1
|
Li L, Huang J, Liu Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front Cell Dev Biol 2024; 11:1302285. [PMID: 38269088 PMCID: PMC10806136 DOI: 10.3389/fcell.2023.1302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Fibrillin-1 (FBN1) is a large, cysteine-rich, calcium binding extracellular matrix glycoprotein encoded by FBN1 gene. It serves as a structural component of microfibrils and provides force-bearing mechanical support in elastic and nonelastic connective tissue. As such, mutations in the FBN1 gene can cause a wide variety of genetic diseases such as Marfan syndrome, an autosomal dominant disorder characterized by ocular, skeletal and cardiovascular abnormalities. FBN1 also interacts with numerous microfibril-associated proteins, growth factors and cell membrane receptors, thereby mediating a wide range of biological processes such as cell survival, proliferation, migration and differentiation. Dysregulation of FBN1 is involved in the pathogenesis of many human diseases, such as cancers, cardiovascular disorders and kidney diseases. Paradoxically, both depletion and overexpression of FBN1 upregulate the bioavailability and signal transduction of TGF-β via distinct mechanisms in different settings. In this review, we summarize the structure and expression of FBN1 and present our current understanding of the functional role of FBN1 in various human diseases. This knowledge will allow to develop better strategies for therapeutic intervention of FBN1 related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Junxin Huang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
2
|
Marelli S, Micaglio E, Taurino J, Salvi P, Rurali E, Perrucci GL, Dolci C, Udugampolage NS, Caruso R, Gentilini D, Trifiro' G, Callus E, Frigiola A, De Vincentiis C, Pappone C, Parati G, Pini A. Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies. Diagnostics (Basel) 2023; 13:2284. [PMID: 37443678 DOI: 10.3390/diagnostics13132284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Marfan syndrome (MFS) is a rare inherited autosomic disorder, which encompasses a variety of systemic manifestations caused by mutations in the Fibrillin-1 encoding gene (FBN1). Cardinal clinical phenotypes of MFS are highly variable in terms of severity, and commonly involve cardiovascular, ocular, and musculoskeletal systems with a wide range of manifestations, such as ascending aorta aneurysms and dissection, mitral valve prolapse, ectopia lentis and long bone overgrowth, respectively. Of note, an accurate and prompt diagnosis is pivotal in order to provide the best treatment to the patients as early as possible. To date, the diagnosis of the syndrome has relied upon a systemic score calculation as well as DNA mutation identification. The aim of this review is to summarize the latest MFS evidence regarding the definition, differences and similarities with other connective tissue pathologies with severe systemic phenotypes (e.g., Autosomal dominant Weill-Marchesani syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome) and clinical assessment. In this regard, the management of MFS requires a multidisciplinary team in order to accurately control the evolution of the most severe and potentially life-threatening complications. Based on recent findings in the literature and our clinical experience, we propose a multidisciplinary approach involving specialists in different clinical fields (i.e., cardiologists, surgeons, ophthalmologists, orthopedics, pneumologists, neurologists, endocrinologists, geneticists, and psychologists) to comprehensively characterize, treat, and manage MFS patients with a personalized medicine approach.
Collapse
Affiliation(s)
- Susan Marelli
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Emanuele Micaglio
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Paolo Salvi
- Istituto Auxologico Italiano, Cardiology Unit, IRCCS, 20133 Milan, Italy
| | - Erica Rurali
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Claudia Dolci
- Laboratory of Functional Anatomy of the Stomatognathic System (LAFAS), Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Rosario Caruso
- Clinical Research Service, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, University of Milano-Bicocca, 20095 Milan, Italy
| | - Giuliana Trifiro'
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Edward Callus
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Clinical Psychology Service, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Alessandro Frigiola
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
- Association "Bambini Cardiopatici nel Mondo" Non-Governmental Organization (NGO), 20123 Milan, Italy
| | - Carlo De Vincentiis
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Cardiac Surgery, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Carlo Pappone
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, Cardiology Unit, IRCCS, 20133 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandro Pini
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
3
|
Mahdizadehi M, Saghaeian Jazi M, Mir SM, Jafari SM. Role of fibrilins in human cancer: A narrative review. Health Sci Rep 2023; 6:e1434. [PMID: 37469709 PMCID: PMC10353528 DOI: 10.1002/hsr2.1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Background Fibrillin is one of the extracellular matrix glycoproteins and participates in forming microfibrils found in many connective tissues. The microfibrils enable the elasticity and stretching properties of the ligaments and support connective tissues. There are three isoforms of fibrillin molecules identified in mammals: fibrillin 1 (FBN1), fibrillin 2 (FBN2), and fibrillin 3. Objective Multiple studies have shown that mutations in these genes or changes in their expression levels can be related to various diseases, including cancers. In this study, we focus on reviewing the role of the fibrillin family in multiple cancers. Methods and Results We performed a comprehensive literature review to search PubMed and Google Scholar for studies published so far on fibrillin gene expression and its role in cancers. In this review, we have focused on the expression of FBN1 and FBN2 genes in cancers such as the lung, intestine, ovary, pancreatic ductal, esophagus, and thyroid. Conclusion Altogether various studies showed higher expression of fibrillins in different tumor tissues correlated with the patient's survival. However, there are controversial findings, as some other cancers showed hypermethylated FBN promoters with lower gene expression levels.
Collapse
Affiliation(s)
- Mahsa Mahdizadehi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Seyyed Mostafa Mir
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| |
Collapse
|
4
|
Shen NN, Lin JH, Liu PP. EBF1 Promotes the Sensitivity of Cervical Cancer Cells to Cisplatin via Activating FBN1 Transcription. Mol Biol 2023. [DOI: 10.1134/s0026893323030093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer 2022; 21:104. [PMID: 35461253 PMCID: PMC9033932 DOI: 10.1186/s12943-022-01569-x] [Citation(s) in RCA: 357] [Impact Index Per Article: 178.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor β (TGF-β) has long been identified with its intensive involvement in early embryonic development and organogenesis, immune supervision, tissue repair, and adult homeostasis. The role of TGF-β in fibrosis and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, overexpressed TGF-β causes epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, cancer-associated fibroblast (CAF) formation, which leads to fibrotic disease, and cancer. Given the critical role of TGF-β and its downstream molecules in the progression of fibrosis and cancers, therapeutics targeting TGF-β signaling appears to be a promising strategy. However, due to potential systemic cytotoxicity, the development of TGF-β therapeutics has lagged. In this review, we summarized the biological process of TGF-β, with its dual role in fibrosis and tumorigenesis, and the clinical application of TGF-β-targeting therapies.
Collapse
|
6
|
Peeters S, De Kinderen P, Meester JAN, Verstraeten A, Loeys BL. The fibrillinopathies: new insights with focus on the paradigm of opposing phenotypes for both FBN1 and FBN2. Hum Mutat 2022; 43:815-831. [PMID: 35419902 PMCID: PMC9322447 DOI: 10.1002/humu.24383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Abstract
Different pathogenic variants in the fibrillin‐1 gene (FBN1) cause Marfan syndrome and acromelic dysplasias. Whereas the musculoskeletal features of Marfan syndrome involve tall stature, arachnodactyly, joint hypermobility, and muscle hypoplasia, acromelic dysplasia patients present with short stature, brachydactyly, stiff joints, and hypermuscularity. Similarly, pathogenic variants in the fibrillin‐2 gene (FBN2) cause either a Marfanoid congenital contractural arachnodactyly or a FBN2‐related acromelic dysplasia that most prominently presents with brachydactyly. The phenotypic and molecular resemblances between both the FBN1 and FBN2‐related disorders suggest that reciprocal pathomechanistic lessons can be learned. In this review, we provide an updated overview and comparison of the phenotypic and mutational spectra of both the “tall” and “short” fibrillinopathies. The future parallel functional study of both FBN1/2‐related disorders will reveal new insights into how pathogenic fibrillin variants differently affect the fibrillin microfibril network and/or growth factor homeostasis in clinically opposite syndromes. This knowledge may eventually be translated into new therapeutic approaches by targeting or modulating the fibrillin microfibril network and/or the signaling pathways under its control.
Collapse
Affiliation(s)
- Silke Peeters
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Pauline De Kinderen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Josephina A N Meester
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Bart L Loeys
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Zhang X, Alanazi YF, Jowitt TA, Roseman AM, Baldock C. Elastic Fibre Proteins in Elastogenesis and Wound Healing. Int J Mol Sci 2022; 23:4087. [PMID: 35456902 PMCID: PMC9027394 DOI: 10.3390/ijms23084087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022] Open
Abstract
As essential components of our connective tissues, elastic fibres give tissues such as major blood vessels, skin and the lungs their elasticity. Their formation is complex and co-ordinately regulated by multiple factors. In this review, we describe key players in elastogenesis: fibrillin-1, tropoelastin, latent TGFβ binding protein-4, and fibulin-4 and -5. We summarise their roles in elastogenesis, discuss the effect of their mutations on relevant diseases, and describe their interactions involved in forming the elastic fibre network. Moreover, we look into their roles in wound repair for a better understanding of their potential application in tissue regeneration.
Collapse
Affiliation(s)
- Xinyang Zhang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Yasmene F. Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Thomas A. Jowitt
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
| | - Alan M. Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| |
Collapse
|
8
|
Yuan X, Tang WB, Peng L, Chen Y, Tang S, Ge H, Wang X, Xiao X. Elevation of LncRNA ENST00000453774.1 Prevents Renal Fibrosis by Upregulating FBN1, IGF1R, and KLF7. Kidney Blood Press Res 2021; 46:563-573. [PMID: 34614499 DOI: 10.1159/000515624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Transforming growth factor-β (TGF-β), a common outcome of various progressive chronic kidney diseases, can regulate and induce fibrosis. OBJECTIVE The study aimed to identify downstream targets of lncRNA ENST00000453774.1 (lnc453774.1) and outline their functions on the development of renal fibrosis. METHODS HK-2 cells were induced with 5 ng/mL TGF-β1 for 24 h to construct a renal fibrosis cell model. Differentially expressed genes (DEGs) targeted by lnc453774.1 in TGF-β1-induced renal fibrosis were identified using RNA sequencing. The dataset GSE23338 was employed to identify DEGs in 48-h TGF-β1-stimulated human kidney epithelial cells, and these DEGs were intersected with genes in the key module using weighted gene co-expression network analysis to generate key genes associated with renal fibrosis. MicroRNAs (miRs) that had targeting relationship with keys genes and lnc453774.1 were predicted by using Miranda software, and important genes were intersected with key genes that had targeting relationship with these miRs. Key target genes by lnc453774.1 were identified in a protein-protein interaction network among lnc453774.1, important genes, and reported genes related to autophagy, oxidative stress, and cell adhesion. RESULTS Key genes in the key module (turquoise) were intersected with DEGs in the dataset GSE23338 and yielded 20 key genes regulated by lnc453774.1 involved in renal fibrosis. Fourteen miRs had targeting relationship with lnc453774.1 and key genes, and 8 important genes targeted by these 14 miRs were identified. Fibrillin-1 (FBN1), insulin-like growth factor 1 receptor (IGF1R), and Kruppel-like factor 7 (KLF7) were identified to be involved in autophagy, oxidative stress, and cell adhesion and were elevated in the lnc453774.1-overexpressing TGF-β1-induced cells. CONCLUSION These results show FBN1, IGF1R, and KLF7 serve as downstream targets of lnc453774.1, and that lnc453774.1 may protect against renal fibrosis through competing endogenous miRs which target FBN1, IGF1R, and KLF7 mRNAs.
Collapse
Affiliation(s)
- Xiangning Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Bin Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Peng
- The Nephrotic Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, Hunan Provincial People's Hospital, Changsha, China
| | - Shumei Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Huipeng Ge
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiufen Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Jensen SA, Atwa O, Handford PA. Assembly assay identifies a critical region of human fibrillin-1 required for 10-12 nm diameter microfibril biogenesis. PLoS One 2021; 16:e0248532. [PMID: 33735269 PMCID: PMC7971562 DOI: 10.1371/journal.pone.0248532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
The human FBN1 gene encodes fibrillin-1 (FBN1); the main component of the 10–12 nm diameter extracellular matrix microfibrils. Marfan syndrome (MFS) is a common inherited connective tissue disorder, caused by FBN1 mutations. It features a wide spectrum of disease severity, from mild cases to the lethal neonatal form (nMFS), that is yet to be explained at the molecular level. Mutations associated with nMFS generally affect a region of FBN1 between domains TB3-cbEGF18—the "neonatal region". To gain insight into the process of fibril assembly and increase our understanding of the mechanisms determining disease severity in MFS, we compared the secretion and assembly properties of FBN1 variants containing nMFS-associated substitutions with variants associated with milder, classical MFS (cMFS). In the majority of cases, both nMFS- and cMFS-associated neonatal region variants were secreted at levels comparable to wild type. Microfibril incorporation by the nMFS variants was greatly reduced or absent compared to the cMFS forms, however, suggesting that nMFS substitutions disrupt a previously undefined site of microfibril assembly. Additional analysis of a domain deletion variant caused by exon skipping also indicates that register in the neonatal region is likely to be critical for assembly. These data demonstrate for the first time new requirements for microfibril biogenesis and identify at least two distinct molecular mechanisms associated with disease substitutions in the TB3-cbEGF18 region; incorporation of mutant FBN1 into microfibrils changing their integral properties (cMFS) or the blocking of wild type FBN1 assembly by mutant molecules that prevents late-stage lateral assembly (nMFS).
Collapse
Affiliation(s)
- Sacha A Jensen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ondine Atwa
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Wang H, Liu Z, Zhang G. FBN1 promotes DLBCL cell migration by activating the Wnt/β-catenin signaling pathway and regulating TIMP1. Am J Transl Res 2020; 12:7340-7353. [PMID: 33312371 PMCID: PMC7724331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
The heterogeneity of diffuse large B-cell lymphoma (DLBCL) acts as a main barrier to identify the genetic basis of the disease and the choice of treatment. Differentially expressed genes (DEGs) from three mRNA expression profile datasets were screened using GEO2R, and bioinformatics analysis was performed on the DEGs. A total of six upregulated and 13 downregulated DEGs were identified. Among these, two hub genes with a high degree of correlation were selected. FBN1 and TIMP1 were identified via STRING analysis and validated by GEPIA. FBN1 and TIMP1 were highly expressed in DLBCL tissues. FBN1 expression was significantly higher in patients of the Ann Arbor stage group (III-IV), with higher IPI score (3-5), and in the non-GCB group. Patients with high TIMP1 expression were more frequently associated with B symptoms, Ann Arbor stage (III-IV), higher IPI score (3-5) and were in the non-GCB group. Furthermore, FBN1 siRNA decreased FBN1 and TIMP1 expression and downregulation of TIMP1 attenuated TIMP1 expression but not of FBN1. Migration of DLBCL cells reduced when treated with either FBN1 or TIMP1 siRNA. Moreover, FBN1 or TIMP1 siRNA decreased the expression of Wnt target genes. Simultaneous overexpression of TIMP1 resulted in an increase in these proteins. This confirmed that both FBN1 and TIMP1 were positively associated with DLBCL progression. Further analysis revealed that FBN1/TIMP1 interaction could improve DLBCL cell migration and regulate the Wnt signaling pathway. Although the underlying mechanisms regarding the interaction between FBN1 and TIMP1 requires further clarification, they might be potential therapeutic targets for DLBCL therapy.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, People's Republic of China
| | - Zhuogang Liu
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, People's Republic of China
| | - Guojun Zhang
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, People's Republic of China
| |
Collapse
|
11
|
Pro-Fibrotic Phenotype in a Patient with Segmental Stiff Skin Syndrome via TGF-β Signaling Overactivation. Int J Mol Sci 2020; 21:ijms21145141. [PMID: 32698527 PMCID: PMC7404389 DOI: 10.3390/ijms21145141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor β (TGF-β) superfamily signaling pathways are ubiquitous and essential for several cellular and physiological processes. The overexpression of TGF-β results in excessive fibrosis in multiple human disorders. Among them, stiff skin syndrome (SSS) is an ultrarare and untreatable condition characterized by the progressive thickening and hardening of the dermis, and acquired joint limitations. SSS is distinct in a widespread form, caused by recurrent germline variants of FBN1 encoding a key molecule of the TGF-β signaling, and a segmental form with unknown molecular basis. Here, we report a 12-year-old female with segmental SSS, affecting the right upper limb with acquired thickening of the dermis evident at the magnetic resonance imaging, and progressive limitation of the elbow and shoulder. To better explore the molecular and cellular mechanisms that drive segmental SSS, several functional studies on patient's fibroblasts were employed. We hypothesized an impairment of TGF-β signaling and, consequently, a dysregulation of the associated downstream signaling. Lesional fibroblast studies showed a higher phosphorylation level of extracellular signal-regulated kinase 1/2 (ERK1/2), increased levels of nuclear factor-kB (NFkB), and a nuclear accumulation of phosphorylated Smad2 via Western blot and microscopy analyses. Quantitative PCR expression analysis of genes encoding key extracellular matrix proteins revealed increased levels of COL1A1, COL3A1, AGT, LTBP and ITGB1, while zymography assay reported a reduced metalloproteinase 2 enzymatic activity. In vitro exposure of patient's fibroblasts to losartan led to the partial restoration of normal transforming growth factor β (TGF-β) marker protein levels. Taken together, these data demonstrate that in our patient, segmental SSS is characterized by the overactivation of multiple TGF-β signaling pathways, which likely results in altered extracellular matrix composition and fibroblast homeostasis. Our results for the first time reported that aberrant TGF-β signaling may drive the pathogenesis of segmental SSS and might open the way to novel therapeutic approaches.
Collapse
|