1
|
Chen T, Lin X, Lu S, Li B. V-ATPase in cancer: mechanistic insights and therapeutic potentials. Cell Commun Signal 2024; 22:613. [PMID: 39707503 DOI: 10.1186/s12964-024-01998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Vacuolar-type H+-ATPase (V-ATPase) is a crucial proton pump that plays an essential role in maintaining intracellular pH homeostasis and a variety of physiological processes. This review provides an in-depth exploration of the structural components, functional mechanisms, and regulatory modes of V-ATPase in cancer cells. Comprising two main domains, V1 and V0, V-ATPase drives the proton pump through ATP hydrolysis, sustaining the pH balance within the cell and organelles. In cancer cells, the enhanced activity of V-ATPase is closely associated with the proliferation and metastasis of tumor cells, and it promotes the growth and invasion of tumor cells by regulating pH values in the tumor microenvironment. Moreover, the interaction between V-ATPase and key metabolic regulatory factors, the mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK), impacts the metabolic state of cancer cells. The role of V-ATPase in tumor drug resistance and its regulatory mechanism in non-canonical autophagy offer new perspectives and potential targets for cancer therapy. Future research directions will focus on the specific mechanisms of action of V-ATPase in the tumor microenvironment and how to translate its inhibitors into clinical applications, providing significant scientific evidence for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, China.
| | - Xiaotan Lin
- Department of Family Planning, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shuo Lu
- School of Basic Medicine, Guangdong Medical University, DongGuan, China
| | - Bo Li
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
3
|
Lengauer F, Geisslinger F, Gabriel A, von Schwarzenberg K, Vollmar AM, Bartel K. A metabolic shift toward glycolysis enables cancer cells to maintain survival upon concomitant glutamine deprivation and V-ATPase inhibition. Front Nutr 2023; 10:1124678. [PMID: 37255933 PMCID: PMC10225586 DOI: 10.3389/fnut.2023.1124678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
It is widely known that most cancer cells display an increased reliance on glutaminolysis to sustain proliferation and survival. Combining glutamine deprivation with additional anti-cancer therapies is an intensively investigated approach to increase therapeutic effectiveness. In this study, we examined a combination of glutamine deprivation by starvation or pharmacological tools, with the anti-cancer agent archazolid, an inhibitor of the lysosomal V-ATPase. We show that glutamine deprivation leads to lysosomal acidification and induction of pro-survival autophagy, which could be prevented by archazolid. Surprisingly, a combination of glutamine deprivation with archazolid did not lead to synergistic induction of cell death or reduction in proliferation. Investigating the underlying mechanisms revealed elevated expression and activity of amino acid transporters SLC1A5, SLC38A1 upon starvation, whereas archazolid had no additional effect. Furthermore, we found that the export of lysosomal glutamine derived from exogenous sources plays no role in the phenotype as knock-down of SLC38A7, the lysosomal glutamine exporter, could not increase V-ATPase inhibition-induced cell death or reduce proliferation. Analysis of the cellular metabolic phenotype revealed that glutamine deprivation led to a significant increase in glycolytic activity, indicated by an elevated glycolytic capacity and reserve, when V-ATPase function was inhibited concomitantly. This was confirmed by increased glutamine uptake, augmented lactate production, and an increase in hexokinase activity. Our study, therefore, provides evidence, that glutamine deprivation induces autophagy, which can be prevented by simultaneous inhibition of V-ATPase function. However, this does not lead to a therapeutic benefit, as cells are able to circumvent cell death and growth inhibition by a metabolic shift toward glycolysis.
Collapse
|
4
|
Khamaru P, Chakraborty S, Bhattacharyya A. AMPK activator AICAR in combination with anti-mouse IL10 mAb restores the functionality of intra-tumoral Tfh cells in the 4T1 mouse model. Cell Immunol 2022; 382:104639. [PMID: 36375313 DOI: 10.1016/j.cellimm.2022.104639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
4T1 cell-mediated TNBC breast cell carcinoma is a highly malignant mice tumor model which resembles an advanced stage of breast cancer in humans. Tumor progression occurs depending on the intra-tumoral balance of pro- and anti- tumorigenic immune cells. Enhancement of T-cell-mediated anti-tumor immunity will be advantageous for inhibiting tumor progression and improving the efficacy of cancer therapy. This study is focused on alleviating suppressed anti-tumor immune response by improving CD4+ T follicular helper cell (Tfh) response in 4T1 mice. We employed anti-IL10 mAb along with metabolic drugs 2-deoxy-D-glucose (2DG) which inhibits the glycolytic pathway and Cpt1a inhibitor Etomoxir which inhibits FAO. AMPK activator AICAR with or without anti-IL10 mAb was also used to ameliorate metabolic stress and exhaustion faced by immune cells. Our results demonstrate that synergistic treatment with 2DG/Etomoxir + anti-IL10 mAb induced Tfh cell, memory B, and GC B cell response more potently compared to treatment with 2DG or Etomoxir treatment alone as observed in several LNs and tumor tissue of 4T1 mouse. However, AICAR + anti-IL10 mAb increased the frequency of intratumoral Tfh cells, simultaneously downregulated Tfr cells; and improved humoral response by stimulating upregulation of memory B, GC B, and plasmablasts in tumor-draining, axillary, and mesenteric LNs of 4T1 mouse.
Collapse
Affiliation(s)
- Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
5
|
Alkalization of cellular pH leads to cancer cell death by disrupting autophagy and mitochondrial function. Oncogene 2022; 41:3886-3897. [PMID: 35780182 DOI: 10.1038/s41388-022-02396-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
We previously found that lactic acidosis in the tumor environment was permissive to cancer cell surviving under glucose deprivation and demonstrated that neutralizing lactic acidosis restored cancer cell susceptibility to glucose deprivation. We then reported that alternate infusion of bicarbonate and anticancer agent into tumors via tumor feeding artery markedly enhanced the efficacy of transarterial chemoembolization (TACE) in the local control of hepatocellular carcinoma (HCC). Here we sought to further investigate the mechanism by which bicarbonate enhances the anticancer activity of TACE. We propose that interfering cellular pH by bicarbonate could induce a cascade of molecular events leading to cancer cell death. Alkalizing cellular pH by bicarbonate decreased pH gradient (ΔpH), membrane potential (ΔΨm), and proton motive force (Δp) across the inner membrane of mitochondria; disruption of oxidative phosphorylation (OXPHOS) due to collapsed Δp led to a significant increase in adenosine monophosphate (AMP), which activated the classical AMPK-mediated autophagy. Meanwhile, the autophagic flux was ultimately blocked by increased cellular pH, reduced OXPHOS, and inhibition of lysosomal proton pump in alkalized lysosome. Bicarbonate also induced persistent mitochondrial permeability (MPT) and damaged mitochondria. Collectively, this study reveals that interfering cellular pH may provide a valuable approach to treat cancer.
Collapse
|
6
|
Keon KA, Benlekbir S, Kirsch SH, Müller R, Rubinstein JL. Cryo-EM of the Yeast V O Complex Reveals Distinct Binding Sites for Macrolide V-ATPase Inhibitors. ACS Chem Biol 2022; 17:619-628. [PMID: 35148071 DOI: 10.1021/acschembio.1c00894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vacuolar-type adenosine triphosphatases (V-ATPases) are proton pumps found in almost all eukaryotic cells. These enzymes consist of a soluble catalytic V1 region that hydrolyzes ATP and a membrane-embedded VO region responsible for proton translocation. V-ATPase activity leads to acidification of endosomes, phagosomes, lysosomes, secretory vesicles, and the trans-Golgi network, with extracellular acidification occurring in some specialized cells. Small-molecule inhibitors of V-ATPase have played a crucial role in elucidating numerous aspects of cell biology by blocking acidification of intracellular compartments, while therapeutic use of V-ATPase inhibitors has been proposed for the treatment of cancer, osteoporosis, and some infections. Here, we determine structures of the isolated VO complex from Saccharomyces cerevisiae bound to two well-known macrolide inhibitors: bafilomycin A1 and archazolid A. The structures reveal different binding sites for the inhibitors on the surface of the proton-carrying c ring, with only a small amount of overlap between the two sites. Binding of both inhibitors is mediated primarily through van der Waals interactions in shallow pockets and suggests that the inhibitors block rotation of the ring. Together, these structures indicate the existence of a large chemical space available for V-ATPase inhibitors that block acidification by binding the c ring.
Collapse
Affiliation(s)
- Kristine A. Keon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
- Department of Medical Biophysics, The University of Toronto, Toronto, Canada M5G1L7
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
| | - Susanne H. Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, 66123 Saarbrücken, Germany
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
- Department of Medical Biophysics, The University of Toronto, Toronto, Canada M5G1L7
- Department of Biochemistry, The University of Toronto, Toronto, Canada M5S1A8
| |
Collapse
|
7
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|