1
|
Skurska E, Szulc B, Kreczko K, Olczak M. Mutations in the SLC35C1 gene, contributing to significant differences in fucosylation patterns, may underlie the diverse phenotypic manifestations observed in leukocyte adhesion deficiency type II patients. Int J Biochem Cell Biol 2024; 173:106602. [PMID: 38843991 DOI: 10.1016/j.biocel.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Congenital disorders of glycosylation (CDG) are a large family of genetic diseases resulting from defects in the synthesis of glycans and the attachment of glycans to macromolecules. The CDG known as leukocyte adhesion deficiency II (LAD II) is an autosomal, recessive disorder caused by mutations in the SLC35C1 gene, encoding a transmembrane protein of the Golgi apparatus, involved in GDP-fucose transport from the cytosol to the Golgi lumen. In this study, a cell-based model was used as a tool to characterize the molecular background of a therapy based on a fucose-supplemented diet. Such therapies have been successfully introduced in some (but not all) known cases of LAD II. In this study, the effect of external fucose was analyzed in SLC35C1 KO cell lines, expressing 11 mutated SLC35C1 proteins, previously discovered in patients with an LAD II diagnosis. For many of them, the cis-Golgi subcellular localization was affected; however, some proteins were localized properly. Additionally, although mutated SLC35C1 caused different α-1-6 core fucosylation of N-glycans, which explains previously described, more or less severe disorder symptoms, the differences practically disappeared after external fucose supplementation, with fucosylation restored to the level observed in healthy cells. This indicates that additional fucose in the diet should improve the condition of all patients. Thus, for patients diagnosed with LAD II we advocate careful analysis of particular mutations using the SLC35C1-KO cell line-based model, to predict changes in localization and fucosylation rate. We also recommend searching for additional mutations in the human genome of LAD II patients, when fucose supplementation does not influence patients' state.
Collapse
Affiliation(s)
- E Skurska
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - B Szulc
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - K Kreczko
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - M Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
2
|
Lu L, Varshney S, Yuan Y, Wei HX, Tanwar A, Sundaram S, Nauman M, Haltiwanger RS, Stanley P. In vivo evidence for GDP-fucose transport in the absence of transporter SLC35C1 and putative transporter SLC35C2. J Biol Chem 2023; 299:105406. [PMID: 38270391 PMCID: PMC10709068 DOI: 10.1016/j.jbc.2023.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 01/26/2024] Open
Abstract
Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.
Collapse
Affiliation(s)
- Linchao Lu
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Shweta Varshney
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Youxi Yuan
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hua-Xing Wei
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Ankit Tanwar
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Subha Sundaram
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Mohd Nauman
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Pamela Stanley
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
3
|
Scheper AF, Schofield J, Bohara R, Ritter T, Pandit A. Understanding glycosylation: Regulation through the metabolic flux of precursor pathways. Biotechnol Adv 2023; 67:108184. [PMID: 37290585 DOI: 10.1016/j.biotechadv.2023.108184] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Glycosylation is how proteins and lipids are modified with complex carbohydrates known as glycans. The post-translational modification of proteins with glycans is not a template-driven process in the same way as genetic transcription or protein translation. Glycosylation is instead dynamically regulated by metabolic flux. This metabolic flux is determined by the concentrations and activities of the glycotransferase enzymes, which synthesise glycans, the metabolites that act as their precursors and transporter proteins. This review provides an overview of the metabolic pathways underlying glycan synthesis. Pathological dysregulation of glycosylation, particularly increased glycosylation occurring during inflammation, is also elucidated. The resulting inflammatory hyperglycosylation acts as a glycosignature of disease, and we report on the changes in the metabolic pathways which feed into glycan synthesis, revealing alterations to key enzymes. Finally, we examine studies in developing metabolic inhibitors targeting these critical enzymes. These results provide the tools for researchers investigating the role of glycan metabolism in inflammation and have helped to identify promising glycotherapeutic approaches to inflammation.
Collapse
Affiliation(s)
- Aert F Scheper
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Jack Schofield
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Thomas Ritter
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland; School of Medicine, University of Galway, Ireland; Regenerative Medicine Institute (REMEDI), University of Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland.
| |
Collapse
|
4
|
Wiertelak W, Pavlovskyi A, Maszczak-Seneczko D, Szulc B, Olczak M. The glycosylation defect in solute carrier SLC35A2/SLC35A3 double knockout cells is rescued by SLC35A2-SLC35A3 and SLC35A3-SLC35A2 hybrids. FEBS Lett 2023; 597:2345-2357. [PMID: 37552213 DOI: 10.1002/1873-3468.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
SLC35A2 and SLC35A3 are homologous proteins with postulated nucleotide sugar transporting activities. Unlike SLC35A2, whose specificity for UDP-Gal is well-established, the UDP-GlcNAc transporting activity initially attributed to SLC35A3 has recently been put into question. In this study, we constructed two hybrid proteins (SLC35A2-SLC35A3 and SLC35A3-SLC35A2) and expressed them in a previously generated SLC35A2/SLC35A3 double knockout HEK293T cell line. Our idea was to force equivalent stoichiometry of the two proteins in the cells in order to reproduce the behavior of the SLC35A2/SLC35A3 complexes in the Golgi membrane. The hybrid proteins were able to fully restore glycosylation in the double knockout. In contrast, the expression of SLC35A3 alone in these cells improved galactosylation only to a limited extent. Our study shows that the proper glycosylation requires a balanced cooperation between SLC35A2 and SLC35A3.
Collapse
Affiliation(s)
- Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Artem Pavlovskyi
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Poland
| | | | - Bożena Szulc
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Poland
| |
Collapse
|
5
|
Saito S, Mizumoto S, Yonekura T, Yamashita R, Nakano K, Okubo T, Yamada S, Okamura T, Furuichi T. Mice lacking nucleotide sugar transporter SLC35A3 exhibit lethal chondrodysplasia with vertebral anomalies and impaired glycosaminoglycan biosynthesis. PLoS One 2023; 18:e0284292. [PMID: 37053259 PMCID: PMC10101523 DOI: 10.1371/journal.pone.0284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
SLC35A3 is considered an uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) transporter in mammals and regulates the branching of N-glycans. A missense mutation in SLC35A3 causes complex vertebral malformation (CVM) in cattle. However, the biological functions of SLC35A3 have not been fully clarified. To address these issues, we have established Slc35a3-/-mice using CRISPR/Cas9 genome editing system. The generated mutant mice were perinatal lethal and exhibited chondrodysplasia recapitulating CVM-like vertebral anomalies. During embryogenesis, Slc35a3 mRNA was expressed in the presomitic mesoderm of wild-type mice, suggesting that SLC35A3 transports UDP-GlcNAc used for the sugar modification that is essential for somite formation. In the growth plate cartilage of Slc35a3-/-embryos, extracellular space was drastically reduced, and many flat proliferative chondrocytes were reshaped. Proliferation, apoptosis and differentiation were not affected in the chondrocytes of Slc35a3-/-mice, suggesting that the chondrodysplasia phenotypes were mainly caused by the abnormal extracellular matrix quality. Because these histological abnormalities were similar to those observed in several mutant mice accompanying the impaired glycosaminoglycan (GAG) biosynthesis, GAG levels were measured in the spine and limbs of Slc35a3-/-mice using disaccharide composition analysis. Compared with control mice, the amounts of heparan sulfate, keratan sulfate, and chondroitin sulfate/dermatan sulfate, were significantly decreased in Slc35a3-/-mice. These findings suggest that SLC35A3 regulates GAG biosynthesis and the chondrodysplasia phenotypes were partially caused by the decreased GAG synthesis. Hence, Slc35a3-/- mice would be a useful model for investigating the in vivo roles of SLC35A3 and the pathological mechanisms of SLC35A3-associated diseases.
Collapse
Affiliation(s)
- Soichiro Saito
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Tsukasa Yonekura
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
6
|
Wiertelak W, Chabowska K, Szulc B, Zadorozhna Y, Olczak M, Maszczak-Seneczko D. SLC35A2 deficiency reduces protein levels of core 1 β-1,3-galactosyltransferase 1 (C1GalT1) and its chaperone Cosmc and affects their subcellular localization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119462. [PMID: 36933771 DOI: 10.1016/j.bbamcr.2023.119462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Nucleotide sugar transporters (NSTs) are multitransmembrane proteins, localized in the Golgi apparatus and/or endoplasmic reticulum, which provide glycosylation enzymes with their substrates. It has been demonstrated that NSTs may form complexes with functionally related glycosyltransferases, especially in the N-glycosylation pathway. However, potential interactions of NSTs with enzymes mediating the biosynthesis of mucin-type O-glycans have not been addressed to date. Here we report that UDP-galactose transporter (UGT; SLC35A2) associates with core 1 β-1,3-galactosyltransferase 1 (C1GalT1; T-synthase). This provides the first example of an interaction between an enzyme that acts exclusively in the O-glycosylation pathway and an NST. We also found that SLC35A2 associated with the C1GalT1-specific chaperone Cosmc, and that the endogenous Cosmc was localized in both the endoplasmic reticulum and Golgi apparatus of wild-type HEK293T cells. Furthermore, in SLC35A2-deficient cells protein levels of C1GalT1 and Cosmc were decreased and their Golgi localization was less pronounced. Finally, we identified SLC35A2 as a novel molecular target for the antifungal agent itraconazole. Based on our findings we propose that NSTs may contribute to the stabilization of their interaction partners and help them to achieve target localization in the cell, most likely by facilitating their assembly into larger functional units.
Collapse
Affiliation(s)
- Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Karolina Chabowska
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Bożena Szulc
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Yelyzaveta Zadorozhna
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
8
|
Wiertelak W, Olczak M, Maszczak-Seneczko D. An interaction between SLC35A1 and ST3Gal4 is differentially affected by CDG-causing mutations in the SLC35A1 gene. Biochem Biophys Res Commun 2022; 635:46-51. [DOI: 10.1016/j.bbrc.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
9
|
Patil V, Bohara R, Winter C, Kilcoyne M, McMahon S, Pandit A. An insight into new glycotherapeutics in glial inflammation: Understanding the role of glycosylation in mitochondrial function and acute to the chronic phases of inflammation. CNS Neurosci Ther 2022; 29:429-444. [PMID: 36377513 PMCID: PMC9804060 DOI: 10.1111/cns.14016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Glycosylation plays a critical role during inflammation and glial scar formation upon spinal cord injury (SCI) disease progression. Astrocytes and microglia are involved in this cascade to modulate the inflammation and tissue remodeling from acute to chronic phases. Therefore, understating the glycan changes in these glial cells is paramount. METHOD AND RESULTS A lectin microarray was undertaken using a cytokine-driven inflammatory mixed glial culture model, revealing considerable differential glycosylation from the acute to the chronic phase in a cytokine-combination generated inflamed MGC model. It was found that several N- and O-linked glycans associated with glia during SCI were differentially regulated. Pearson's correlation hierarchical clustering showed that groups were separated into several clusters, illustrating the heterogenicity among the control, cytokine combination, and LPS treated groups and the day on which treatment was given. Control and LPS treatments were observed to be in dense clusters. This was further confirmed with lectin immunostaining in which GalNAc, GlcNAc, mannose, fucose and sialic acid-binding residues were detected in astrocytes and microglia. However, the sialyltransferase inhibitor inhibited this modification (upregulation of the sialic acid expression), which indeed modulates the mitochondrial functions. CONCLUSIONS The present study is the first functional investigation of glycosylation modulation in a mixed glial culture model, which elucidates the role of the glycome in neuroinflammation in progression and identified potential therapeutic targets for future glyco therapeutics in neuroinflammation.
Collapse
Affiliation(s)
- Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Carla Winter
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Michelle Kilcoyne
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland,MicrobiologyUniversity of GalwayGalwayIreland
| | - Siobhan McMahon
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland,AnatomyGalwayIreland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| |
Collapse
|
10
|
Wang J, Su H, Wu Z, Wang W, Zhou Y, Li M. Integrated Metabolites and Transcriptomics at Different Growth Stages Reveal Polysaccharide and Flavonoid Biosynthesis in Cynomorium songaricum. Int J Mol Sci 2022; 23:ijms231810675. [PMID: 36142587 PMCID: PMC9501575 DOI: 10.3390/ijms231810675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Cynomorium songaricum is a perennial parasitic herb, and its stem is widely used as a traditional Chinese medicine, which largely relies on bioactive compounds (e.g., polysaccharides, flavonoids, and triterpenes). To date, although the optimum harvest time of stems has been demonstrated at the unearthed stage (namely the early flowering stage, EFS), the accumulation mechanism of polysaccharides and flavonoids during growth stages is still limited. In this study, the physiological characteristics (stem fresh weight, contents of soluble sugar and flavonoids, and antioxidant capacity) at four different growth stages (germination stage (GS), vegetative growth stage (VGS), EFS, and flowering stage (FS)) were determined, transcriptomics were analyzed by illumina sequencing, and expression levels of key genes were validated by qRT-PCR at the GS, VGS, and EFS. The results show that the stem biomass, soluble sugar and total flavonoids contents, and antioxidant capacity peaked at EFS compared with GS, VGS, and FS. A total of 6098 and 13,023 differentially expressed genes (DEGs) were observed at VGS and EFS vs. GS, respectively, with 367 genes co-expressed. Based on their biological functions, 109 genes were directly involved in polysaccharide and flavonoid biosynthesis as well as growth and development. The expression levels of key genes involved in polysaccharides (e.g., GLCs, XTHs and PMEs), flavonoids (e.g., 4CLLs, CYPs and UGTs), growth and development (e.g., AC58, TCPs and AP1), hormones biosynthesis and signaling (e.g., YUC8, AIPT and ACO1), and transcription factors (e.g., MYBs, bHLHs and WRKYs) were in accordance with changes of physiological characteristics. The combinational analysis of metabolites with transcriptomics provides insight into the mechanism of polysaccharide and flavonoid biosynthesis in C. songaricum during growth stages.
Collapse
Affiliation(s)
- Jie Wang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhibo Wu
- Station of Alxa League Aviation Forest Guard, Alxa 750306, China
| | - Wenshu Wang
- Alxa Forestry and Grassland Research Institute, Alxa 750306, China
| | - Yubi Zhou
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Correspondence: (Y.Z.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (Y.Z.); (M.L.)
| |
Collapse
|
11
|
Delivery of Nucleotide Sugars to the Mammalian Golgi: A Very Well (un)Explained Story. Int J Mol Sci 2022; 23:ijms23158648. [PMID: 35955785 PMCID: PMC9368800 DOI: 10.3390/ijms23158648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleotide sugars (NSs) serve as substrates for glycosylation reactions. The majority of these compounds are synthesized in the cytoplasm, whereas glycosylation occurs in the endoplasmic reticulum (ER) and Golgi lumens, where catalytic domains of glycosyltransferases (GTs) are located. Therefore, translocation of NS across the organelle membranes is a prerequisite. This process is thought to be mediated by a group of multi-transmembrane proteins from the SLC35 family, i.e., nucleotide sugar transporters (NSTs). Despite many years of research, some uncertainties/inconsistencies related with the mechanisms of NS transport and the substrate specificities of NSTs remain. Here we present a comprehensive review of the NS import into the mammalian Golgi, which consists of three major parts. In the first part, we provide a historical view of the experimental approaches used to study NS transport and evaluate the most important achievements. The second part summarizes various aspects of knowledge concerning NSTs, ranging from subcellular localization up to the pathologies related with their defective function. In the third part, we present the outcomes of our research performed using mammalian cell-based models and discuss its relevance in relation to the general context.
Collapse
|
12
|
Kot M, Mazurkiewicz E, Wiktor M, Wiertelak W, Mazur AJ, Rahalevich A, Olczak M, Maszczak-Seneczko D. SLC35A2 Deficiency Promotes an Epithelial-to-Mesenchymal Transition-like Phenotype in Madin–Darby Canine Kidney Cells. Cells 2022; 11:cells11152273. [PMID: 35892570 PMCID: PMC9331475 DOI: 10.3390/cells11152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In mammalian cells, SLC35A2 delivers UDP–galactose for galactosylation reactions that take place predominantly in the Golgi lumen. Mutations in the corresponding gene cause a subtype of a congenital disorder of glycosylation (SLC35A2-CDG). Although more and more patients are diagnosed with SLC35A2-CDG, the link between defective galactosylation and disease symptoms is not fully understood. According to a number of reports, impaired glycosylation may trigger the process of epithelial-to-mesenchymal transition (EMT). We therefore examined whether the loss of SLC35A2 activity would promote EMT in a non-malignant epithelial cell line. For this purpose, we knocked out the SLC35A2 gene in Madin–Darby canine kidney (MDCK) cells. The resulting clones adopted an elongated, spindle-shaped morphology and showed impaired cell–cell adhesion. Using qPCR and western blotting, we revealed down-regulation of E-cadherin in the knockouts, while the fibronectin and vimentin levels were elevated. Moreover, the knockout cells displayed reorganization of vimentin intermediate filaments and altered subcellular distribution of a vimentin-binding protein, formiminotransferase cyclodeaminase (FTCD). Furthermore, depletion of SLC35A2 triggered Golgi compaction. Finally, the SLC35A2 knockouts displayed increased motility and invasiveness. In conclusion, SLC35A2-deficient MDCK cells showed several hallmarks of EMT. Our findings point to a novel role for SLC35A2 as a gatekeeper of the epithelial phenotype.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Maciej Wiktor
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Andrei Rahalevich
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Dorota Maszczak-Seneczko
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
- Correspondence:
| |
Collapse
|
13
|
Skurska E, Szulc B, Maszczak-Seneczko D, Wiktor M, Wiertelak W, Makowiecka A, Olczak M. Incorporation of fucose into glycans independent of the GDP-fucose transporter SLC35C1 preferentially utilizes salvaged over de novo GDP-fucose. J Biol Chem 2022; 298:102206. [PMID: 35772493 PMCID: PMC9304781 DOI: 10.1016/j.jbc.2022.102206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Mutations in the SLC35C1 gene encoding the Golgi GDP-fucose transporter are known to cause leukocyte adhesion deficiency II. However, improvement of fucosylation in leukocyte adhesion deficiency II patients treated with exogenous fucose suggests the existence of an SLC35C1-independent route of GDP-fucose transport, which remains a mystery. To investigate this phenomenon, we developed and characterized a human cell–based model deficient in SLC35C1 activity. The resulting cells were cultured in the presence/absence of exogenous fucose and mannose, followed by examination of fucosylation potential and nucleotide sugar levels. We found that cells displayed low but detectable levels of fucosylation in the absence of SLC35C1. Strikingly, we show that defects in fucosylation were almost completely reversed upon treatment with millimolar concentrations of fucose. Furthermore, we show that even if fucose was supplemented at nanomolar concentrations, it was still incorporated into glycans by these knockout cells. We also found that the SLC35C1-independent transport preferentially utilized GDP-fucose from the salvage pathway over the de novo biogenesis pathway as a source of this substrate. Taken together, our results imply that the Golgi systems of GDP-fucose transport discriminate between substrate pools obtained from different metabolic pathways, which suggests a functional connection between nucleotide sugar transporters and nucleotide sugar synthases.
Collapse
Affiliation(s)
- Edyta Skurska
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Bożena Szulc
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Maciej Wiktor
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Wojciech Wiertelak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland.
| |
Collapse
|
14
|
Roblek M, Bicher J, van Gogh M, György A, Seeböck R, Szulc B, Damme M, Olczak M, Borsig L, Siekhaus DE. The Solute Carrier MFSD1 Decreases the Activation Status of β1 Integrin and Thus Tumor Metastasis. Front Oncol 2022; 12:777634. [PMID: 35211397 PMCID: PMC8861502 DOI: 10.3389/fonc.2022.777634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Solute carriers are increasingly recognized as participating in a plethora of pathologies, including cancer. We describe here the involvement of the orphan solute carrier Major Facilitator Superfamily Domain-containing protein 1 (MFSD1) in the regulation of tumor cell migration. Loss of MFSD1 enabled higher levels of metastasis in experimental and spontaneous metastasis mouse models. We identified an increased migratory potential in MFSD1−/− tumor cells which was mediated by increased focal adhesion turnover, reduced stability of mature inactive β1 integrin, and the resulting increased integrin activation index. We show that MFSD1 promoted recycling to the cell surface of endocytosed inactive β1 integrin and thereby protected β1 integrin from proteolytic degradation; this led to dampening of the integrin activation index. Furthermore, downregulation of MFSD1 expression was observed during the early steps of tumorigenesis, and higher MFSD1 expression levels correlate with a better cancer patient prognosis. In sum, we describe a requirement for endolysosomal MFSD1 in efficient β1 integrin recycling to suppress tumor cell dissemination.
Collapse
Affiliation(s)
- Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Bicher
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Merel van Gogh
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Attila György
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rita Seeböck
- Institute of Clinical Pathology, University Hospital St. Polten, St. Polten, Austria
| | - Bozena Szulc
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Daria E Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
15
|
Song W, Isaji T, Nakano M, Liang C, Fukuda T, Gu J. O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis. FASEB J 2022; 36:e22149. [PMID: 34981577 DOI: 10.1096/fj.202101520r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
N-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans. In this study, via examination by lectin blotting, HPLC, and mass spectrometry analysis, however, we found that the amounts of GlcNAc-branched tri-antennary N-glycans catalyzed by N-acetylglucosaminyltransferase IV (GnT-IV) and tetra-antennary N-glycans were significantly decreased in O-GlcNAc transferase knockdown cells (OGT-KD) compared with those in wild type cells. We examined this specific alteration by focusing on SLC35A3, which is the main UDP-GlcNAc transporter in mammals that is believed to modulate GnT-IV activation. It is interesting that a deficiency of SLC35A3 specifically leads to a decrease in the amounts of GlcNAc-branched tri- and tetra-antennary N-glycans. Furthermore, co-immunoprecipitation experiments have shown that SLC35A3 interacts with GnT-IV, but not with N-acetylglucosaminyltransferase V. Western blot and chemoenzymatic labeling assay have confirmed that OGT modifies SLC35A3 and that O-GlcNAcylation contributes to its stability. Furthermore, we found that SLC35A3-KO enhances cell spreading and suppresses both cell migration and cell proliferation, which is similar to the phenomena observed in the OGT-KD cells. Taken together, these data are the first to demonstrate that O-GlcNAcylation specifically governs the biosynthesis of tri- and tetra-antennary N-glycans via the OGT-SLC35A3-GnT-IV axis.
Collapse
Affiliation(s)
- Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-hiroshima, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
16
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
17
|
Novel Insights into Selected Disease-Causing Mutations within the SLC35A1 Gene Encoding the CMP-Sialic Acid Transporter. Int J Mol Sci 2020; 22:ijms22010304. [PMID: 33396746 PMCID: PMC7795627 DOI: 10.3390/ijms22010304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare genetic and metabolic diseases caused by alterations in glycosylation pathways. Five patients bearing CDG-causing mutations in the SLC35A1 gene encoding the CMP-sialic acid transporter (CST) have been reported to date. In this study we examined how specific mutations in the SLC35A1 gene affect the protein’s properties in two previously described SLC35A1-CDG cases: one caused by a substitution (Q101H) and another involving a compound heterozygous mutation (T156R/E196K). The effects of single mutations and the combination of T156R and E196K mutations on the CST’s functionality was examined separately in CST-deficient HEK293T cells. As shown by microscopic studies, none of the CDG-causing mutations affected the protein’s proper localization in the Golgi apparatus. Cellular glycophenotypes were characterized using lectins, structural assignment of N- and O-glycans and analysis of glycolipids. Single Q101H, T156R and E196K mutants were able to partially restore sialylation in CST-deficient cells, and the deleterious effect of a single T156R or E196K mutation on the CST functionality was strongly enhanced upon their combination. We also revealed differences in the ability of CST variants to form dimers. The results of this study improve our understanding of the molecular background of SLC35A1-CDG cases.
Collapse
|