1
|
Jin J, Fu C, Xia J, Luo H, Wang X, Chen S, Mao H, Yuan K, Lu L, Xiong W, Zou G. Cannabidiol ameliorates cognitive decline in 5×FAD mouse model of Alzheimer's disease through potentiating the function of extrasynaptic glycine receptors. Mol Psychiatry 2024:10.1038/s41380-024-02789-x. [PMID: 39396064 DOI: 10.1038/s41380-024-02789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Emerging evidence supports the therapeutic potential of cannabinoids in Alzheimer's disease (AD), but the underlying mechanism upon how cannabinoids impact brain cognition and AD pathology remains unclear. Here we show that chronic cannabidiol (CBD) administration significantly mitigates cognitive deficiency and hippocampal β-amyloid (Aβ) pathology in 5×FAD mouse model of AD. CBD achieves its curative effect mainly through potentiating the function of inhibitory extrasynaptic glycine receptor (GlyR) in hippocampal dentate gyrus (DG). Based on the in vitro and in vivo electrophysiological recording and calcium imaging, CBD mediated anti-AD effects via GlyR are mainly accomplished by decreasing neuronal hyperactivity of granule cells in the DG of AD mice. Furthermore, the AAV-mediated ablation of DG GlyRα1, or the GlyRα1S296A mutation that exclusively disrupts CBD binding, significantly intercepts the anti-AD effect of CBD. These findings suggest a GlyR dependent mechanism underlying the therapeutic potential of CBD in the treatment of AD.
Collapse
Grants
- 32225020, 91849206, 91942315, 92049304, 32121002, 81901157, 82241032 National Natural Science Foundation of China (National Science Foundation of China)
- 32225020, 91849206, 91942315, 92049304, 32121002 National Natural Science Foundation of China (National Science Foundation of China)
Collapse
Affiliation(s)
- Jin Jin
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chonglei Fu
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China
| | - Jing Xia
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Heyi Luo
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xianglian Wang
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Si Chen
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huanhuan Mao
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, 100191, Beijing, China
| | - Lin Lu
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, 100191, Beijing, China.
| | - Wei Xiong
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China.
| |
Collapse
|
2
|
Gu SM, Hong E, Seo S, Kim S, Yoon SS, Cha HJ, Yun J. Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice. J Vet Sci 2024; 25:e63. [PMID: 39231788 PMCID: PMC11450393 DOI: 10.4142/jvs.23325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
IMPORTANCE Glutamic acid decarboxylase 67 (GAD67) is a gamma-aminobutyric acid (GABA) synthesis enzyme associated with the function of other neurotransmitter receptors, such as the N-methyl-D-aspartate (NMDA) receptor and cannabinoid receptor 1. However, the role of GAD67 in the development of different abused drug-induced reward behaviors remains unknown. In order to elucidate the mechanisms of substance use disorder, it is crucial to study changes in biomarkers within the brain's reward circuit induced by drug use. OBJECTIVE The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development. METHODS We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP). RESULTS Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group. CONCLUSIONS AND RELEVANCE These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Eunchong Hong
- Non-Clinical Center, Osong Medical Innovation Foundation, Cheongju 28160, Korea
| | - Sowoon Seo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD 20850, USA
| | - Seong Shoon Yoon
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea.
| |
Collapse
|
3
|
Alvarez LD, Carina Alves NR. Structural Basis for Molecular Recognition of Cannabinoids by Inhibitory Cys-Loop Channels. J Med Chem 2024; 67:3274-3286. [PMID: 38428383 DOI: 10.1021/acs.jmedchem.3c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Cannabis sativa has a long history of medicinal use, dating back to ancient times. This plant produces cannabinoids, which are now known to interact with several human proteins, including Cys-loop receptors for glycine (GlyR) and gamma-aminobutyric acid (GABAAR). As these channels are the primary mediators of inhibitory signals, they contribute to the diverse effects of cannabinoids on the nervous system. Evidence suggests that cannabinoid binding sites are located within the transmembrane domain, although their precise location has remained undetermined for over a decade. The process of identification of the binding site and the computational approaches employed are the main subjects of this Perspective, which includes an analysis of the most recently resolved cryo-EM structures of zebrafish GlyR bound to Δ9-tetrahydrocannabinol and the THC-GlyR complex obtained through molecular dynamics simulations. With this work, we aim to contribute to guiding future studies investigating the molecular basis of cannabinoid action on inhibitory channels.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- UMYMFOR, CONICET-Universidad de Buenos Aires, Ciudad UniversitariaBuenos Aires C1428EGA, Argentina
| | - N R Carina Alves
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- UMYMFOR, CONICET-Universidad de Buenos Aires, Ciudad UniversitariaBuenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
Schaefer N, Harvey RJ, Villmann C. Startle Disease: New Molecular Insights into an Old Neurological Disorder. Neuroscientist 2023; 29:767-781. [PMID: 35754344 PMCID: PMC10623600 DOI: 10.1177/10738584221104724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Startle disease (SD) is characterized by enhanced startle responses, generalized muscle stiffness, unexpected falling, and fatal apnea episodes due to disturbed feedback inhibition in the spinal cord and brainstem of affected individuals. Mutations within the glycine receptor (GlyR) subunit and glycine transporter 2 (GlyT2) genes have been identified in individuals with SD. Impaired inhibitory neurotransmission in SD is due to pre- and/or postsynaptic GlyR or presynaptic GlyT2 dysfunctions. Previous research has focused on mutated GlyRs and GlyT2 that impair ion channel/transporter function or trafficking. With insights provided by recently solved cryo-electron microscopy and X-ray structures of GlyRs, a detailed picture of structural transitions important for receptor gating has emerged, allowing a deeper understanding of SD at the molecular level. Moreover, studies on novel SD mutations have demonstrated a higher complexity of SD, with identification of additional clinical signs and symptoms and interaction partners representing key players for fine-tuning synaptic processes. Although our knowledge has steadily improved during the last years, changes in synaptic localization and GlyR or GlyT2 homeostasis under disease conditions are not yet completely understood. Combined proteomics, interactomics, and high-resolution microscopy techniques are required to reveal alterations in receptor dynamics at the synaptic level under disease conditions.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Lim TT, Por CY, Beh YY, Schee JP, Tan AH. Treatment of startle and related disorders. Clin Park Relat Disord 2023; 9:100218. [PMID: 37808566 PMCID: PMC10556813 DOI: 10.1016/j.prdoa.2023.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/04/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
| | - Chia Yin Por
- Department of Medicine, Penang General Hospital, Penang, Malaysia
| | - Yuan Ye Beh
- Department of Medicine, Penang General Hospital, Penang, Malaysia
| | - Jie Ping Schee
- Faculty of Medicine (Divisions of Neurology), University of Malaya, Malaysia
| | - Ai Huey Tan
- Faculty of Medicine (Divisions of Neurology), University of Malaya, Malaysia
| |
Collapse
|
6
|
Oz M, Yang KHS, Mahgoub MO. Effects of cannabinoids on ligand-gated ion channels. Front Physiol 2022; 13:1041833. [PMID: 36338493 PMCID: PMC9627301 DOI: 10.3389/fphys.2022.1041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Phytocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol, endocannabinoids such as N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, and synthetic cannabinoids such as CP47,497 and JWH-018 constitute major groups of structurally diverse cannabinoids. Along with these cannabinoids, CB1 and CB2 cannabinoid receptors and enzymes involved in synthesis and degradation of endocannabinoids comprise the major components of the cannabinoid system. Although, cannabinoid receptors are known to be involved in anti-convulsant, anti-nociceptive, anti-psychotic, anti-emetic, and anti-oxidant effects of cannabinoids, in recent years, an increasing number of studies suggest that, at pharmacologically relevant concentrations, these compounds interact with several molecular targets including G-protein coupled receptors, ion channels, and enzymes in a cannabinoid-receptor independent manner. In this report, the direct actions of endo-, phyto-, and synthetic cannabinoids on the functional properties of ligand-gated ion channels and the plausible mechanisms mediating these effects were reviewed and discussed.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
- *Correspondence: Murat Oz,
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, United States
| | - Mohamed Omer Mahgoub
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi, UAE
| |
Collapse
|
7
|
Zou G, Xia J, Luo H, Xiao D, Jin J, Miao C, Zuo X, Gao Q, Zhang Z, Xue T, You Y, Zhang Y, Zhang L, Xiong W. Combined alcohol and cannabinoid exposure leads to synergistic toxicity by affecting cerebellar Purkinje cells. Nat Metab 2022; 4:1138-1149. [PMID: 36109623 DOI: 10.1038/s42255-022-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Combined use of cannabis and alcohol results in greater psychoactive toxicity than either substance alone, but the underlying central mechanisms behind this worsened outcome remain unclear. Here we show that the synergistic effect of Δ9-tetrahydrocannabinol (THC) and ethanol on motor incoordination in mice is achieved by activating presynaptic type 1 cannabinoid receptors (CB1R) and potentiating extrasynaptic glycine receptors (GlyR) within cerebellar Purkinje cells (PCs). The combination of ethanol and THC significantly reduces miniature excitatory postsynaptic current frequency in a CB1R-dependent manner, while increasing the extrasynaptic GlyR-mediated chronic chloride current, both leading to decreased PC activity. Ethanol enhances THC actions by boosting the blood-brain-barrier permeability of THC and enriching THC in the cell membrane. Di-desoxy-THC, a designed compound that specifically disrupts THC-GlyR interaction without affecting the basic functions of CB1R and GlyR, is able to restore PC function and motor coordination in mice. Our findings provide potential therapeutic strategies for overcoming the synergistic toxicity caused by combining cannabis and alcohol use.
Collapse
Affiliation(s)
- Guichang Zou
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Jing Xia
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Heyi Luo
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Xiao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jin Jin
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenjian Miao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Zuo
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianqian Gao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xue
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Wei Xiong
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, China.
| |
Collapse
|
8
|
Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17:28. [PMID: 35392986 PMCID: PMC8991707 DOI: 10.1186/s13024-022-00533-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial tau-positive inclusions. MAIN BODY Clinically, tauopathies can present with a range of phenotypes that include cognitive/behavioral-disorders, movement disorders, language disorders and non-specific amnestic symptoms in advanced age. Pathologically, tauopathies can be classified based on the predominant tau isoforms that are present in the inclusion bodies (i.e., 3R, 4R or equal 3R:4R ratio). Imaging, cerebrospinal fluid (CSF) and blood-based tau biomarkers have the potential to be used as a routine diagnostic strategy and in the evaluation of patients with tauopathies. As tauopathies are strongly linked neuropathologically and genetically to tau protein abnormalities, there is a growing interest in pursuing of tau-directed therapeutics for the disorders. Here we synthesize emerging lessons on tauopathies from clinical, pathological, genetic, and experimental studies toward a unified concept of these disorders that may accelerate the therapeutics. CONCLUSIONS Since tauopathies are still untreatable diseases, efforts have been made to depict clinical and pathological characteristics, identify biomarkers, elucidate underlying pathogenesis to achieve early diagnosis and develop disease-modifying therapies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| |
Collapse
|
9
|
Qiao Z, Ji Y, Zhang Y, Li Z, Xu Z, Shao X. Azobenzene-isoxazoline as photopharmacological ligand for optical control of insect GABA receptor and behavior. PEST MANAGEMENT SCIENCE 2022; 78:467-474. [PMID: 34516709 DOI: 10.1002/ps.6641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Photopharmacology is a fast-growing photonics-based technology, which realizes the high-resolution regulation of drugs in time and space through light. The purpose of this research was to introduce photochromic groups into the isoxazoline structure to realize the regulation of γ-Aminobutyric acid receptors (GABARs) targeting insect behavior. RESULTS Azobenzene-Fluralaner analogs ABF02, ABF03 and ABF04 have been proven to have larvicidal activity against mosquito larvae. Cis-ABF03 had excellent larvicidal activity against mosquito larvae with a median lethal concentration (LC50 ) value of 1.63, which was better than that of trans-ABF03 (LC50 = 3.90). In particular, ABF03 also showed insecticidal activity against Mythimna separata. Further experiments showed that ABF03 (1 μm) induced depolarization of dorsal unpaired median neurons after ultraviolet light irradiation, enhanced affinity to the receptor, and blocked ligand-gated chloride channels of GABARs. ABF03 (1 μm) realized the real-time photoregulation of the behavior of mosquito larvae, which indicated that the synthesized ligand can complete the binding and off-target action of drugs and targets in vivo under the regulation of light. CONCLUSION Azobenzene-Isoxazoline as photopharmacological ligand was synthesized and evaluated for optical control of insect GABARs and behavior for the first time. ABF03 completed the differential regulation of cockroach neurons and the real-time reversible regulation of insect behavior. The establishment of photochromic ligands provides a new strategy for basic and convenience-oriented research on GABARs in invertebrates. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi Qiao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunfan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yongchao Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Zhan FX, Wang SG, Cao L. Advances in hyperekplexia and other startle syndromes. Neurol Sci 2021; 42:4095-4107. [PMID: 34379238 DOI: 10.1007/s10072-021-05493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
Startle, a basic alerting reaction common to all mammals, is described as a sudden involuntary movement of the body evoked by all kinds of sudden and unexpected stimulus. Startle syndromes are heterogeneous groups of disorders with abnormal and exaggerated responses to startling events, including hyperekplexia, stimulus-induced disorders, and neuropsychiatric startle syndromes. Hyperekplexia can be attributed to a genetic, idiopathic, or symptomatic cause. Excluding secondary factors, hereditary hyperekplexia, a rare neurogenetic disorder with highly genetic heterogeneity, is characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli, and followed by a short period of general stiffness. It mainly arises from defects of inhibitory glycinergic neurotransmission. GLRA1 is the major pathogenic gene of hereditary hyperekplexia, along with many other genes involved in the function of glycinergic inhibitory synapses. While about 40% of patients remain negative genetic findings. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for hereditary hyperekplexia patients. In this review, with the aim at enhancing the recognition and prompting potential treatment for hyperekplexia, we focused on discussing the advances in hereditary hyperekplexia genetics and the expound progress in pathogenic mechanisms of the glycinergic-synapse-related pathway and then followed by a brief overview of other common startle syndromes.
Collapse
Affiliation(s)
- Fei-Xia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Shi-Ge Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
11
|
Saini AG, Pandey S. Hyperekplexia and other startle syndromes. J Neurol Sci 2020; 416:117051. [PMID: 32721683 DOI: 10.1016/j.jns.2020.117051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
Abnormal startle syndromes are classified into hyperekplexia, stimulus-induced, and neuropsychiatric startle syndromes. Hyperekplexia is attributed to a genetic, idiopathic, or symptomatic cause. Hereditary hyperekplexia is a treatable neurogenetic disorder. In patients with a hyperactive startle response, the first step is to characterize the extent and associations of 'response.' Secondary or symptomatic causes are particularly important in children, as they provide useful clinical clues to an underlying neurodevelopmental or neurodegenerative disorders. Particular attention should be given to any neonate or infant with generalized or episodic stiffness, drug-refractory seizures, recurrent apnea, stimulus-sensitive behavioral states, or sudden infant death syndrome. Eliciting a non-habituating head-retraction reflex to repeated nose tapping should be a part of routine examination of all new-borns. Vigevano maneuver should be taught to all families and health-care workers as an emergency rescue measure. The onset of excessive startle after infancy should direct investigations for an acquired cause such as brainstem injury, antibodies against glycine receptors, and neurodegeneration. Finally, one should not forget to evaluate unexplained cases of abnormal gait and frequent falls in adults for underlying undiagnosed startle syndromes. Oral clonazepam is an effective therapy besides behavioral and safety interventions for hereditary cases. The outcomes in genetic cases are good overall.
Collapse
Affiliation(s)
- Arushi Gahlot Saini
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sanjay Pandey
- Department of Neurology, Govind Ballabh Pant Institute of Postgraduate medical education and research, JLN Marg, New Delhi 110002, India.
| |
Collapse
|
12
|
Cannabinoids Rescue Cocaine-Induced Seizures by Restoring Brain Glycine Receptor Dysfunction. Cell Rep 2020; 30:4209-4219.e7. [DOI: 10.1016/j.celrep.2020.02.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/30/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022] Open
|