
| | - Shuai Wu
- Agilent
Technologies, Inc Santa Clara, California 95051, United States
| | - Rebecca Glaskin
- Agilent
Technologies, Inc Santa Clara, California 95051, United States
| | - Christian Klein
- Agilent
Technologies, Inc Santa Clara, California 95051, United States
| | - Cody Schwarzer
- Agilent
Technologies, Inc Santa Clara, California 95051, United States
| | - George Stafford
- Agilent
Technologies, Inc Santa Clara, California 95051, United States
| |
Collapse
|
10
|
Recent developments in separation methods for enantiomeric ratio determination of amino acids specifically involved in cataract and Alzheimer's disease. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Timsina R, Mainali L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. MEMBRANES 2021; 11:447. [PMID: 34203836 PMCID: PMC8232717 DOI: 10.3390/membranes11060447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/04/2023]
Abstract
α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA;
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
12
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
13
|
Guseman AJ, Whitley MJ, González JJ, Rathi N, Ambarian M, Gronenborn AM. Assessing the Structures and Interactions of γD-Crystallin Deamidation Variants. Structure 2020; 29:284-291.e3. [PMID: 33264606 DOI: 10.1016/j.str.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
Cataracts involve the deposition of the crystallin proteins in the vertebrate eye lens, causing opacification and blindness. They are associated with either genetic mutation or protein damage that accumulates over the lifetime of the organism. Deamidation of Asn residues in several different crystallins has been observed and is frequently invoked as a cause of cataract. Here, we investigated the properties of Asp variants, deamidation products of γD-crystallin, by solution NMR, X-ray crystallography, and other biophysical techniques. No substantive structural or stability changes were noted for all seven Asn to Asp γD-crystallins. Importantly, no changes in diffusion interaction behavior could be detected. Our combined experimental results demonstrate that introduction of single Asp residues on the surface of γD-crystallin by deamidation is unlikely to be the driver of cataract formation in the eye lens.
Collapse
Affiliation(s)
- Alex J Guseman
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Jeremy J González
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Nityam Rathi
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Mikayla Ambarian
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
| |
Collapse
|
14
|
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J 2020; 477:4453-4471. [PMID: 33245750 DOI: 10.1042/bcj20200794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Proteins are essential molecules that carry out key functions in a cell. However, as a result of aging or stressful environments, the protein undergoes a range of spontaneous covalent modifications, including the formation of abnormal l-isoaspartyl residues from aspartyl or asparaginyl residues, which can disrupt the protein's inherent structure and function. PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT: EC 2.1.1.77), an evolutionarily conserved ancient protein repairing enzyme (PRE), converts such abnormal l-isoaspartyl residues to normal l-aspartyl residues and re-establishes the protein's native structure and function. Although originally discovered in animals as a PRE, PIMT emerged as a key PRE in plants, particularly in seeds, in which PIMT plays a predominant role in preserving seed vigor and viability for prolonged periods of time. Interestingly, higher plants encode a second PIMT (PIMT2) protein which possesses a unique N-terminal extension, and exhibits several distinct features and far more complexity than non-plant PIMTs. Recent studies indicate that the role of PIMT is not restricted to preserving seed vigor and longevity but is also implicated in enhancing the growth and survivability of plants under stressful environments. Furthermore, expression studies indicate the tantalizing possibility that PIMT is involved in various physiological processes apart from its role in seed vigor, longevity and plant's survivability under abiotic stress. This review article particularly describes new insights and emerging interest in all facets of this enzyme in plants along with a concise comparative overview on isoAsp formation, and the role and regulation of PIMTs across evolutionary diverse species. Additionally, recent methods and their challenges in identifying isoaspartyl containing proteins (PIMT substrates) are highlighted.
Collapse
|
15
|
Magami K, Kim I, Fujii N. A single Asp isomer substitution in an αA-crystallin-derived peptide induces a large change in peptide properties. Exp Eye Res 2020; 192:107930. [DOI: 10.1016/j.exer.2020.107930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
16
|
Schey KL, Wang Z, Friedrich MG, Garland DL, Truscott RJW. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Prog Retin Eye Res 2019; 76:100802. [PMID: 31704338 DOI: 10.1016/j.preteyeres.2019.100802] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
The ocular lens is a unique tissue that contains an age gradient of cells and proteins ranging from newly differentiated cells containing newly synthesized proteins to cells and proteins that are as old as the organism. Thus, the ocular lens is an excellent model for studying long-lived proteins (LLPs) and the effects of aging and post-translational modifications on protein structure and function. Given the architecture of the lens, with young fiber cells in the outer cortex and the oldest cells in the lens nucleus, spatially-resolved studies provide information on age-specific protein changes. In this review, experimental strategies and proteomic methods that have been used to examine age-related and cataract-specific changes to the human lens proteome are described. Measured spatio-temporal changes in the human lens proteome are summarized and reveal a highly consistent, time-dependent set of modifications observed in transparent human lenses. Such measurements have led to the discovery of cataract-specific modifications and the realization that many animal systems are unsuitable to study many of these modifications. Mechanisms of protein modifications such as deamidation, racemization, truncation, and protein-protein crosslinking are presented and the implications of such mechanisms for other long-lived proteins in other tissues are discussed in the context of age-related neurological diseases. A comprehensive understanding of LLP modifications will enhance our ability to develop new therapies for the delay, prevention or reversal of age-related diseases.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, USA
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | | | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|