1
|
Nishida H, Kato A, Kaimori R, Kawamura K, Daa T. Relationship between androgen receptor and androgen receptor-related protein expression in breast cancers focusing on morphologically identified carcinoma with apocrine differentiation. Sci Rep 2025; 15:2892. [PMID: 39843553 PMCID: PMC11754918 DOI: 10.1038/s41598-025-87403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
Breast cancer (BC) is classified based on the expression of histopathological markers, namely, estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 (HER2). Carcinomas with apocrine differentiation (CAD) are classified based on morphology. Androgen receptor (AR) is highly expressed in CAD; however, no study has comprehensively examined AR-related proteins in CAD. Therefore, we examined the expression of AR-related proteins and AR, compared protein expression patterns between morphologically identified CAD and other BC subtypes, and investigated CAD characteristics. We performed immunohistochemistry for AR and various AR-related proteins in 66 invasive ductal carcinoma (32 ER+/PgR+/HER2-, 8 ER+/PgR+/HER2+, 12 ER-/PgR-/HER2+, and 14 ER-/PgR-/HER2- [triple-negative breast cancer)), 21 invasive lobular carcinoma, and 27 CAD cases. In the CAD group, all cases were AR-positive; some AR-related proteins were highly expressed. Nuclear phosphorylated-mammalian target of rapamycin was highly expressed in CAD cases compared with that in other BC groups, with a 33.3% sensitivity and 97.7% specificity. AR-expressing CAD cases exhibited high expression of other AR-related proteins. Specifically, the combination of AR+, GCDFP15+, and ER - or AR+, FOXA1+, and ER - may be useful for the diagnosis and treatment of AR-positive BC and CAD. These results may assist in androgen-related molecular targeted therapy research.
Collapse
MESH Headings
- Humans
- Receptors, Androgen/metabolism
- Female
- Middle Aged
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Aged
- Adult
- Biomarkers, Tumor/metabolism
- Receptor, ErbB-2/metabolism
- Receptors, Progesterone/metabolism
- Receptors, Estrogen/metabolism
- Apocrine Glands/pathology
- Apocrine Glands/metabolism
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Differentiation
- Immunohistochemistry
- Aged, 80 and over
Collapse
Affiliation(s)
- Haruto Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasamamachi, Oita, 879-5593, Oita, Japan.
| | - Ami Kato
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasamamachi, Oita, 879-5593, Oita, Japan
| | - Ryo Kaimori
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasamamachi, Oita, 879-5593, Oita, Japan
| | - Kazuhiro Kawamura
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasamamachi, Oita, 879-5593, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasamamachi, Oita, 879-5593, Oita, Japan
| |
Collapse
|
2
|
Zhao S, Song C, Chen F, Li M. LncRNA XIST/miR-455-3p/HOXC4 axis promotes breast cancer development by activating TGF-β/SMAD signaling pathway. Funct Integr Genomics 2024; 24:159. [PMID: 39261346 DOI: 10.1007/s10142-024-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Breast cancer is the second primary cause of cancer death among women. Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is a central regulator for X chromosome inactivation, and its abnormal expression is a primary feature of breast cancer. So far, the mechanism of XIST in breast cancer has not been fully elucidated. We attempted to illustrate the mechanism of XIST in breast cancer. The expressions of XIST, microRNA-455-3p (miR-455-3p) in breast cancer were measured using quantitative real-time PCR. The expressions of homeobox C4 (HOXC4) were assessed with immunohistochemical and Western blot. Also, the functions of XIST in breast cancer were assessed by Cell Counting Kit-8 analysis, colony formation assay, flow cytometry, Western blot, Transwell, and cell scratch assays. Meanwhile, the mechanism of XIST in breast cancer was validated using database analysis and dual-luciferase reporter assay. Furthermore, the function of XIST in breast cancer in vivo was estimated by tumor xenograft model, immunohistochemical assay, and hematoxylin-eosin staining. XIST and HOXC4 expressions were increased, but miR-455-3p expressions were decreased in breast cancer tissues and cells. Knocking down XIST restrained breast cancer cell proliferation, invasion, migration, epithelial-mesenchymal transformation (EMT), and induced cell cycle arrest at G0/G1. Meanwhile, XIST interacted with miR-455-3p, while miR-455-3p interacted with HOXC4. XIST knockdown repressed breast cancer cell proliferation, invasion, and EMT, while miR-455-3p inhibitor or HOXC4 overexpression abolished those impacts. HOXC4 overexpression also blocked the impacts of miR-455-3p mimic on breast cancer cell malignant behavior. In vivo experimental data further indicated that XIST knockdown repressed breast cancer cell tumorigenic ability, and decreased HOXC4 and p-SMAD3 (TGF-β/SMAD-related protein) expressions.XIST/miR-455-3p/HOXC4 facilitated breast cancer development by activating the TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Chen Song
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Fengxi Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China.
| |
Collapse
|
3
|
Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH. MicroRNA-455-3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 100:102459. [PMID: 39153602 PMCID: PMC11383742 DOI: 10.1016/j.arr.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others. Interestingly, cerebrospinal fluids (CSF) and the blood of AD patients have altered expressions of many RNAs, which may serve as potential peripheral biomarkers. The intensive investigation from our lab revealed that microRNA-455-3 P (miR-455-3p) is a strong candidate as a potential biomarker and therapeutic target for AD. Several genes implicated in the pathogenesis of AD are directly targeted by miR-455-3p. Several years of our lab research revealed that miR-455-3p regulates important physiological processes associated with AD, such as the processing of the amyloid precursor protein (APP), TGF-β signaling, the regulation of oxidative stress, mitochondrial biogenesis, and synaptic damages. The expression of miR-455-3p in mild cognitive impaired subjects and AD patients pointed out its involvement in AD progression. Recently, our lab generated both transgenic and knockout mice for miR-455-3p. Interestingly miR-455-3p transgenic mice showed superior cognitive learning, improved memory and extended lifespan compared to age matched wild-type mice, whereas miR-455-3-p knockout mice showed cognitive decline and reduced lifespan. Information derived from mouse models further demonstrated the advantageous impact of miR-455-3p on dendritic growth, synaptogenesis, and mitochondrial biogenesis in preventing the onset and progression of AD. The identification of miR-455-3p as a biomarker was suggested by its presence in postmortem AD brains, B-lymphocytes, and fibroblasts. Our hypothesis that miR-455-3p could be a peripheral biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
4
|
Deng J, Wei K, Fang J, Li Y. Deep self-reconstruction driven joint nonnegative matrix factorization model for identifying multiple genomic imaging associations in complex diseases. J Biomed Inform 2024; 156:104684. [PMID: 38936566 DOI: 10.1016/j.jbi.2024.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Comprehensive analysis of histopathology images and transcriptomics data enables the identification of candidate biomarkers and multimodal association patterns. Most existing multimodal data association studies are derived from extensions of the joint nonnegative matrix factorization model for identifying complex data associations, which can make full use of clinical prior information. However, the raw data were usually taken as the input without considering the underlying complex multi-subspace structure, influencing the subsequent integration analysis results. METHODS This study proposed a deep-self reconstructed joint nonnegative matrix factorization (DSRJNMF) model to use self-expressive properties to reconstruct the raw data to characterize the similarity structure associated with clinical labels. Then, the sparsity, orthogonality, and regularization constraints constructed from prior information are added to the DSRJNMF model to determine the sparse set of biologically relevant features across modalities. RESULTS The algorithm has been applied to identify the imaging genetic association of triple negative breast cancer (TNBC). Multilevel experimental results demonstrate that the proposed algorithm better estimates potential associations between pathological image features and miRNA-gene and identifies consistent multimodal imaging genetic biomarkers to guide the interpretation of TNBC. CONCLUSION The propose method provides a novel idea of data association analysis oriented to complex diseases.
Collapse
Affiliation(s)
- Jin Deng
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiana Fang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
5
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Mavatkar AD, Naidu CM, Prabhu JS, Nair MG. The dynamic tumor-stromal crosstalk: implications of 'stromal-hot' tumors in the process of epithelial-mesenchymal transition in breast cancer. Mol Biol Rep 2023; 50:5379-5393. [PMID: 37046108 DOI: 10.1007/s11033-023-08422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer metastatic programming involves an intricate process by which the tumor cell coevolves with the surrounding extracellular niche. The supporting cells from the local host stroma get transformed into cancer-associated stromal cells. This complex crosstalk leads to extracellular matrix remodeling, invasion, and eventually distant metastasis. METHODS In this review, we examine the protein-miRNA secretome that is crucial for this crosstalk. We also provide evidence from the literature for the pivotal role played by the various stromal cells like fibroblasts, adipocytes, and immune cells in promoting the process of EMT in breast cancer. Through in-silico analysis, we have also attempted to establish that stromal presence is integral to the process of EMT. RESULTS AND CONCLUSION The in-silico analysis delineates the persuasive role of the stroma in mediating epithelial-to-mesenchymal transition. This review elucidates the importance of examining the role of the stromal niche that can yield promising diagnostic markers and pave avenues for formulating tailored anti-cancer therapy. Process of EMT as driven by 'stroma-hot' tumors: The process of EMT is driven by the stromal cells. The stromal cells in the form of fibroblasts, adipocytes, endothelial cells, mesenchymal stromal cells and tissue associated macrophages secrete the miRNA-protein secretome that modulates the stromal niche and the tumor cells to be become 'tumor associated'. This drives tumor progression and invasion. The 'stromal-hot' tumors eventually get the benefit of the surplus nurturing from the stroma that facilitates EMT leading to distant organ seeding and metastasis.
Collapse
Affiliation(s)
- Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India.
| |
Collapse
|
7
|
Han SZ, Gao K, Chang SY, Choe HM, Paek HJ, Quan BH, Liu XY, Yang LH, Lv ST, Yin XJ, Quan LH, Kang JD. miR-455-3p Is Negatively Regulated by Myostatin in Skeletal Muscle and Promotes Myoblast Differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10121-10133. [PMID: 35960196 DOI: 10.1021/acs.jafc.2c02474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myostatin (MSTN) is a growth and differentiation factor that regulates proliferation and differentiation of myoblasts, which in turn controls skeletal muscle growth. It may regulate myoblast differentiation by influencing miRNA expression, and the present study aimed to clarify its precise mechanism of action. Here, we found that MSTN-/- pigs showed an overgrowth of skeletal muscle and upregulated miR-455-3p level. Intervention of MSTN expression using siMSTN in C2C12 myoblasts also showed that siMSTN significantly increased the expression of miR-455-3p. It was found that miR-455-3p directly targeted the 3'-untranslated region of Smad2 by dual-luciferase assay. qRT-PCR, Western blotting, and immunofluorescence analyses indicated that miR-455-3p overexpression or Smad2 silencing in C2C12 myoblasts significantly promoted myoblast differentiation. Furthermore, siMSTN significantly increased the expression of GATA3. The levels of miR-455-3p were considerably reduced in C2C12 myoblasts following GATA3 knockdown. Consistently, GATA3 knockdown also reduced the enhanced miR-455-3p expression caused by siMSTN. Finally, we illustrated that GATA3 has a role in myoblast differentiation regulation. Taken together, we identified the expression profiles of miRNAs in MSTN-/- pigs and found that miR-455-3p positively regulates myoblast differentiation. In addition, we revealed that MSTN acts through the GATA3/miR-455-3p/Smad2 cascade to regulate muscle development.
Collapse
Affiliation(s)
- Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Kai Gao
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Hak-Myong Choe
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Hyo-Jin Paek
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Biao-Hu Quan
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Xin-Yue Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Si-Tong Lv
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| |
Collapse
|
8
|
Orlandella FM, Auletta L, Greco A, Zannetti A, Salvatore G. Preclinical Imaging Evaluation of miRNAs' Delivery and Effects in Breast Cancer Mouse Models: A Systematic Review. Cancers (Basel) 2021; 13:6020. [PMID: 34885130 PMCID: PMC8656589 DOI: 10.3390/cancers13236020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.
Collapse
Affiliation(s)
| | - Luigi Auletta
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Adelaide Greco
- InterDepartmental Center of Veterinary Radiology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Giuliana Salvatore
- IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Wellness, University of Naples Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| |
Collapse
|
9
|
Xu B, Xu G, Yu Y, Lin J. The role of TGF-β or BMPR2 signaling pathway-related miRNA in pulmonary arterial hypertension and systemic sclerosis. Arthritis Res Ther 2021; 23:288. [PMID: 34819148 PMCID: PMC8613994 DOI: 10.1186/s13075-021-02678-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe complication of connective tissue disease (CTD), causing death in systemic sclerosis (SSc). The past decade has yielded many scientific insights into microRNA (miRNAs) in PAH and SSc. This growth of knowledge has well-illustrated the complexity of microRNA (miRNA)-based regulation of gene expression in PAH. However, few miRNA-related SSc-PAH were elucidated. This review firstly discusses the role of transforming growth factor-beta (TGF-β) signaling and bone morphogenetic protein receptor type II (BMPR2) in PAH and SSc. Secondly, the miRNAs relating to TGF-β and BMPR2 signaling pathways in PAH and SSc or merely PAH were subsequently summarized. Finally, future studies might develop early diagnostic biomarkers and target-oriented therapeutic strategies for SSc-PAH and PAH treatment.
Collapse
Affiliation(s)
- Bei Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Guanhua Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Ye Yu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003.
| |
Collapse
|
10
|
Corrêa S, Lopes FP, Panis C, Basili T, Binato R, Abdelhay E. miRNome Profiling Reveals Shared Features in Breast Cancer Subtypes and Highlights miRNAs That Potentially Regulate MYB and EZH2 Expression. Front Oncol 2021; 11:710919. [PMID: 34646766 PMCID: PMC8502886 DOI: 10.3389/fonc.2021.710919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Breast cancer (BC) has been extensively studied, as it is one of the more commonly diagnosed cancer types worldwide. The study of miRNAs has increased what is known about the complexity of pathways and signaling and has identified potential biomarkers and therapeutic targets. Thus, miRNome profiling could provide important information regarding the molecular mechanisms involved in BC. On average, more than 430 miRNAs were identified as differentially expressed between BC cell lines and normal breast HMEC cells. From these, 110 miRNAs were common to BC subtypes. The miRNome enrichment analysis and interaction maps highlighted epigenetic-related pathways shared by all BC cell lines and revealed potential miRNA targets. Quantitative evaluation of BC patient samples and GETx/TCGA-BRCA datasets confirmed MYB and EZH2 as potential targets from BC miRNome. Moreover, overall survival was impacted by EZH2 expression. The expression of 15 miRNAs, selected according to aggressiveness of BC subtypes, was confirmed in TCGA-BRCA dataset. Of these miRNAs, miRNA-mRNA interaction prediction revealed 7 novel or underexplored miRNAs in BC: miR-1271-5p, miR-130a-5p, and miR-134 as MYB regulators and miR-138-5p, miR-455-3p, miR-487a, and miR-487b as EZH2 regulators. Herein, we report a novel molecular miRNA signature for BC and identify potential miRNA/mRNAs involved in disease subtypes.
Collapse
Affiliation(s)
- Stephany Corrêa
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Francisco P Lopes
- Grupo de Biologia do Desenvolvimento e Sistemas Dinâmicos, Universidade Federal do Rio de Janeiro (UFRJ), Duque de Caxias, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão, Brazil
| | - Thais Basili
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Renata Binato
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Liu F, Wang YL, Wei JM, Huang ZD. Upregulation of circ_0000142 promotes multiple myeloma progression by adsorbing miR-610 and upregulating AKT3 expression. J Biochem 2021; 169:327-336. [PMID: 32970816 DOI: 10.1093/jb/mvaa106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) play an important regulatory role in a variety of malignancies. Nevertheless, the role of circ_0000142 in multiple myeloma (MM) and its regulatory mechanism remains largely unknown. Real-time polymerase chain reaction was employed to detect the expressions of circ_0000142 and miR-610 in MM tissues and cell lines. The expression of AKT3 and apoptosis-related proteins (Bcl-2, Bax) in MM cells was detected by western blot. The correlation between the expression level of circ_0000142 and the clinicopathological parameters of MM patients was analysed. Cell proliferation, apoptosis, migration and invasion were monitored by Cell Counting Kit 8 assay, flow cytometry analysis and Transwell assay, respectively. The dual-luciferase reporter gene assay and RNA immunoprecipitation assay were employed to verify the targeting relationship between circ_0000142 and miR-610. In this study, it was demonstrated that, circ_0000142 was highly expressed in MM patients, and its high expression level was significantly associated with increased International Staging System and Durie-Salmon stage. Overexpression of circ_0000142 enhanced MM cell proliferation, migration, invasion and suppressed cell apoptosis, while knocking down circ_0000142 had the opposite effects. Mechanistically, circ_0000142 functioned as a competitive endogenous RNA, directly targeting miR-610 and positively regulating AKT3 expression. In brief, circ_0000142 enhances the proliferation and metastasis of MM cells by modulating the miR-610/AKT3 axis.
Collapse
Affiliation(s)
| | | | | | - Zhao-Dong Huang
- Department of Intervention, Linyi Central Hospital, No. 17, Health Road, Yishui County, Linyi City, 276400 Shandong Province, China
| |
Collapse
|
12
|
Ren P, Chang L, Hong X, Xing L, Zhang H. Long non-coding RNA LINC01116 is activated by EGR1 and facilitates lung adenocarcinoma oncogenicity via targeting miR-744-5p/CDCA4 axis. Cancer Cell Int 2021; 21:292. [PMID: 34090440 PMCID: PMC8180037 DOI: 10.1186/s12935-021-01994-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Background Lung adenocarcinoma (LAD) is one of the most frequently diagnosed pathological categories of human lung cancer. Nevertheless, the link between long non-coding RNA (lncRNA) LINC01116 and LAD remains poorly investigated. Methods QRT-PCR and western blot were applied for quantifying the expression of RNAs and proteins. Both functional experiments assays in vitro and xenografts model in vivo were implemented for analyzing LINC01116 function in LAD while molecular relationship among RNAs was investigated via mechanism experiments. Results LINC01116 was expressed at an abnormally high level in LAD, which was induced by transcription activator EGR1. LINC01116 depletion restrained proliferation, migration and invasion, yet facilitated apoptosis of LAD cells. MiR-744-5p could bind to LINC01116. MiR-744-5p inhibitor reversed the inhibitory effects of silencing LINC01116 on LAD malignant behaviors. In addition, cell division cycle-associated protein 4 (CDCA4) shared binding sites with miR-744-5p. Silencing LINC01116 elicited decline in CDCA4 mRNA and protein levels. Moreover, CDCA4 up-regulation could counteract the biological effects of LINC01116 knockdown on LAD cells. Conclusion Our data revealed that LINC01116 promoted malignant behaviors of LAD cells by targeting miR-744-5p/CDCA4 axis, implying the theoretical potential of LINC01116 as a novel target for LAD treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01994-w.
Collapse
Affiliation(s)
- Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China
| | - Liang Chang
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China
| | - Xiaodong Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China
| | - Lei Xing
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China
| | - Hong Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
13
|
Human Umbilical Cord Mesenchymal Stem Cells Ameliorate Hepatic Stellate Cell Activation and Liver Fibrosis by Upregulating MicroRNA-455-3p through Suppression of p21-Activated Kinase-2. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6685605. [PMID: 33708992 PMCID: PMC7932777 DOI: 10.1155/2021/6685605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) were shown to have potential therapeutic effects for treatment of liver fibrosis, and dysregulated expression of microRNAs (miRNAs) played a pivotal role in the pathogenesis of liver fibrosis by regulating their downstream target genes. However, the mechanism by which MSCs affect the progression of liver fibrosis by regulating miRNA expression remains unclear. Here, we investigated whether human umbilical cord MSCs (HUC-MSCs) attenuated hepatic fibrosis by regulating miR-455-3p and its target gene. Significantly upregulated miRNA (miR-455-3p) was screened out by GEO datasets analysis and coculture HUC-MSCs with hepatic stellate cell (HSC) LX-2 cells. p21-activated kinase-2 (PAK2) was forecasted to be the target gene of miR-455-3p by bioinformatics analyses and confirmed by luciferase reporter assay. HUC-MSCs were transplanted into mice with carbon tetrachloride- (CCl4-) induced liver fibrosis, the result showed that HUC-MSC transplantation significantly ameliorated the severity of CCl4-induced liver fibrosis, attenuated collagen deposition, improved liver function by reducing the expression of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, upregulated miR-455-3p, and suppressed PAK2 expression of liver tissue in mice. Taken together, our study suggests that HUC-MSCs inhibit the activation of HSCs and mouse CCl4-induced liver fibrosis by upregulation of miR-455-3p through targeting PAK2.
Collapse
|
14
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
15
|
Liu G, Kang X, Guo P, Shang Y, Du R, Wang X, Chen L, Yue R, Kong F. miR-25-3p promotes proliferation and inhibits autophagy of renal cells in polycystic kidney mice by regulating ATG14-Beclin 1. Ren Fail 2021; 42:333-342. [PMID: 32340512 PMCID: PMC7241494 DOI: 10.1080/0886022x.2020.1745236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are involved in the regulation of the autophagy and proliferation in several diseases. This study aims to verify the role of miR-25-3p in the proliferation and autophagy of renal cells in polycystic kidney disease (PKD). We found that kidney to body weight and blood urea content were increased in PKD mice. Cystic dilations were increased in kidney tissue from PKD mice, and autophagy-related protein ULK1 and the ratio of LC3-II/LC3-I were decreased, indicating autophagy was inhibited in PKD mice. In addition, miR-25-3p was upregulated in PKD mice, and inhibition of miR-25-3p decreased cystic dilations in kidney tissues, increased ULK1 expression and the ratio of LC3-II/LC3-I, indicating inhibition of miR-25-3p enhanced the autophagy in PKD. Besides, inhibition of miR-25-3p suppressed the proliferation of renal cells and downregulated E2F-1 and PCNA expressions. Importantly, miR-25-3p targetedly suppressed ATG14 expression in PKD cells. Finally, silencing ATG14 abolished the inhibition effect of miR-25-3p inhibitor on renal cell proliferation, and reversed the inhibition effect of miR-25-3p inhibitor on E2F-1 and PCNA expressions in in vitro and in vivo experiments, which suggested that ATG14 was involved in the regulation of miR-25-3p-mediated kidney cell proliferation. Therefore, inhibition of miR-25-3p promoted cell autophagy and suppressed cell proliferation in PKD mice through regulating ATG14.
Collapse
Affiliation(s)
- Guojian Liu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiaowen Kang
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical, University, Harbin, Heilongjiang, People's Republic of China
| | - Ping Guo
- Laboratory Department, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yu Shang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ruomei Du
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiyue Wang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Liting Chen
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Rui Yue
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
16
|
Jiang H, Liu H, Jiang B. Long non-coding RNA FALEC promotes colorectal cancer progression via regulating miR-2116-3p-targeted PIWIL1. Cancer Biol Ther 2020; 21:1025-1032. [PMID: 33073675 PMCID: PMC7678929 DOI: 10.1080/15384047.2020.1824514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 07/08/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common digestive malignant tumors globally. Focally amplified lncRNA on chromosome 1 (FALEC) is a novel lncRNA that has been reported to be involved in many biological processes during carcinogenesis. However, its role in CRC remains poorly understood. METHODS Gene expression at mRNA or protein level was measured by qRT-PCR or western blot, respectively. In vitro experiments including EdU, colony formation, flow cytometry, wound-healing and transwell assays, as well as in vivo xenograft experiment, were utilized to determine the functional role of FALEC in CRC. Relevant mechanical assays were performed to investigate the underlying molecular mechanism. RESULTS FALEC was aberrantly up-regulated in CRC. FALEC knockdown could impair CRC cell proliferation, migration and invasion, whereas facilitate cell apoptosis. MiR-2116-3p was revealed to be sponged by FALEC. PIWIL1 was identified as the target of miR-2116-3p. Mechanically, FALEC restored the expression of PIWIL1 via absorbing miR-2116-3p. MiR-2116-3p inhibition and PIWIL1 enrichment could counteract the anti-tumor impact induced by silenced FALEC on the oncogenic behaviors of CRC cells. CONCLUSION Our study revealed that FALEC promoted CRC progression via restoring the expression of miR-2116-3p-targeted PIWIL1, suggesting the potential application of targeting FALEC in the treatment of CRC.
Collapse
Affiliation(s)
- Huiyuan Jiang
- Colorectal and Anal Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Haiyi Liu
- Colorectal and Anal Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Bo Jiang
- Colorectal and Anal Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Regulation of gene expression by miRNA-455-3p, upregulated in the conjunctival epithelium of patients with Stevens-Johnson syndrome in the chronic stage. Sci Rep 2020; 10:17239. [PMID: 33057072 PMCID: PMC7560850 DOI: 10.1038/s41598-020-74211-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Abstract
To investigate the role of miRNA in the pathogenesis underlying ocular surface complications in patients with Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) in the chronic stage. Using oligonucleotide microarrays, we performed comprehensive miRNA analysis of the conjunctival epithelium of SJS/TEN patients with severe ocular complications (SOC) in the chronic stage (n = 3). Conjunctival epithelium of patients with conjunctival chalasis (n = 3) served as the control. We confirmed the down- and up-regulation of miRNA of interest by quantitative real-time polymerase chain reaction (RT-PCR) assays using the conjunctival epithelium from 6 SJS/TEN with SOC patients and 7 controls. We focused on miRNA-455-3p, which is significantly upregulated in the conjunctival epithelium of the SJS/TEN patients, and investigated its function by inhibiting miR-455-3p in primary human conjunctival epithelial cells (PHCjEs). Comprehensive miRNA expression analysis showed that the expression of 5 kinds of miRNA was up-regulated more than fivefold, and that the expression of another 5 kinds of miRNA was down-regulated by less than one-fifth. There was a significant difference between the SJS/TEN patients and the controls [analysis of variance (ANOVA) p < 0.05]. Quantitative miRNA PCR assay showed that hsa-miR-31* and hsa-miR-455-3p were significantly up-regulated in the conjunctival epithelium of the SJS/TEN patients. Comprehensive gene expression analysis of PHCjEs transfected with the hsa-miR-455-3p inhibitor and quantitative RT PCR assay showed that ANKRD1, CXCL8, CXCL2, GEM, PTGS2, RNASE8, IL6, and CXCL1 were down-regulated by the hsa-miR-455-3p inhibitor. Quantitative RT-PCR, focused on the genes that tended to be up-regulated in SJS/TEN with SOC, revealed that the expression of IL1A, KPRP, IL36G, PPP1R3C, and ADM was significantly down-regulated in PHCjEs transfected with the hsa-miR-455-3p inhibitor. Our results suggest that miRNA-455-3p could regulate many genes including innate immune related genes in human conjunctival epithelium, and that its up-regulation contributes to the pathogenesis on the ocular surface in SJS/TEN patients with the SOC in the chronic stage. Our findings may lead to the development of new treatments using the miRNA-455-3p inhibitor.
Collapse
|
18
|
Zhang Y, Yuan X, Yue N, Wang L, Liu J, Dai N, Yang H, Fan R, Zhou F. hsa_circRNA6448-14 promotes carcinogenesis in esophageal squamous cell carcinoma. Aging (Albany NY) 2020; 12:15581-15602. [PMID: 32805720 PMCID: PMC7467364 DOI: 10.18632/aging.103650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) play important roles in cancer progression. hsa_circRNA6448-14 originates from exon 5 to exon 11 of the TGFBI gene. We investigated the roles of hsa_circRNA6448-14 in esophageal squamous cell carcinoma (ESCC) with microarrays and quantitative real-time polymerase chain reaction (qRT-PCR), Kaplan-Meier analysis, loss-of-function and gain-of-function assays, and pull-down assays for miRNA binding. The hsa_circRNA6448-14-miRNA-mRNA network was drawn using Circos. hsa_circRNA6448-14 was significantly upregulated in ESCC tissues and cell lines. As a diagnostic biomarker, hsa_circRNA6448-14 had an area under the curve (AUC), sensitivity, and specificity of 0.906, 82.9%, and 85.5%, respectively. hsa_circRNA6448-14 upregulation was correlated with poor differentiation, advanced pTNM stage, poor disease-free survival (DFS), and poor overall survival (OS). Elevated hsa_circRNA6448-14 promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro. hsa_circRNA6448-14 functioned as a miRNA sponge to competitively bind miR-455-3p, and hsa_circRNA6448-14 expression negatively correlated with that of miR-455-3p. hsa_circRNA6448-14 promoted carcinogenesis in ESCC, suggesting that hsa_circRNA6448-14 could serve as a diagnostic and prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang 455000, China,Department of Radiation Oncology, Henan Key Laboratory for Cancer Research, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, China
| | - Ning Yue
- Department of Radiation Oncology, Rutgers - Cancer Institute of New Jersey, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Lidong Wang
- Department of Radiation Oncology, Henan Key Laboratory for Cancer Research, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, Henan Key Laboratory for Cancer Research, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ningtao Dai
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang 455000, China
| | - Haijun Yang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang 455000, China
| | - Ruitai Fan
- Department of Radiation Oncology, Henan Key Laboratory for Cancer Research, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Fuyou Zhou
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang 455000, China
| |
Collapse
|
19
|
Ashrafizadeh M, Hushmandi K, Hashemi M, Akbari ME, Kubatka P, Raei M, Koklesova L, Shahinozzaman M, Mohammadinejad R, Najafi M, Sethi G, Kumar AP, Zarrabi A. Role of microRNA/Epithelial-to-Mesenchymal Transition Axis in the Metastasis of Bladder Cancer. Biomolecules 2020; 10:E1159. [PMID: 32784711 PMCID: PMC7464913 DOI: 10.3390/biom10081159] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the 11th most common diagnosed cancer, and a number of factors including environmental and genetic ones participate in BC development. Metastasis of BC cells into neighboring and distant tissues significantly reduces overall survival of patients with this life-threatening disorder. Recently, studies have focused on revealing molecular pathways involved in metastasis of BC cells, and in this review, we focus on microRNAs (miRNAs) and their regulatory effect on epithelial-to-mesenchymal transition (EMT) mechanisms that can regulate metastasis. EMT is a vital process for migration of BC cells, and inhibition of this mechanism restricts invasion of BC cells. MiRNAs are endogenous non-coding RNAs with 19-24 nucleotides capable of regulating different cellular events, and EMT is one of them. In BC cells, miRNAs are able to both induce and/or inhibit EMT. For regulation of EMT, miRNAs affect different molecular pathways such as transforming growth factor-beta (TGF-β), Snail, Slug, ZEB1/2, CD44, NSBP1, which are, discussed in detail this review. Besides, miRNA/EMT axis can also be regulated by upstream mediators such as lncRNAs, circRNAs and targeted by diverse anti-tumor agents. These topics are also discussed here to reveal diverse molecular pathways involved in migration of BC cells and strategies to target them to develop effective therapeutics.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran;
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran;
| | - Peter Kubatka
- Department of Medical Biology and Division of Oncology—Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 55877577, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
20
|
Wen X, Li H, Sun H, Zeng A, Lin R, Zhao J, Zhang Z. MiR-455-3p reduces apoptosis and alleviates degeneration of chondrocyte through regulating PI3K/AKT pathway. Life Sci 2020; 253:117718. [PMID: 32343998 DOI: 10.1016/j.lfs.2020.117718] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study aimed to explore the functions of miR-455-3p, PTEN, and PI3K/AKT pathway in osteoarthritis. MATERIALS AND METHODS We used the human bone marrow stem cell (BMSC), healthy chondrocytes, osteoarthritis chondrocytes (OA), and the IL-1β/TNF-α-treated chondrocyte model to explore the relationship between miR-455-3p and PTEN. Mimic or inhibitor was used to transfect chondrocytes to determine whether miR-455-3p can regulate PTEN and influence COL2A1 and MMP13. Apoptosis was detected by flow cytometry. A luciferase report was applied to verify the targeted binding. KO mice were applied to investigate PTEN and pAKT expression and the effect on chondrocytes in vivo. KEY FINDINGS MiR-455-3p and PTEN were reverse in chondrogenesis and healthy cartilage versus OA cartilage. Similar trends were noted in IL-1β model. PTEN and MMP13 decreased and COL2A1 increased after overexpressing miR-455-3p, whereas the inhibition showed opposite results. Flow cytometry showed that miR-455-3p could reduce the apoptosis of chondrocytes. The results of luciferase revealed that miR-455-3p could affect fluorescence activity of PTEN by targeting its 3'-UTR. Finally, we found a marked increased in the expression of PTEN in KO mice relative to WT mice, while pAKT levels decreased. SIGNIFICANCE It can be supported that miR-455-3p can reduce the apoptosis of chondrocytes and alleviate OA through regulating PI3K/AKT pathway, which may be expected to be a target for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Xingzhao Wen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Hongyi Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Hao Sun
- Department of Joint Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anyu Zeng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Ruifu Lin
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Jing Zhao
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Zhiqi Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China.
| |
Collapse
|