1
|
Ortiz A, Sanz AB. A pathway of osmotic stress-induced necroptosis. Nat Rev Nephrol 2022; 18:609-610. [PMID: 35915240 DOI: 10.1038/s41581-022-00607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain. .,Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS)2040, Madrid, Spain. .,Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain. .,Instituto Reina Sofia de Investigaciones Nefrologicas (IRSIN), Madrid, Spain.
| | - Ana B Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain. .,Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS)2040, Madrid, Spain.
| |
Collapse
|
2
|
RhoA improves cryopreservation of rooster sperm through the Rho/RhoA-associated Kinase/cofilin pathway. Poult Sci 2022; 101:102051. [PMID: 35961254 PMCID: PMC9385697 DOI: 10.1016/j.psj.2022.102051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Cryopreservation of rooster sperm leads to relatively low semen quality due to cytoskeletal damage during the freeze-thawing process. This study aimed to explore how the addition of RhoA recombinant protein affected the viability and subcellular structure of rooster sperm after freeze-thawing and elucidated the molecular mechanisms of sperm cryopreservation. Semen quality and acrosome integrity testing revealed that the addition of 0.5 μg/mL RhoA recombinant protein to the cryoprotectant fluid significantly increased sperm motility, survival rate, linearity, straight-line velocity, and acrosome integrity after freeze-thawing (P < 0.05). Ultrastructure analysis of cryopreserved sperm showed structural damage to the sperm plasma membrane, nuclear membrane, and tail. However, compared to the control, these structural changes were reduced upon the addition of RhoA recombinant protein to the cryoprotective fluid (P < 0.05). Western blotting revealed that the expression of Rho/RhoA-associated kinase and p-cofilin was increased, and cofilin expression was decreased after sperm cryopreservation with recombinant RhoA protein. Treatment with Y-27632, a ROCK antagonist, suppressed ROCK and p-cofilin expression and decreased semen quality, acrosome integrity, and ultrastructure integrity. In summary, we have demonstrated a cryoprotective effect in spermatozoa involving the Rho/ROCK pathway during freeze-thawing. Furthermore, the addition of 0.5 μg/mL RhoA recombinant protein to the cryoprotective fluid improved rooster semen quality and subcellular structural homeostasis after freeze-thawing via the Rho/ROCK pathway. This pathway may regulate the dynamic reorganization of the actin cytoskeleton by regulating the cofilin phosphorylation.
Collapse
|
3
|
Li X, Buckley B, Stoletov K, Jing Y, Ranson M, Lewis JD, Kelso M, Fliegel L. Roles of the Na +/H + Exchanger Isoform 1 and Urokinase in Prostate Cancer Cell Migration and Invasion. Int J Mol Sci 2021; 22:ijms222413263. [PMID: 34948058 PMCID: PMC8705693 DOI: 10.3390/ijms222413263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is a leading cause of cancer-associated deaths in men over 60 years of age. Most patients are killed by tumor metastasis. Recent evidence has implicated a role of the tumor microenvironment and urokinase plasminogen activator (uPA) in cancer cell migration, invasion, and metastasis. Here, we examine the role of the Na+/H+ exchanger isoform 1 (NHE1) and uPA in DU 145 prostate cancer cell migration and colony formation. Knockout of NHE1 reduced cell migration. The effects of a series of novel NHE1/uPA hexamethylene-amiloride-based inhibitors with varying efficacy towards NHE1 and uPA were examined on prostate cancer cells. Inhibition of NHE1-alone, or with inhibitors combining NHE1 or uPA inhibition-generally did not prevent prostate cancer cell migration. However, uPA inhibition-but not NHE1 inhibition-prevented anchorage-dependent colony formation. Application of inhibitors at concentrations that only saturate uPA inhibition decreased tumor invasion in vivo. The results suggest that while knockout of NHE1 affects cell migration, these effects are not due to NHE1-dependent proton translocation. Additionally, while neither NHE1 nor uPA activity was critical in cell migration, only uPA activity appeared to be critical in anchorage-dependent colony formation of DU 145 prostate cancer cells and invasion in vivo.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
| | - Benjamin Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.S.); (J.D.L.)
| | - Yang Jing
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.S.); (J.D.L.)
| | - Mike Kelso
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
- Correspondence: ; Tel.: +1-780-492-1848
| |
Collapse
|
4
|
Discovery of Lactoferrin as a Stimulant for hADSC-Derived EV Secretion and Proof of Enhancement of Resulting EVs through Skin Model. Int J Mol Sci 2021; 22:ijms222010993. [PMID: 34681650 PMCID: PMC8541114 DOI: 10.3390/ijms222010993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted from hADSCs in low concentrations, which makes it difficult to utilize them for the development of therapeutic products. To overcome the problem associated with low concentration, we proposed human lactoferrin (hLF) as a stimulant for the secretion of hADSC-derived EVs. hLF has been reported to upregulate intracellular Ca2+, which is known to be capable of increasing EV secretion. We cultured hADSCs in hLF-supplemented media and analyzed the changes in intracellular Ca2+ concentration. The characteristics of hADSC-derived EVs secreted by hLF stimulation were analyzed through their number, membrane protein markers, and the presence of hLFs to EVs. The function of hADSC-derived EVs was investigated through their effects on dermal fibroblasts. We found that hLF helped hADSCs effectively uptake Ca2+, resulting in an increase of EVs secretion by more than a factor of 4. The resulting EVs had enhanced proliferation and collagen synthesis effect on dermal fibroblasts when compared to the same number of hADSC-derived EVs secreted without hLF stimulation. The enhanced secretion of hADSC-derived EVs increased collagen synthesis through enhanced epidermal penetration, which resulted from increased EV numbers. In summary, we propose hLF to be a useful stimulant in increasing the secretion rate of hADSC-derived EVs.
Collapse
|
5
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Saadeldin IM, Tukur HA, Aljumaah RS, Sindi RA. Rocking the Boat: The Decisive Roles of Rho Kinases During Oocyte, Blastocyst, and Stem Cell Development. Front Cell Dev Biol 2021; 8:616762. [PMID: 33505968 PMCID: PMC7829335 DOI: 10.3389/fcell.2020.616762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
The rho-associated coiled-coil-containing proteins (ROCKs or rho kinase) are effectors of the small rho-GTPase rhoA, which acts as a signaling molecule to regulate a variety of cellular processes, including cell proliferation, adhesion, polarity, cytokinesis, and survival. Owing to the multifunctionality of these kinases, an increasing number of studies focus on understanding the pleiotropic effects of the ROCK signaling pathway in the coordination and control of growth (proliferation, initiation, and progression), development (morphology and differentiation), and survival in many cell types. There is growing evidence that ROCKs actively phosphorylate several actin-binding proteins and intermediate filament proteins during oocyte cytokinesis, the preimplantation embryos as well as the stem cell development and differentiation. In this review, we focus on the participation of ROCK proteins in oocyte maturation, blastocyst formation, and stem cell development with a special focus on the selective targeting of ROCK isoforms, ROCK1, and ROCK2. The selective switching of cell fate through ROCK inhibition would provide a novel paradigm for in vitro oocyte maturation, experimental embryology, and clinical applications.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Riyadh S Aljumaah
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Kim N. pH variation impacts molecular pathways associated with somatic cell reprogramming and differentiation of pluripotent stem cells. Reprod Med Biol 2021; 20:20-26. [PMID: 33488280 PMCID: PMC7812493 DOI: 10.1002/rmb2.12346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
RATIONALE The study of somatic cell reprogramming and cell differentiation is essential for the application of recent techniques in regenerative medicine. It is, specifically, necessary to determine the appropriate conditions required for the induction of reprogramming and cell differentiation. METHODS Based on a comprehensive literature review, the effects of pH fluctuation on alternative splicing, mitochondria, plasma membrane, and phase separation, in several cell types are discussed. Additionally, the associated molecular pathways important for the induction of differentiation and reprogramming are reviewed. RESULTS While cells change their state, several factors such as cytokines and physical parameters affect cellular reprogramming and differentiation. As the extracellular and intracellular pH affects biophysical phenomena in a cell, the effects of pH fluctuation can ultimately decide the cell fate through molecular pathways. Though few studies have reported on the direct effects of culture pH on cell state, there is substantial information on the pathways related to stem cell differentiation and somatic cell reprogramming that can be stimulated by environmental pH. CONCLUSION Environmental pH fluctuations may decide cell fate through the molecular pathways associated with somatic cell reprogramming and cell differentiation.
Collapse
Affiliation(s)
- Narae Kim
- Nucleic Acid Chemistry and EngineeringOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
8
|
Sin WC, Tam N, Moniz D, Lee C, Church J. Na/H exchanger NHE1 acts upstream of rho GTPases to promote neurite outgrowth. J Cell Commun Signal 2020; 14:325-333. [PMID: 32144636 DOI: 10.1007/s12079-020-00556-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Na+/H+ exchanger NHE1, a major determinant of intracellular pH (pHi) in mammalian central neurons, promotes neurite outgrowth under both basal and netrin-1-stimulated conditions. The small GTP binding proteins and their effectors have a dominant role in netrin-1-stimulated neurite outgrowth. Since NHE1 has been shown previously to work downstream of the Rho GTPases-mediated polarized membrane protrusion in non-neuronal cells, we examined whether NHE1 has a similar relationship with Cdc42, Rac1 and RhoA in neuronal morphogenesis. Interestingly, our results suggest the possibility that NHE1 acting upstream of Rho GTPases to promote neurite outgrowth induced by netrin-1. First, we found that netrin-1-induced increases in the activities of Rho GTPases using FRET (Forster Resonance Energy Transfer) analyses in individual growth cones; furthermore, their increased activities were abolished by cariporide, a specific NHE1 inhibitor. Second, NHE1 inhibition had no effect on neurite retraction induced by L-α-Lysophosphatidic acid (LPA), a potent RhoA activator. The regulation of Rho GTPases by NHE1 was further evidenced by reduced Rac1, Cdc42 and RhoA activities in NHE1-null neurons. Taken together, our findings suggest that NHE1-dependent neuronal morphogenesis involves the activation of Rho-family of small GTPases.
Collapse
Affiliation(s)
- Wun Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
| | - Nicola Tam
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - David Moniz
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Connie Lee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - John Church
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|