1
|
Rosenberg EM, Jian X, Soubias O, Jackson RA, Gladu E, Andersen E, Esser L, Sodt AJ, Xia D, Byrd RA, Randazzo PA. Point mutations in Arf1 reveal cooperative effects of the N-terminal extension and myristate for GTPase-activating protein catalytic activity. PLoS One 2024; 19:e0295103. [PMID: 38574162 PMCID: PMC10994351 DOI: 10.1371/journal.pone.0295103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
The ADP-ribosylation factors (Arfs) constitute a family of small GTPases within the Ras superfamily, with a distinguishing structural feature of a hypervariable N-terminal extension of the G domain modified with myristate. Arf proteins, including Arf1, have roles in membrane trafficking and cytoskeletal dynamics. While screening for Arf1:small molecule co-crystals, we serendipitously solved the crystal structure of the non-myristoylated engineered mutation [L8K]Arf1 in complex with a GDP analogue. Like wild-type (WT) non-myristoylated Arf1•GDP, we observed that [L8K]Arf1 exhibited an N-terminal helix that occludes the hydrophobic cavity that is occupied by the myristoyl group in the GDP-bound state of the native protein. However, the helices were offset from one another due to the L8K mutation, with a significant change in position of the hinge region connecting the N-terminus to the G domain. Hypothesizing that the observed effects on behavior of the N-terminus affects interaction with regulatory proteins, we mutated two hydrophobic residues to examine the role of the N-terminal extension for interaction with guanine nucleotide exchange factors (GEFs) and GTPase Activating Proteins (GAPs. Different than previous studies, all mutations were examined in the context of myristoylated Arf. Mutations had little or no effect on spontaneous or GEF-catalyzed guanine nucleotide exchange but did affect interaction with GAPs. [F13A]myrArf1 was less than 1/2500, 1/1500, and 1/200 efficient as substrate for the GAPs ASAP1, ARAP1 and AGAP1; however, [L8A/F13A]myrArf1 was similar to WT myrArf1. Using molecular dynamics simulations, the effect of the mutations on forming alpha helices adjacent to a membrane surface was examined, yet no differences were detected. The results indicate that lipid modifications of GTPases and consequent anchoring to a membrane influences protein function beyond simple membrane localization. Hypothetical mechanisms are discussed.
Collapse
Affiliation(s)
- Eric M. Rosenberg
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Olivier Soubias
- Section of Macromolecular NMR, Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Rebekah A. Jackson
- Section of Macromolecular NMR, Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Erin Gladu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Emily Andersen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Lothar Esser
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alexander J. Sodt
- Unit of Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States of America
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - R. Andrew Byrd
- Section of Macromolecular NMR, Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul A. Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| |
Collapse
|
2
|
Zhang Y, Soubias O, Pant S, Heinrich F, Vogel A, Li J, Li Y, Clifton LA, Daum S, Bacia K, Huster D, Randazzo PA, Lösche M, Tajkhorshid E, Byrd RA. Myr-Arf1 conformational flexibility at the membrane surface sheds light on the interactions with ArfGAP ASAP1. Nat Commun 2023; 14:7570. [PMID: 37989735 PMCID: PMC10663523 DOI: 10.1038/s41467-023-43008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
ADP-ribosylation factor 1 (Arf1) interacts with multiple cellular partners and membranes to regulate intracellular traffic, organelle structure and actin dynamics. Defining the dynamic conformational landscape of Arf1 in its active form, when bound to the membrane, is of high functional relevance and key to understanding how Arf1 can alter diverse cellular processes. Through concerted application of nuclear magnetic resonance (NMR), neutron reflectometry (NR) and molecular dynamics (MD) simulations, we show that, while Arf1 is anchored to the membrane through its N-terminal myristoylated amphipathic helix, the G domain explores a large conformational space, existing in a dynamic equilibrium between membrane-associated and membrane-distal conformations. These configurational dynamics expose different interfaces for interaction with effectors. Interaction with the Pleckstrin homology domain of ASAP1, an Arf-GTPase activating protein (ArfGAP), restricts motions of the G domain to lock it in what seems to be a conformation exposing functionally relevant regions.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
- Ring Therapeutics, Inc., Cambridge, MA, USA
| | - Olivier Soubias
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Shashank Pant
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Loxo Oncology at Lilly, Louisville, CO, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- NIST Center for Neutron Research, Gaithersburg, MD, USA
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany
| | - Jess Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Yifei Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
- Vonsun Pharmatech Co., Ltd., Suzhou, China
| | - Luke A Clifton
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
| | - Sebastian Daum
- Institute for Chemistry, Department of Biophysical Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Kirsten Bacia
- Institute for Chemistry, Department of Biophysical Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- NIST Center for Neutron Research, Gaithersburg, MD, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - R Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
3
|
Rosenberg EM, Jian X, Soubias O, Yoon HY, Yadav MP, Hammoudeh S, Pallikkuth S, Akpan I, Chen PW, Maity TK, Jenkins LM, Yohe ME, Byrd RA, Randazzo PA. The small molecule inhibitor NAV-2729 has a complex target profile including multiple ADP-ribosylation factor regulatory proteins. J Biol Chem 2023; 299:102992. [PMID: 36758799 PMCID: PMC10023970 DOI: 10.1016/j.jbc.2023.102992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
The ADP-ribosylation factor (Arf) GTPases and their regulatory proteins are implicated in cancer progression. NAV-2729 was previously identified as a specific inhibitor of Arf6 that reduced progression of uveal melanoma in an orthotopic xenograft. Here, our goal was to assess the inhibitory effects of NAV-2729 on the proliferation of additional cell types. We found NAV-2729 inhibited proliferation of multiple cell lines, but Arf6 expression did not correlate with NAV-2729 sensitivity, and knockdown of Arf6 affected neither cell viability nor sensitivity to NAV-2729. Furthermore, binding to native Arf6 was not detected; however, we determined that NAV-2729 inhibited both Arf exchange factors and Arf GTPase-activating proteins. ASAP1, a GTPase-activating protein linked to cancer progression, was further investigated. We demonstrated that NAV-2729 bound to the PH domain of ASAP1 and changed ASAP1 cellular distribution. However, ASAP1 knockdown did not fully recapitulate the cytoskeletal effects of NAV-2729 nor affect cell proliferation. Finally, our screens identified 48 other possible targets of NAV-2729. These results illustrate the complexities of defining targets of small molecules and identify NAV-2729 as a model PH domain-binding inhibitor.
Collapse
Affiliation(s)
- Eric M Rosenberg
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Olivier Soubias
- Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mukesh P Yadav
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sarah Hammoudeh
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Tapan K Maity
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA; Laboratory of Cell and Developmental Signaling, Center for Cancer Research, Frederick, Maryland, USA
| | - R Andrew Byrd
- Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
De Santis MC, Gozzelino L, Margaria JP, Costamagna A, Ratto E, Gulluni F, Di Gregorio E, Mina E, Lorito N, Bacci M, Lattanzio R, Sala G, Cappello P, Novelli F, Giovannetti E, Vicentini C, Andreani S, Delfino P, Corbo V, Scarpa A, Porporato PE, Morandi A, Hirsch E, Martini M. Lysosomal lipid switch sensitises to nutrient deprivation and mTOR targeting in pancreatic cancer. Gut 2023; 72:360-371. [PMID: 35623884 PMCID: PMC9872233 DOI: 10.1136/gutjnl-2021-325117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited therapeutic options. However, metabolic adaptation to the harsh PDAC environment can expose liabilities useful for therapy. Targeting the key metabolic regulator mechanistic target of rapamycin complex 1 (mTORC1) and its downstream pathway shows efficacy only in subsets of patients but gene modifiers maximising response remain to be identified. DESIGN Three independent cohorts of PDAC patients were studied to correlate PI3K-C2γ protein abundance with disease outcome. Mechanisms were then studied in mouse (KPC mice) and cellular models of PDAC, in presence or absence of PI3K-C2γ (WT or KO). PI3K-C2γ-dependent metabolic rewiring and its impact on mTORC1 regulation were assessed in conditions of limiting glutamine availability. Finally, effects of a combination therapy targeting mTORC1 and glutamine metabolism were studied in WT and KO PDAC cells and preclinical models. RESULTS PI3K-C2γ expression was reduced in about 30% of PDAC cases and was associated with an aggressive phenotype. Similarly, loss of PI3K-C2γ in KPC mice enhanced tumour development and progression. The increased aggressiveness of tumours lacking PI3K-C2γ correlated with hyperactivation of mTORC1 pathway and glutamine metabolism rewiring to support lipid synthesis. PI3K-C2γ-KO tumours failed to adapt to metabolic stress induced by glutamine depletion, resulting in cell death. CONCLUSION Loss of PI3K-C2γ prevents mTOR inactivation and triggers tumour vulnerability to RAD001 (mTOR inhibitor) and BPTES/CB-839 (glutaminase inhibitors). Therefore, these results might open the way to personalised treatments in PDAC with PI3K-C2γ loss.
Collapse
Affiliation(s)
- Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Erica Mina
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Nicla Lorito
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Marina Bacci
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio", Chieti, Italy, Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio", Chieti, Italy, Chieti, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | | | - Silvia Andreani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Morandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| |
Collapse
|
6
|
Meng S, Li T, Wang T, Li D, Chen J, Li H, Cai W, Zeng Z, Liu D, Tang D, Hong X, Dai Y. Global Phosphoproteomics Unveils Kinase-Regulated Networks in Systemic Lupus Erythematosus. Mol Cell Proteomics 2022; 21:100434. [PMID: 36309313 PMCID: PMC9712766 DOI: 10.1016/j.mcpro.2022.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune complex deposition in multiple organs. Despite the severe symptoms caused by it, the underlying mechanisms of SLE, especially phosphorylation-dependent regulatory networks remain elusive. Herein, by combining high-throughput phosphoproteomics with bioinformatics approaches, we established the global phosphoproteome landscape of the peripheral blood mononuclear cells from a large number of SLE patients, including the remission stage (SLE_S), active stage (SLE_A), rheumatoid arthritis, and healthy controls, and thus a deep mechanistic insight into SLE signaling mechanism was yielded. Phosphorylation upregulation was preferentially in patients with SLE (SLE_S and SLE_A) compared with healthy controls and rheumatoid arthritis populations, resulting in an atypical enrichment in cell adhesion and migration signatures. Several specifically upregulated phosphosites were identified, and the leukocyte transendothelial migration pathway was enriched in the SLE_A group by expression pattern clustering analysis. Phosphosites identified by 4D-label-free quantification unveiled key kinases and kinase-regulated networks in SLE, then further validated by parallel reaction monitoring. Some of these validated phosphosites including vinculin S275, vinculin S579 and transforming growth factor beta-1-induced transcript 1 S68, primarily were phosphorylation of Actin Cytoskeleton -related proteins. Some predicted kinases including MAP3K7, TBK1, IKKβ, and GSK3β, were validated by Western blot using kinases phosphorylation sites-specific antibodies. Taken together, the study has yielded fundamental insights into the phosphosites, kinases, and kinase-regulated networks in SLE. The map of the global phosphoproteomics enables further understanding of this disease and will provide great help for seeking more potential therapeutic targets for SLE.
Collapse
Affiliation(s)
- Shuhui Meng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China,Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Teng Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Dandan Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Jieping Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Heng Li
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Wanxia Cai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China,For correspondence: Yong Dai; Xiaoping Hong; Donge Tang
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China,For correspondence: Yong Dai; Xiaoping Hong; Donge Tang
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China,For correspondence: Yong Dai; Xiaoping Hong; Donge Tang
| |
Collapse
|
7
|
Wang G, Yin W, Shin H, Tian Q, Lu W, Hou SX. Neuronal accumulation of peroxidated lipids promotes demyelination and neurodegeneration through the activation of the microglial NLRP3 inflammasome. NATURE AGING 2021; 1:1024-1037. [PMID: 37118341 DOI: 10.1038/s43587-021-00130-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/27/2021] [Indexed: 04/30/2023]
Abstract
Peroxidated lipids accumulate in the presence of reactive oxygen species and are linked to neurodegenerative diseases. Here we find that neuronal ablation of ARF1, a small GTPase important for lipid homeostasis, promoted accumulation of peroxidated lipids, lipid droplets and ATP in the mouse brain and led to neuroinflammation, demyelination and neurodegeneration, mainly in the spinal cord and hindbrain. Ablation of ARF1 in cultured primary neurons led to an increase in peroxidated lipids in co-cultured microglia, activation of the microglial NLRP3 inflammasome and release of inflammatory cytokines in an Apolipoprotein E-dependent manner. Deleting the Nlrp3 gene rescued the neurodegenerative phenotypes in the neuronal Arf1-ablated mice. We also observed a reduction in ARF1 in human brain tissue from patients with amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unrecognized role of peroxidated lipids released from damaged neurons in activation of a neurotoxic microglial NLRP3 pathway that may play a role in human neurodegeneration.
Collapse
Affiliation(s)
- Guohao Wang
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Weiqin Yin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hyunhee Shin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Steven X Hou
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Li J, Tian S, Guo Y, Dong W. Oncological Effects and Prognostic Value of AMAP1 in Gastric Cancer. Front Genet 2021; 12:675100. [PMID: 34220948 PMCID: PMC8247770 DOI: 10.3389/fgene.2021.675100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE We examined the diagnostic significance, prognostic value, and potential function of AMAP1 in gastric cancer (GC). METHODS Comprehensive bioinformatic analysis was conducted to investigate differential expression of AMAP1 mRNA and protein in GC. Meta-analyses were utilized to determine the overall prognostic correlation of AMAP1 mRNA in patients with GC. A panel of vitro assays was applied to assess target microRNA and AMAP1 protein in GC cell lines and tissues, respectively. RESULTS AMAP1 mRNA and protein levels were upregulated in GC specimens, compared to matched normal tissues. AMAP1 mRNA exhibited promising results regarding differential diagnosis of GC and normal tissue. Meta-analysis based on the TCGA and GEO databases revealed that high AMAP1 mRNA abundance was associated with poor overall survival (HR = 1.42; 95% CI: 1.06-1.89) and was correlated with reduced progression-free survival (HR = 1.89; 95% CI: 1.51-2.36) in GC patients. Moreover, AMAP1 was negatively correlated with miR-192-3p (r = -0.3843; P < 0.0001). A dual-luciferase assay revealed that miR-192-3p targeted AMAP1. Levels of miR-192-3p were significantly higher in GC tissues and GC cells than in normal tissues and cells. Moreover, AMAP1 silencing resulted in reduced GC proliferation, migration, and invasion. CONCLUSION AMAP1 is a novel oncogene in GC and is negatively correlated with by miR-192-3p. AMAP1 may act as a diagnostic and prognostic marker of GC.
Collapse
Affiliation(s)
- Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Central Laboratory of Renmin Hospital, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Central Laboratory of Renmin Hospital, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Yingyun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Central Laboratory of Renmin Hospital, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Central Laboratory of Renmin Hospital, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| |
Collapse
|
9
|
Soubias O, Pant S, Heinrich F, Zhang Y, Roy NS, Li J, Jian X, Yohe ME, Randazzo PA, Lösche M, Tajkhorshid E, Byrd RA. Membrane surface recognition by the ASAP1 PH domain and consequences for interactions with the small GTPase Arf1. SCIENCE ADVANCES 2020; 6:6/40/eabd1882. [PMID: 32998886 PMCID: PMC7527224 DOI: 10.1126/sciadv.abd1882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 05/05/2023]
Abstract
Adenosine diphosphate-ribosylation factor (Arf) guanosine triphosphatase-activating proteins (GAPs) are enzymes that need to bind to membranes to catalyze the hydrolysis of guanosine triphosphate (GTP) bound to the small GTP-binding protein Arf. Binding of the pleckstrin homology (PH) domain of the ArfGAP With SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) to membranes containing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is key for maximum GTP hydrolysis but not fully understood. By combining nuclear magnetic resonance, neutron reflectometry, and molecular dynamics simulation, we show that binding of multiple PI(4,5)P2 molecules to the ASAP1 PH domain (i) triggers a functionally relevant allosteric conformational switch and (ii) maintains the PH domain in a well-defined orientation, allowing critical contacts with an Arf1 mimic to occur. Our model provides a framework to understand how binding of the ASAP1 PH domain to PI(4,5)P2 at the membrane may play a role in the regulation of ASAP1.
Collapse
Affiliation(s)
- Olivier Soubias
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- NIST Center for Neutron Research, Gaithersburg, MD 20878, USA
| | - Yue Zhang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Neeladri Sekhar Roy
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jess Li
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- NIST Center for Neutron Research, Gaithersburg, MD 20878, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - R Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
10
|
Li S, Zeng M, Yang L, Tan J, Yang J, Guan H, Kuang M, Li J. Hsa_circ_0008934 promotes the proliferation and migration of osteosarcoma cells by targeting miR-145-5p to enhance E2F3 expression. Int J Biochem Cell Biol 2020; 127:105826. [PMID: 32822848 DOI: 10.1016/j.biocel.2020.105826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate the role of hsa_circ_0008934 in osteosarcoma and the molecular mechanism involved in the regulation of the occurrence and development of osteosarcoma METHODS: Differentially expressed circRNAs in the osteosarcoma cell lines SaOS2 and MG63 and in the normal human osteoblast cell line hFOB1.19 were identified via next-generation RNA sequencing. The expression and circular morphology of hsa_circ_0008934 were analyzed via quantitative real-time polymerase chain reaction (qRT-PCR) and RT-PCR analysis, respectively. Proliferation, apoptosis, cell cycle progression, migration, and invasion of SaOS2 and MG63 cells with hsa_circ_0008934 silencing or overexpression were assessed using the MTS method, colony formation assay, flow cytometry, and the transwell system, respectively. The subcellular distribution of hsa_circ_0008934 was revealed via fluorescence in situ hybridization. The binding of hsa_circ_0008934 with microRNAs was confirmed using the dual-luciferase reporter assay. The oncogenic roles of hsa_circ_0008934 in osteosarcoma were determined using an in vivo tumorigenesis assay with nude mice. qRT-PCR, western blotting, TUNEL assay, and immunohistochemistry (IHC) were used to detect the tumorigenicity of hsa_circ_0008934 in osteosarcoma cells. RESULTS Many circRNAs were differentially expressed in SaOS2 and MG63 cells than in hFOB1.19 cells. Hsa_circ_0008934 expression was significantly elevated in SaOS2 and MG63 cells. Hsa_circ_0008934 silencing significantly reduced proliferation, enhanced apoptosis, blocked cell cycle progression, and impaired migration and invasion capacities of SaOS2 cells. Opposite cellular alterations were achieved by overexpressing hsa_circ_0008934 in MG63 cells. Hsa_circ_0008934 was mainly distributed in the cytosol and positively regulated E2F3 expression in osteosarcoma cells. In addition, it directly bound with miR-145-5p to repress E2F3 expression and enhanced the tumorigenesis of MG63 cells in nude mice. qRT-PCR revealed that the intracellular injection of hsa_circ_0008934 lentivirus resulted in hsa_circ_0008934 overexpression and miR-145-5p downregulation. Western blotting confirmed that E2F3 was upregulated. Moreover, the TUNEL assay showed that hsa_circ_0008934 overexpression inhibited the apoptosis of tumor cells. IHC detection revealed that the hsa_circ_0008934 overexpression could promote the expression of Ki67 and PCNA. CONCLUSION Elevated hsa_circ_0008934 expression promotes the proliferation and migration of osteosarcoma cells by sponging miR-145-5p to enhance E2F3 expression.
Collapse
Affiliation(s)
- Shiyuan Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China.
| | - Ming Zeng
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Lin Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jianshao Tan
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jianqi Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Hongye Guan
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Manyuan Kuang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jiaying Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| |
Collapse
|