1
|
Yang Y, Shao Y, Dai Q, Zhang Y, Sun Y, Wang K, Xu A. Transcription factor AP-2 Beta, a potential target of repetitive Transspinal magnetic stimulation in spinal cord injury treatment, reduced inflammation and alleviated spinal cord injury. Exp Neurol 2025; 386:115144. [PMID: 39798694 DOI: 10.1016/j.expneurol.2025.115144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI. The result showed that TFAP2B was downregulated following SCI, while significant upregulation after rTSMS treatment, suggesting its pivotal role in neuronal repair. Overexpression of TFAP2B improved Basso Beattie and Bresnahan (BBB) score and athletic ability, and decreased cell apoptosis in SCI rats. Additionally, overexpression of TFAP2B reduced the expression of Iba1 and GFAP in spinal cord, and the expression of PDGFrβ was also reduced in SCI rats after TFAP2B overexpression. Knockdown of TFAP2B reverses the effect of rTSMS treatment in SCI. We found that rTSMS alleviate osteoporosis caused by SCI, resulting in increased BMD, BV/TV, and Tb.Th. rTSMS treatment lowered the RANKL/OPG ratio. In all, our study illustrated TFAP2B is a downstream target of rTSMS for the treatment of SCI, and overexpression of TFAP2B enhanced the therapeutic effect of rTSMS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qi Dai
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yuxi Zhang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Kunpeng Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China.
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Wang X, He X, Li Z, Mu T, Pang L, Ma W, Hu X. Insight into dysregulated VEGF-related genes in diabetic retinopathy through bioinformatic analyses. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03638-y. [PMID: 39725717 DOI: 10.1007/s00210-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes mellitus. VEGF plays a pivotal role in the pathogenesis of DR. To characterize the VEGF-related genes in DR patients, the RNAseq dataset of DR and normal control were downloaded from the GEO database and analyzed using R package limma. The differentially expressed VEGFGs between DR and NC were identified, and their expression levels were verified through qRT-PCR and Western blotting. Enrichment analyses were performed to understand the key functions and involved pathways of DE-VEGFGs. A two-sample MR analysis was carried out to study the causal link between prostate cancer and DR. Next, we built a nomogram model to predict the risk of DR using the expression level of DE-VEGFGs. Additionally, we estimated the immune cell infiltration between clusters and calculated the correlation between DE-VEGFGs expression and immune cell infiltration in DR. The DGIdb database was used to identify potential target drug for DE-VEGFGs. Finally, we constructed a ceRNA regulation network with predictions from miRNA-mRNA interaction databases and miRNA-lncRNA interaction database. We identified six DE-VEGFGs that are involved in the regulation of the VEGF pathway. The two-sample MR analysis revealed a positive correlation between prostate cancer and the risk of DR. The nomogram which uses the DE-VEGFGs expression to predict the DR risk shows good performance based on the calibration curve and AUC value. Monocytes and T cells CD4 memory activated show different expression between DR and NC; meanwhile, these cell types were correlated with DE-VEGFGs. The drug-gene interaction network provides candidates for DR treatment, and the ceRNA regulation network suggests a potential biomarker for DR. Our study identified dysregulated VEGF-related genes in DR and emphasized their significance in the pathogenesis of DR. Additionally, our findings offer insights into their potential clinical predictive value, immune implications, targeting drug candidates, and regulatory network dynamics.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China
| | - Xianglian He
- Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China
| | - Zhen Li
- Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China
| | - Tao Mu
- Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China
| | - Lin Pang
- Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China
| | - Weiguo Ma
- Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China
| | - Xuejun Hu
- Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China.
| |
Collapse
|
3
|
Demirci H, Popovic S, Dittmayer C, Yilmaz DE, El-Shimy IA, Mülleder M, Hinze C, Su M, Mertins P, Kirchner M, Osmanodja B, Paliege A, Budde K, Amann K, Persson PB, Mutig K, Bachmann S. Immunosuppression with cyclosporine versus tacrolimus shows distinctive nephrotoxicity profiles within renal compartments. Acta Physiol (Oxf) 2024; 240:e14190. [PMID: 38884453 DOI: 10.1111/apha.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
AIM Calcineurin inhibitors (CNIs) are the backbone for immunosuppression after solid organ transplantation. Although successful in preventing kidney transplant rejection, their nephrotoxic side effects contribute to allograft injury. Renal parenchymal lesions occur for cyclosporine A (CsA) as well as for the currently favored tacrolimus (Tac). We aimed to study whether chronic CsA and Tac exposures, before reaching irreversible nephrotoxic damage, affect renal compartments differentially and whether related pathogenic mechanisms can be identified. METHODS CsA and Tac were administered chronically in wild type Wistar rats using osmotic minipumps over 4 weeks. Functional parameters were controlled. Electron microscopy, confocal, and 3D-structured illumination microscopy were used for histopathology. Clinical translatability was tested in human renal biopsies. Standard biochemical, RNA-seq, and proteomic technologies were applied to identify implicated molecular pathways. RESULTS Both drugs caused significant albeit differential damage in vasculature and nephron. The glomerular filtration barrier was more affected by Tac than by CsA, showing prominent deteriorations in endothelium and podocytes along with impaired VEGF/VEGFR2 signaling and podocyte-specific gene expression. By contrast, proximal tubule epithelia were more severely affected by CsA than by Tac, revealing lysosomal dysfunction, enhanced apoptosis, impaired proteostasis and oxidative stress. Lesion characteristics were confirmed in human renal biopsies. CONCLUSION We conclude that pathogenetic alterations in the renal compartments are specific for either treatment. Considering translation to the clinical setting, CNI choice should reflect individual risk factors for renal vasculature and tubular epithelia. As a step in this direction, we share protein signatures identified from multiomics with potential pathognomonic relevance.
Collapse
Affiliation(s)
- Hasan Demirci
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Suncica Popovic
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Duygu Elif Yilmaz
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ismail Amr El-Shimy
- Molecular Epidemiology Unit, Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility-High-Throughput Mass Spectrometry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Mingzhen Su
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bilgin Osmanodja
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Paliege
- Department of Nephrology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Pontus B Persson
- Department of Translational Physiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- Department of Translational Physiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Fu F, Yang X, Li R, Li Y, Zhou H, Cheng K, Huang R, Wang Y, Guo F, Zhang L, Pan M, Han J, Zhen L, Li L, Lei T, Li D, Liao C. Single-cell RNA sequencing reveals cellular and molecular landscape of fetal cystic hygroma. BMC Med Genomics 2024; 17:96. [PMID: 38650036 PMCID: PMC11036587 DOI: 10.1186/s12920-024-01859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.
Collapse
Affiliation(s)
- Fang Fu
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xin Yang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yingsi Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ken Cheng
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - You Wang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fei Guo
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Lina Zhang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Min Pan
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Jin Han
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Li Zhen
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Lushan Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Tingying Lei
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Can Liao
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
5
|
Ruyani SF, Sumarsono SH. Exposure to Valproic acid (VPA) resulted in alterations in the expression of angiogenic genes (NRP-1, VEGFA, VEGFR-2 and sFlt1) and histological modifications in the placenta of mice (Mus musculus). Reprod Toxicol 2023; 119:108405. [PMID: 37207908 DOI: 10.1016/j.reprotox.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Valproic acid (VPA), an anti-epileptic drug (AED), has been reported to exhibit anti-angiogenic properties. This study aimed to examine the impact of VPA on the expression of NRP-1 and additional angiogenic factors, as well as angiogenesis, in mouse placenta. Pregnant mice were divided into four groups: control (K), solvent control (KP), VPA treatment at a dose of 400 mg/kg body weight (BW) (P1), and VPA treatment at a dose of 600 mg/kg BW (P2). The mice were subjected to daily treatment via gavage from embryonic day (E) 9 to E14 and E9 to E16. Histological analysis was performed to evaluate Microvascular Density (MVD) and percentage of the placental labyrinth area. In addition, a comparative analysis of Neuropilin-1 (NRP-1), vascular endothelial growth factor (VEGFA), vascular endothelial growth factor receptor (VEGFR-2), and soluble (sFlt1) expression was conducted in relation to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The results of the MVD analysis and percentage of labyrinth area in the E14 and E16 placentas indicated that the treated groups were significantly lower than the control group. The relative expression levels of NRP-1, VEGFA, and VEGFR-2 in the treated groups were lower than those in the control group at E14 and E16. Meanwhile, the relative expression of sFlt1 in the treated groups at E16 was significantly higher than in the control group. Changes in the relative expression of these genes inhibit angiogenesis regulation in the mouse placenta, as evidenced by reduced MVD and a smaller percentage of the labyrinth area.
Collapse
Affiliation(s)
- Shyfa F Ruyani
- School of Life Sciences and Technology, Institut Teknologi Bandung, 10th Ganesa Street, Bandung, West Java 40132, Indonesia
| | - Sony Heru Sumarsono
- School of Life Sciences and Technology, Institut Teknologi Bandung, 10th Ganesa Street, Bandung, West Java 40132, Indonesia.
| |
Collapse
|
6
|
Zhang X, Connelly J, Chao Y, Wang QJ. Multifaceted Functions of Protein Kinase D in Pathological Processes and Human Diseases. Biomolecules 2021; 11:biom11030483. [PMID: 33807058 PMCID: PMC8005150 DOI: 10.3390/biom11030483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine protein kinases operating in the signaling network of the second messenger diacylglycerol. The three family members, PKD1, PKD2, and PKD3, are activated by a variety of extracellular stimuli and transduce cell signals affecting many aspects of basic cell functions including secretion, migration, proliferation, survival, angiogenesis, and immune response. Dysregulation of PKD in expression and activity has been detected in many human diseases. Further loss- or gain-of-function studies at cellular levels and in animal models provide strong support for crucial roles of PKD in many pathological conditions, including cancer, metabolic disorders, cardiac diseases, central nervous system disorders, inflammatory diseases, and immune dysregulation. Complexity in enzymatic regulation and function is evident as PKD isoforms may act differently in different biological systems and disease models, and understanding the molecular mechanisms underlying these differences and their biological significance in vivo is essential for the development of safer and more effective PKD-targeted therapies. In this review, to provide a global understanding of PKD function, we present an overview of the PKD family in several major human diseases with more focus on cancer-associated biological processes.
Collapse
|
7
|
Manshaei R, Merico D, Reuter MS, Engchuan W, Mojarad BA, Chaturvedi R, Heung T, Pellecchia G, Zarrei M, Nalpathamkalam T, Khan R, Okello JBA, Liston E, Curtis M, Yuen RKC, Marshall CR, Jobling RK, Oechslin E, Wald RM, Silversides CK, Scherer SW, Kim RH, Bassett AS. Genes and Pathways Implicated in Tetralogy of Fallot Revealed by Ultra-Rare Variant Burden Analysis in 231 Genome Sequences. Front Genet 2020; 11:957. [PMID: 33110418 PMCID: PMC7522597 DOI: 10.3389/fgene.2020.00957] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Recent genome-wide studies of rare genetic variants have begun to implicate novel mechanisms for tetralogy of Fallot (TOF), a severe congenital heart defect (CHD). To provide statistical support for case-only data without parental genomes, we re-analyzed genome sequences of 231 individuals with TOF (n = 175) or related CHD. We adapted a burden test originally developed for de novo variants to assess ultra-rare variant burden in individual genes, and in gene-sets corresponding to functional pathways and mouse phenotypes, accounting for highly correlated gene-sets and for multiple testing. For truncating variants, the gene burden test confirmed significant burden in FLT4 (Bonferroni corrected p-value < 0.01). For missense variants, burden in NOTCH1 achieved genome-wide significance only when restricted to constrained genes (i.e., under negative selection, Bonferroni corrected p-value = 0.004), and showed enrichment for variants affecting the extracellular domain, especially those disrupting cysteine residues forming disulfide bonds (OR = 39.8 vs. gnomAD). Individuals with NOTCH1 ultra-rare missense variants, all with TOF, were enriched for positive family history of CHD. Other genes not previously implicated in CHD had more modest statistical support in gene burden tests. Gene-set burden tests for truncating variants identified a cluster of pathways corresponding to VEGF signaling (FDR = 0%), and of mouse phenotypes corresponding to abnormal vasculature (FDR = 0.8%); these suggested additional candidate genes not previously identified (e.g., WNT5A and ZFAND5). Results for the most promising genes were driven by the TOF subset of the cohort. The findings support the importance of ultra-rare variants disrupting genes involved in VEGF and NOTCH signaling in the genetic architecture of TOF, accounting for 11–14% of individuals in the TOF cohort. These proof-of-principle data indicate that this statistical methodology could assist in analyzing case-only sequencing data in which ultra-rare variants, whether de novo or inherited, contribute to the genetic etiopathogenesis of a complex disorder.
Collapse
Affiliation(s)
- Roozbeh Manshaei
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniele Merico
- Deep Genomics Inc., Toronto, ON, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam S Reuter
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bahareh A Mojarad
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rajiv Chaturvedi
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada.,Labatt Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tracy Heung
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,The Dalglish Family 22q Clinic, University Health Network, Toronto, ON, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Reem Khan
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - John B A Okello
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eriskay Liston
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meredith Curtis
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rebekah K Jobling
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada.,Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Erwin Oechslin
- Division of Cardiology, Toronto Congenital Cardiac Centre for Adults at the Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Rachel M Wald
- Labatt Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Cardiology, Toronto Congenital Cardiac Centre for Adults at the Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Candice K Silversides
- Division of Cardiology, Toronto Congenital Cardiac Centre for Adults at the Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Raymond H Kim
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.,Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,The Dalglish Family 22q Clinic, University Health Network, Toronto, ON, Canada.,Division of Cardiology, Toronto Congenital Cardiac Centre for Adults at the Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Mental Health, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Hegde M, Guruprasad KP, Ramachandra L, Satyamoorthy K, Joshi MB. Interleukin-6-mediated epigenetic control of the VEGFR2 gene induces disorganized angiogenesis in human breast tumors. J Biol Chem 2020; 295:12086-12098. [PMID: 32636303 PMCID: PMC7443485 DOI: 10.1074/jbc.ra120.012590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/27/2020] [Indexed: 12/28/2022] Open
Abstract
Disorganized vessels in the tumor vasculature lead to impaired perfusion, resulting in reduced accessibility to immune cells and chemotherapeutic drugs. In the breast tumor-stroma interplay, paracrine factors such as interleukin-6 (IL-6) often facilitate disordered angiogenesis. We show here that epigenetic mechanisms regulate the crosstalk between IL-6 and vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathways in myoepithelial (CD10+) and endothelial (CD31+, CD105+, CD146+, and CD133-) cells isolated from malignant and nonmalignant tissues of clinically characterized human breast tumors. Tumor endothelial (Endo-T) cells in 3D cultures exhibited higher VEGFR2 expression levels, accelerated migration, invasion, and disorganized sprout formation in response to elevated IL-6 levels secreted by tumor myoepithelial (Epi-T) cells. Constitutively, compared with normal endothelial (Endo-N) cells, Endo-T cells differentially expressed DNA methyltransferase isoforms and had increased levels of IL-6 signaling intermediates such as IL-6R and signal transducer and activator of transcription 3 (STAT3). Upon IL-6 treatment, Endo-N and Endo-T cells displayed altered expression of the DNA methyltransferase 1 (DNMT1) isoform. Mechanistic studies revealed that IL-6 induced proteasomal degradation of DNMT1, but not of DNMT3A and DNMT3B and subsequently led to promoter hypomethylation and expression/activation of VEGFR2. IL-6-induced VEGFR2 up-regulation was inhibited by overexpression of DNMT1. Transfection of a dominant-negative STAT3 mutant, but not of STAT1, abrogated VEGFR2 expression. Our results indicate that in the breast tumor microenvironment, IL-6 secreted from myoepithelial cells influences DNMT1 stability, induces the expression of VEGFR2 in endothelial cells via a promoter methylation-dependent mechanism, and leads to disordered angiogenesis.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
9
|
Guo X, Liu C, Wang GB, Xu MG. [Quantitative proteomics and bioinformatics analyses of human coronary artery endothelial cell injury induced by Kawasaki disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:796-803. [PMID: 32669181 PMCID: PMC7389616 DOI: 10.7499/j.issn.1008-8830.2001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the biomarkers for human coronary artery endothelial cell (HCAEC) injury induced by Kawasaki disease (KD) using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. METHODS HCAECs cultured with the serum of children with KD were used as the KD group, and those cultured with the serum of healthy children was used as the healthy control group. The iTRAQ technique was used to measure the expression of proteins in two groups. The data on proteins were analyzed by bioinformatics. Western blot was used for the validation of protein markers. RESULTS A total of 518 significantly differentially expressed proteins were identified (with an absolute value of difference fold of >1.2, P<0.05). The gene ontology analysis showed that the differentially expressed proteins were significantly enriched in biological processes (including cellular processes, metabolic processes, and biological regulation), cellular components (including cell parts, cells, and organelles), and molecular functions (including binding, catalytic activity, and molecular function regulators). The KEGG analysis showed that the proteins were significantly enriched in the signaling pathways of ribosomes, PI3K-Akt signaling pathway, and transcriptional dysregulation in cancer. The PPI network showed that the top 9 protein markers in relation density were PWP2, MCM4, MCM7, MCM5, MCM3, MCM2, SLD5, HDAC2, and MCM6, which were selected as the protein markers for coronary endothelial injury in KD. Western blot showed that the KD group had significantly lower expression levels of the protein markers HDAC2, PWP2, and MCM2 than the healthy control group (P<0.05). CONCLUSIONS The serum of children with KD significantly changes the protein expression pattern of HCAECs and affects the signaling pathways associated with the cardiovascular system, which provides a new basis for the pathophysiological mechanism and therapeutic targets of KD.
Collapse
Affiliation(s)
- Xin Guo
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China.
| | | | | | | |
Collapse
|
10
|
Guo X, Liu C, Wang GB, Xu MG. [Quantitative proteomics and bioinformatics analyses of human coronary artery endothelial cell injury induced by Kawasaki disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:796-803. [PMID: 32669181 PMCID: PMC7389616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/17/2020] [Indexed: 08/01/2024]
Abstract
OBJECTIVE To study the biomarkers for human coronary artery endothelial cell (HCAEC) injury induced by Kawasaki disease (KD) using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. METHODS HCAECs cultured with the serum of children with KD were used as the KD group, and those cultured with the serum of healthy children was used as the healthy control group. The iTRAQ technique was used to measure the expression of proteins in two groups. The data on proteins were analyzed by bioinformatics. Western blot was used for the validation of protein markers. RESULTS A total of 518 significantly differentially expressed proteins were identified (with an absolute value of difference fold of >1.2, P<0.05). The gene ontology analysis showed that the differentially expressed proteins were significantly enriched in biological processes (including cellular processes, metabolic processes, and biological regulation), cellular components (including cell parts, cells, and organelles), and molecular functions (including binding, catalytic activity, and molecular function regulators). The KEGG analysis showed that the proteins were significantly enriched in the signaling pathways of ribosomes, PI3K-Akt signaling pathway, and transcriptional dysregulation in cancer. The PPI network showed that the top 9 protein markers in relation density were PWP2, MCM4, MCM7, MCM5, MCM3, MCM2, SLD5, HDAC2, and MCM6, which were selected as the protein markers for coronary endothelial injury in KD. Western blot showed that the KD group had significantly lower expression levels of the protein markers HDAC2, PWP2, and MCM2 than the healthy control group (P<0.05). CONCLUSIONS The serum of children with KD significantly changes the protein expression pattern of HCAECs and affects the signaling pathways associated with the cardiovascular system, which provides a new basis for the pathophysiological mechanism and therapeutic targets of KD.
Collapse
Affiliation(s)
- Xin Guo
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China.
| | | | | | | |
Collapse
|