1
|
Sommer-Plüss CJ, Leiggener C, Nikci E, Mancuso RV, Rabbani S, Lamers C, Ricklin D. Determining Ligand Binding and Specificity Within the β 2-Integrin Family with a Novel Assay Platform. Biomolecules 2025; 15:238. [PMID: 40001541 PMCID: PMC11853025 DOI: 10.3390/biom15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
The family of the β2-integrin receptors is critically involved in host defense and homeostasis, by mediating immune cell adhesion, migration, and phagocytosis. Due to their key roles in immune surveillance and inflammation, their modulation has been recognized as an attractive drug target. However, the development of therapeutics has been limited, partly due to the high promiscuity of endogenous ligands, their functional responses, and gaps in our understanding of their disease-related molecular mechanisms. The delineation of the molecular role of β2 integrins and their ligands has been hampered by a shortage of validated assay systems. To facilitate molecular and functional studies on the β2-integrin family, and to enable screening of modulators, this study provides a uniform and validated assay platform. For this purpose, the major ligand-binding domains (αI) of all four β2 integrins were recombinantly expressed in both low- and high-affinity states. By optimizing the expression parameters and selecting appropriate purification tags, all αI-domain variants could be produced with high yield and purity. Direct binding studies using surface plasmon resonance (SPR) confirmed the expected activity and selectivity profiles of the recombinant αI domains towards their reported ligands, validating our approach. In addition, the SPR studies provided additional insights into ligand binding, especially for the scarcely described family member CD11d. Alongside characterizing endogenous ligands, the platform can be employed to test pharmacologically active compounds, such as the reported β2-integrin antagonist simvastatin. In addition, we established a bead-based adhesion assay using the recombinant αI domains, and a cell-based adhesion assay underlining most findings generated with the isolated αI domains. Interestingly, the binding of ligands to the recombinant αDI is not dependent on divalent cation, in contrast to the full integrin CD11d/CD18, suggesting a binding mode distinct of the metal ion-dependent adhesion site (MIDAS). The setup highlights the applicability of recombinant αI domains for first screenings and direct or competitive interaction studies, while the full integrin is needed to validate those findings.
Collapse
Affiliation(s)
- Carla Johanna Sommer-Plüss
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Céline Leiggener
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elira Nikci
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Riccardo Vincenzo Mancuso
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christina Lamers
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
- Institute for Drug Development, Faculty of Medicine, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Daniel Ricklin
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Blythe EN, Barreira C, Fink C, Brown A, Weaver LC, Dekaban GA. Humanized anti-CD11d monoclonal antibodies suitable for basic research and therapeutic applications. Antib Ther 2025; 8:26-39. [PMID: 39839909 PMCID: PMC11744312 DOI: 10.1093/abt/tbae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Background Immunomodulatory agents targeting the CD11d/CD18 integrin are in development for the treatment of several pathophysiologies including neurotrauma, sepsis, and atherosclerosis. Murine anti-human CD11d therapeutic antibodies have successfully improved neurological and behavioral recovery in rodent neurotrauma models. Here, we present the progression of CD11d-targeted agents with the development of humanized anti-CD11d monoclonal antibodies. Methods Primary human leukocytes and the THP-1 monocytic cell line were used to determine the binding of the CD11d antibodies, determine binding affinities, and assess outside-in signaling induced by CD11d antibody binding. In addition, a rat model of spinal cord injury was employed to demonstrate that the humanized monoclonal antibodies retained their therapeutic function in vivo. These determinations were made using a combination of flow cytometry, western blotting, immunohistochemistry, biochemical assays, and a locomotor behavioral assessment. Results Flow cytometric analysis demonstrated that the humanized anti-CD11d clones bind both human monocytes and neutrophils. Using a THP-1 model, the humanized anti-CD11d-2 clone was then determined to bind both the active and inactive CD11d/CD18 conformations without inducing inflammatory cell signaling. Finally, an investigation using anti-CD11d-2 as a detection tool uncovered a mismatch between total and surface-level CD11d and CD18 expression that was not altered by CK2 inhibition. Conclusions By developing humanized anti-CD11d monoclonal antibodies, new tools are now available to study CD11d biology and potentially treat inflammation arising from acute neurotrauma via CD11d targeting.
Collapse
Affiliation(s)
- Eoin N Blythe
- Department of Microbiology & Immunology and Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Christy Barreira
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Corby Fink
- Department of Microbiology & Immunology and Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Arthur Brown
- Department of Anatomy & Cell Biology and Robarts Research Institute University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lynne C Weaver
- Department of Physiology & Pharmacology and Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Gregory A Dekaban
- Department of Microbiology & Immunology and Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
5
|
Iyoda T, Ohishi A, Wang Y, Yokoyama MS, Kazama M, Okita N, Inouye S, Nakagawa Y, Shimano H, Fukai F. Bioactive TNIIIA2 Sequence in Tenascin-C Is Responsible for Macrophage Foam Cell Transformation; Potential of FNIII14 Peptide Derived from Fibronectin in Suppression of Atherosclerotic Plaque Formation. Int J Mol Sci 2024; 25:1825. [PMID: 38339104 PMCID: PMC10855454 DOI: 10.3390/ijms25031825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive β1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.
Collapse
Affiliation(s)
- Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Asayo Ohishi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yunong Wang
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Miyabi-Shara Yokoyama
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Mika Kazama
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Naoyuki Okita
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Sachiye Inouye
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Department of Complex Biosystem Research, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| |
Collapse
|
6
|
Keever KR, Cui K, Casteel JL, Singh S, Hoover DB, Williams DL, Pavlov VA, Yakubenko VP. Cholinergic signaling via the α7 nicotinic acetylcholine receptor regulates the migration of monocyte-derived macrophages during acute inflammation. J Neuroinflammation 2024; 21:3. [PMID: 38178134 PMCID: PMC10765732 DOI: 10.1186/s12974-023-03001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, β1 and β2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMβ2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.
Collapse
Affiliation(s)
- Kasey R Keever
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
| | - Jared L Casteel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Sanjay Singh
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Valentin A Pavlov
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA.
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA.
| |
Collapse
|
7
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
8
|
Cui K, Gao X, Wang B, Wu H, Arulsamy K, Dong Y, Xiao Y, Jiang X, Malovichko MV, Li K, Peng Q, Lu YW, Zhu B, Zheng R, Wong S, Cowan DB, Linton M, Srivastava S, Shi J, Chen K, Chen H. Epsin Nanotherapy Regulates Cholesterol Transport to Fortify Atheroma Regression. Circ Res 2023; 132:e22-e42. [PMID: 36444722 PMCID: PMC9822875 DOI: 10.1161/circresaha.122.321723] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Kui Cui
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Xinlei Gao
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kulandaisamy Arulsamy
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Marina V. Malovichko
- Division of Environmental Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Qianman Peng
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Rongbin Zheng
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - MacRae Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
| | - Sanjay Srivastava
- Division of Environmental Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
9
|
Casteel JL, Keever KR, Ardell CL, Williams DL, Gao D, Podrez EA, Byzova TV, Yakubenko VP. Modification of Extracellular Matrix by the Product of DHA Oxidation Switches Macrophage Adhesion Patterns and Promotes Retention of Macrophages During Chronic Inflammation. Front Immunol 2022; 13:867082. [PMID: 35720381 PMCID: PMC9204313 DOI: 10.3389/fimmu.2022.867082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidation of polyunsaturated fatty acids contributes to different aspects of the inflammatory response due to the variety of products generated. Specifically, the oxidation of DHA produces the end-product, carboxyethylpyrrole (CEP), which forms a covalent adduct with proteins via an ϵ-amino group of lysines. Previously, we found that CEP formation is dramatically increased in inflamed tissue and CEP-modified albumin and fibrinogen became ligands for αDβ2 (CD11d/CD18) and αMβ2 (CD11b/CD18) integrins. In this study, we evaluated the effect of extracellular matrix (ECM) modification with CEP on the adhesive properties of M1-polarized macrophages, particularly during chronic inflammation. Using digested atherosclerotic lesions and in vitro oxidation assays, we demonstrated the ability of ECM proteins to form adducts with CEP, particularly, DHA oxidation leads to the formation of CEP adducts with collagen IV and laminin, but not with collagen I. Using integrin αDβ2-transfected HEK293 cells, WT and α D - / - mouse M1-polarized macrophages, we revealed that CEP-modified proteins support stronger cell adhesion and spreading when compared with natural ECM ligands such as collagen IV, laminin, and fibrinogen. Integrin αDβ2 is critical for M1 macrophage adhesion to CEP. Based on biolayer interferometry results, the isolated αD I-domain demonstrates markedly higher binding affinity to CEP compared to the "natural" αDβ2 ligand fibrinogen. Finally, the presence of CEP-modified proteins in a 3D fibrin matrix significantly increased M1 macrophage retention. Therefore, CEP modification converts ECM proteins to αDβ2-recognition ligands by changing a positively charged lysine to negatively charged CEP, which increases M1 macrophage adhesion to ECM and promotes macrophage retention during detrimental inflammation, autoimmunity, and chronic inflammation.
Collapse
Affiliation(s)
- Jared L. Casteel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kasey R. Keever
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Christopher L. Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Detao Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Eugene A. Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tatiana V. Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Valentin P. Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
10
|
Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory Microenvironment of Skin Wounds. Front Immunol 2022; 13:789274. [PMID: 35300324 PMCID: PMC8920979 DOI: 10.3389/fimmu.2022.789274] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a dynamic and highly regulated process that can be separated into three overlapping and interdependent phases: inflammation, proliferation, and remodelling. This review focuses on the inflammation stage, as it is the key stage of wound healing and plays a vital role in the local immune response and determines the progression of wound healing. Inflammatory cells, the main effector cells of the inflammatory response, have been widely studied, but little attention has been paid to the immunomodulatory effects of wound healing in non-inflammatory cells and the extracellular matrix. In this review, we attempt to deepen our understanding of the wound-healing microenvironment in the inflammatory stage by focusing on the interactions between cells and the extracellular matrix, as well as their role in regulating the immune response during the inflammatory stage. We hope our findings will provide new ideas for promoting tissue regeneration through immune regulation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Han Luo
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangchao Xu
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Xiong L, McCoy M, Komuro H, West XZ, Yakubenko V, Gao D, Dudiki T, Milo A, Chen J, Podrez EA, Trapp B, Byzova TV. Inflammation-dependent oxidative stress metabolites as a hallmark of amyotrophic lateral sclerosis. Free Radic Biol Med 2022; 178:125-133. [PMID: 34871763 PMCID: PMC8744315 DOI: 10.1016/j.freeradbiomed.2021.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/24/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, with poor prognosis and no cure. Substantial evidence implicates inflammation and associated oxidative stress as a potential mechanism for ALS, especially in patients carrying the SOD1 mutation and, therefore, lacking anti-oxidant defense. The brain is particularly vulnerable to oxidation due to the abundance of polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), which can give rise to several oxidized metabolites. Accumulation of a DHA peroxidation product, CarboxyEthylPyrrole (CEP) is dependent on activated inflammatory cells and myeloperoxidase (MPO), and thus marks areas of inflammation-associated oxidative stress. At the same time, generation of an alternative inactive DHA peroxidation product, ethylpyrrole, does not require cell activation and MPO activity. While absent in normal brain tissues, CEP is accumulated in the central nervous system (CNS) of ALS patients, reaching particularly high levels in individuals carrying a SOD1 mutation. ALS brains are characterized by high levels of MPO and lowered anti-oxidant activity (due to the SOD1 mutation), thereby aiding CEP generation and accumulation. Due to DHA oxidation within the membranes, CEP marks cells with the highest oxidative damage. In all ALS cases CEP is present in nearly all astrocytes and microglia, however, only in individuals carrying a SOD1 mutation CEP marks >90% of neurons, thereby emphasizing an importance of CEP accumulation as a potential hallmark of oxidative damage in neurodegenerative diseases.
Collapse
Affiliation(s)
- Luyang Xiong
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Michael McCoy
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hitoshi Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Xiaoxia Z West
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Valentin Yakubenko
- Department of Biomedical Sciences, Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37684, USA
| | - Detao Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tejasvi Dudiki
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Amanda Milo
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jacqueline Chen
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Bruce Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
12
|
Blythe EN, Weaver LC, Brown A, Dekaban GA. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front Immunol 2021; 12:775447. [PMID: 34858434 PMCID: PMC8630586 DOI: 10.3389/fimmu.2021.775447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.
Collapse
Affiliation(s)
- Eoin N Blythe
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Lynne C Weaver
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Bailey WP, Cui K, Ardell CL, Keever KR, Singh S, Rodriguez-Gil DJ, Ozment TR, Williams DL, Yakubenko VP. Frontline Science: The expression of integrin α D β 2 (CD11d/CD18) on neutrophils orchestrates the defense mechanism against endotoxemia and sepsis. J Leukoc Biol 2021; 109:877-890. [PMID: 33438263 PMCID: PMC8085079 DOI: 10.1002/jlb.3hi0820-529rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophil-macrophage interplay is a fine-tuning mechanism that regulates the innate immune response during infection and inflammation. Cell surface receptors play an essential role in neutrophil and macrophage functions. The same receptor can provide different outcomes within diverse leukocyte subsets in different inflammatory conditions. Understanding the variety of responses mediated by one receptor is critical for the development of anti-inflammatory treatments. In this study, we evaluated the role of a leukocyte adhesive receptor, integrin αD β2 , in the development of acute inflammation. αD β2 is mostly expressed on macrophages and contributes to the development of chronic inflammation. In contrast, we found that αD -knockout dramatically increases mortality in the cecal ligation and puncture sepsis model and LPS-induced endotoxemia. This pathologic outcome of αD -deficient mice is associated with a reduced number of monocyte-derived macrophages and an increased number of neutrophils in their lungs. However, the tracking of adoptively transferred fluorescently labeled wild-type (WT) and αD-/- monocytes in WT mice during endotoxemia demonstrated only a moderate difference between the recruitment of these two subsets. Moreover, the rescue experiment, using i.v. injection of WT monocytes to αD -deficient mice followed by LPS challenge, showed only slightly reduced mortality. Surprisingly, the injection of WT neutrophils to the bloodstream of αD-/- mice markedly increased migration of monocyte-derived macrophage to lungs and dramatically improves survival. αD -deficient neutrophils demonstrate increased necrosis/pyroptosis. αD β2 -mediated macrophage accumulation in the lungs promotes efferocytosis that reduced mortality. Hence, integrin αD β2 implements a complex defense mechanism during endotoxemia, which is mediated by macrophages via a neutrophil-dependent pathway.
Collapse
Affiliation(s)
- William P Bailey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Christopher L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kasey R Keever
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Sanjay Singh
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Diego J Rodriguez-Gil
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Tammy R Ozment
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
14
|
Dong Y, Lee Y, Cui K, He M, Wang B, Bhattacharjee S, Zhu B, Yago T, Zhang K, Deng L, Ouyang K, Wen A, Cowan DB, Song K, Yu L, Brophy ML, Liu X, Wylie-Sears J, Wu H, Wong S, Cui G, Kawashima Y, Matsumoto H, Kodera Y, Wojcikiewicz RJH, Srivastava S, Bischoff J, Wang DZ, Ley K, Chen H. Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nat Commun 2020; 11:3984. [PMID: 32770009 PMCID: PMC7414107 DOI: 10.1038/s41467-020-17848-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
The epsin family of endocytic adapter proteins are widely expressed, and interact with both proteins and lipids to regulate a variety of cell functions. However, the role of epsins in atherosclerosis is poorly understood. Here, we show that deletion of endothelial epsin proteins reduces inflammation and attenuates atherosclerosis using both cell culture and mouse models of this disease. In atherogenic cholesterol-treated murine aortic endothelial cells, epsins interact with the ubiquitinated endoplasmic reticulum protein inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), which triggers proteasomal degradation of this calcium release channel. Epsins potentiate its degradation via this interaction. Genetic reduction of endothelial IP3R1 accelerates atherosclerosis, whereas deletion of endothelial epsins stabilizes IP3R1 and mitigates inflammation. Reduction of IP3R1 in epsin-deficient mice restores atherosclerotic progression. Taken together, epsin-mediated degradation of IP3R1 represents a previously undiscovered biological role for epsin proteins and may provide new therapeutic targets for the treatment of atherosclerosis and other diseases.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Lee
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, San Diego, CA, 92093, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tadayuki Yago
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kun Zhang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lin Deng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kunfu Ouyang
- Department of Medicine, University of California, San Diego, San Diego, CA, 92093, USA
| | - Aiyun Wen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Song
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lili Yu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Megan L Brophy
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guanglin Cui
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yusuke Kawashima
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yoshio Kodera
- Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | | | - Sanjay Srivastava
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|