1
|
Hu S, Cassim Bawa FN, Zhu Y, Pan X, Wang H, Gopoju R, Xu Y, Zhang Y. Loss of adipose ATF3 promotes adipose tissue lipolysis and the development of MASH. Commun Biol 2024; 7:1300. [PMID: 39390075 PMCID: PMC11467330 DOI: 10.1038/s42003-024-06915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The crosstalk between adipose tissue and the liver is finely controlled to maintain metabolic health. Yet, how adipose tissue controls toxic free fatty acid overflow into the liver remains incompletely understood. Here, we show that adipocyte activating transcription factor 3 (ATF3) was induced in human or mouse obesity. Adipocyte Atf3-/- (Atf3Adi-/-) mice developed obesity, glucose intolerance, and metabolic dysfunction-associated steatohepatitis (MASH) in chow diet, high-fat diet, or Western diet-fed mice. Blocking fatty acid flux by inhibiting hepatocyte CD36, but not the restoration of hepatic AMPK signaling, prevented the aggravation of MASH in Atf3Adi-/- mice. Further studies show that the loss of adipocyte ATF3 increased lipolysis via inducing adipose triglyceride lipase, which in turn induced lipogenesis and inflammation in hepatocytes. Moreover, Atf3Adi-/- mice had reduced energy expenditure and increased adipose lipogenesis and inflammation. Our data demonstrate that adipocyte ATF3 is a gatekeeper in counteracting MASH development under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Fathima N Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- School of Biomedical Sciences, Kent State University Kent, Kent, OH, 44240, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Hui Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- School of Biomedical Sciences, Kent State University Kent, Kent, OH, 44240, USA
| | - Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
2
|
Chen F, Jing K, Zhang Z, Liu X. A review on drug repurposing applicable to obesity. Obes Rev 2024:e13848. [PMID: 39384341 DOI: 10.1111/obr.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Obesity is a major public health concern and burden on individuals and healthcare systems. Due to the challenges and limitations of lifestyle adjustments, it is advisable to consider pharmacological treatment for people affected by obesity. However, the side effects and limited efficacy of available drugs make the obesity drug market far from sufficient. Drug repurposing involves identifying new applications for existing drugs and offers some advantages over traditional drug development approaches including lower costs and shorter development timelines. This review aims to provide an overview of drug repurposing for anti-obesity medications, including the rationale for repurposing, the challenges and approaches, and the potential drugs that are being investigated for repurposing. Through advanced computational techniques, researchers can unlock the potential of repurposed drugs to tackle the global obesity epidemic. Further research, clinical trials, and collaborative efforts are essential to fully explore and leverage the potential of drug repurposing in the fight against obesity.
Collapse
Affiliation(s)
- Feng Chen
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Kai Jing
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Dai ZQ, Guo ZQ, Zhang T, Chu YF, Yan Y, Gao F, Li SL, Gu YH, Jiao JY, Lin YX, Zhao SW, Xu B, Lei HM. Integrating network pharmacology and transcriptomics to study the potential mechanism of Jingzhi Niuhuang Jiedu tablet in rats with accumulation of heat in the lungs and stomach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118890. [PMID: 39366495 DOI: 10.1016/j.jep.2024.118890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Accumulation of heat in the lungs and stomach (AHLS) is an important syndrome within the realm of traditional Chinese medicine (TCM). It is the fundamental reason behind numerous illnesses, including mouth ulcers, dermatological conditions, acne, and pharyngitis. Jingzhi Niuhuang Jiedu tablet (JN) serves as the representative prescription for treatment of AHLS clinically. However, the effective components and mechanism of JN's impact on AHLS remain unexplored. AIM OF THE STUDY The objective of this research was to analyze the effective components of JN and investigate the therapeutic effect and potential mechanism of JN on AHLS. MATERIALS AND METHODS The effective compounds of JN extract were analyzed and identified using UHPLC-Q-Exactive/HRMS. Utilizing network pharmacology to investigate JN's multi-target, multi-pathway process in treating AHLS. Subsequently, anti-inflammatory activities of JN extract were evaluated in the RAW264.7 cells stimulated by lipopolysaccharide (LPS). In addition, a rat AHLS model induced by LPS and dried ginger was established. Pathological changes in rat lung and stomach tissues observed by HE staining and Masson's trichrome staining. Additionally, the expression of TNF-α, IL-6, and IL-1β in bronchoalveolar lavage fluid (BALF) was identified through the ELISA assay. For a deeper understanding of how JN might affect AHLS, transcriptomics was utilized to examine differential genes and their underlying mechanisms. Concurrently, techniques like quantitative polymerase chain reaction (q-PCR), immunofluorescence, and western blotting (WB) were employed to confirm various mRNA and protein expression, including Il17ra, Il17re, IL-17A, IL-1β, IL-6, PPARγ, PGC1-α and UCP1. RESULTS We identified 178 potential effective components in the JN extract. Network pharmacology analysis showed that the 144 components in JN act on 200 key targets for the treatment of AHLS by suppressing inflammation, regulating energy metabolism, and gastric function. In addition, JN suppressed the LPS-stimulated generation of NO, TNF-α, IL-1β, and IL-6 in RAW264.7 cells. And JN treatment effectively alleviated lung and stomach injury and reduced inflammation in rats. Analysis of RNA-seq from lung tissues revealed JN's substantial control over crucial genes in the IL-17 signaling pathway, including Il1b and Il17ra. Likewise, RNA sequencing of stomach tissues revealed that JN markedly decreased crucial genes in the Thermogenesis pathway, including Ppargc1a and Ppara. Additional experimental findings confirmed that treatment with JN significantly reduced the expression levels of mRNA (Il17ra, Il17re, Il1b, Ppargc1a and Ucp1), and the expression levels of protein (IL-17A, IL-1β, IL-6, PPARγ, PGC1-α and UCP1). CONCLUSION This study not only analyzes the effective components of JN but also reveals that JN could effectively ameliorate AHLS by inhibiting IL-17 signaling pathway and Thermogenesis pathway, which provides evidence for subsequent clinical studies and drug development.
Collapse
Affiliation(s)
- Zi-Qi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Zhuo-Qian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ya-Fen Chu
- Tongrentang eji Fazhan Gufen Co., Ltd, Beijing, 100102, China
| | - Ying Yan
- Tongrentang eji Fazhan Gufen Co., Ltd, Beijing, 100102, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shan-Lan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yu-Hao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jing-Yi Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yi-Xuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shu-Wu Zhao
- Tongrentang eji Fazhan Gufen Co., Ltd, Beijing, 100102, China.
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
4
|
Vergnes L, Wiese CB, Zore T, Riestenberg C, Avetisyan R, Reue K. Gene Regulation and Mitochondrial Activity During White and Brown Adipogenesis Are Modulated by KDM5 Histone Demethylase. J Endocr Soc 2024; 8:bvae029. [PMID: 38425435 PMCID: PMC10904225 DOI: 10.1210/jendso/bvae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 03/02/2024] Open
Abstract
Body fat accumulation differs between males and females and is influenced by both gonadal sex (ovaries vs testes) and chromosomal sex (XX vs XY). We previously showed that an X chromosome gene, Kdm5c, is expressed at higher levels in females compared to males and correlates with adiposity in mice and humans. Kdm5c encodes a KDM5 histone demethylase that regulates gene expression by modulating histone methylation at gene promoters and enhancers. Here, we use chemical inhibition and genetic knockdown to identify a role for KDM5 activity during early stages of white and brown preadipocyte differentiation, with specific effects on white adipocyte clonal expansion, and white and brown adipocyte gene expression and mitochondrial activity. In white adipogenesis, KDM5 activity modulates H3K4 histone methylation at the Dlk1 gene promoter to repress gene expression and promote progression from preadipocytes to mature adipocytes. In brown adipogenesis, KDM5 activity modulates H3K4 methylation and gene expression of Ucp1, which is required for thermogenesis. Unbiased transcriptome analysis revealed that KDM5 activity regulates genes associated with cell cycle regulation and mitochondrial function, and this was confirmed by functional analyses of cell proliferation and cellular bioenergetics. Using genetic knockdown, we demonstrate that KDM5C is the likely KDM5 family member that is responsible for regulation of white and brown preadipocyte programming. Given that KDM5C levels are higher in females compared to males, our findings suggest that sex differences in white and brown preadipocyte gene regulation may contribute to sex differences in adipose tissue function.
Collapse
Affiliation(s)
- Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Carrie B Wiese
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Temeka Zore
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Carrie Riestenberg
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rozeta Avetisyan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Cassim Bawa FN, Hu S, Gopoju R, Shiyab A, Mongan K, Xu Y, Pan X, Clark A, Wang H, Zhang Y. Adipocyte retinoic acid receptor α prevents obesity and steatohepatitis by regulating energy expenditure and lipogenesis. Obesity (Silver Spring) 2024; 32:120-130. [PMID: 37873741 PMCID: PMC10840967 DOI: 10.1002/oby.23929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/13/2023] [Accepted: 09/03/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE The adipose tissue-liver axis is a major regulator of the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Retinoic acid signaling plays an important role in development and metabolism. However, little is known about the role of adipose retinoic acid signaling in the development of obesity-associated NAFLD. In this work, the aim was to investigate whether and how retinoic acid receptor alpha (RARα) regulated the development of obesity and NAFLD. METHODS RARα expression in adipose tissue of db/db or ob/ob mice was determined. Rarαfl/fl mice and adipocyte-specific Rarα-/- (RarαAdi-/- ) mice were fed a chow diet for 1 year or high-fat diet (HFD) for 20 weeks. Primary adipocytes and primary hepatocytes were co-cultured. Metabolic regulation and inflammatory response were characterized. RESULTS RARα expression was reduced in adipose tissue of db/db or ob/ob mice. RarαAdi-/- mice had increased obesity and steatohepatitis (NASH) when fed a chow diet or HFD. Loss of adipocyte RARα induced lipogenesis and inflammation in adipose tissue and the liver and reduced thermogenesis. In the co-culture studies, loss of RARα in adipocytes induced inflammatory and lipogenic programs in hepatocytes. CONCLUSIONS The data demonstrate that RARα in adipocytes prevents obesity and NASH via inhibiting lipogenesis and inflammation and inducing energy expenditure.
Collapse
Affiliation(s)
- Fathima N. Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Amy Shiyab
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Kai Mongan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Alyssa Clark
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Hui Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| |
Collapse
|
6
|
Liu Y, Liu Z, Liang J, Sun C. ILC2s control obesity by regulating energy homeostasis and browning of white fat. Int Immunopharmacol 2023; 120:110272. [PMID: 37210911 DOI: 10.1016/j.intimp.2023.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Innate lymphoid cells (ILCs) have been a hot topic in recent research, they are widely distributed in vivo and play an important role in different tissues. The important role of group 2 innate lymphoid cells (ILC2s) in the conversion of white fat into beige fat has attracted widespread attention. Studies have shown that ILC2s regulate adipocyte differentiation and lipid metabolism. This article reviews the types and functions of ILCs, focusing on the relationship between differentiation, development and function of ILC2s, and elaborates on the relationship between peripheral ILC2s and browning of white fat and body energy homeostasis. This has important implications for the future treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Zhou X, Torres VE. Emerging therapies for autosomal dominant polycystic kidney disease with a focus on cAMP signaling. Front Mol Biosci 2022; 9:981963. [PMID: 36120538 PMCID: PMC9478168 DOI: 10.3389/fmolb.2022.981963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), with an estimated genetic prevalence between 1:400 and 1:1,000 individuals, is the third most common cause of end stage kidney disease after diabetes mellitus and hypertension. Over the last 3 decades there has been great progress in understanding its pathogenesis. This allows the stratification of therapeutic targets into four levels, gene mutation and polycystin disruption, proximal mechanisms directly caused by disruption of polycystin function, downstream regulatory and signaling pathways, and non-specific pathophysiologic processes shared by many other diseases. Dysfunction of the polycystins, encoded by the PKD genes, is closely associated with disruption of calcium and upregulation of cyclic AMP and protein kinase A (PKA) signaling, affecting most downstream regulatory, signaling, and pathophysiologic pathways altered in this disease. Interventions acting on G protein coupled receptors to inhibit of 3',5'-cyclic adenosine monophosphate (cAMP) production have been effective in preclinical trials and have led to the first approved treatment for ADPKD. However, completely blocking cAMP mediated PKA activation is not feasible and PKA activation independently from cAMP can also occur in ADPKD. Therefore, targeting the cAMP/PKA/CREB pathway beyond cAMP production makes sense. Redundancy of mechanisms, numerous positive and negative feedback loops, and possibly counteracting effects may limit the effectiveness of targeting downstream pathways. Nevertheless, interventions targeting important regulatory, signaling and pathophysiologic pathways downstream from cAMP/PKA activation may provide additive or synergistic value and build on a strategy that has already had success. The purpose of this manuscript is to review the role of cAMP and PKA signaling and their multiple downstream pathways as potential targets for emergent therapies for ADPKD.
Collapse
Affiliation(s)
- Xia Zhou
- Mayo Clinic, Department of Nephrology, Rochester, MN, United States
| | | |
Collapse
|
8
|
Zhang N, Liu J, Wang M, Guo X, Fan B, Wang F. Potato protease inhibitor II prevents obesity by inducing browning of white adipose tissue in mice via β 3 adrenergic receptor signaling pathway. Phytother Res 2022; 36:3885-3899. [PMID: 36017979 DOI: 10.1002/ptr.7451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
There are currently few effective and safe pharmacologic means for inducing beige adipogenesis in humans. This study highlights the role of potato protease inhibitor II (PPI II) in regulating the browning of adipose tissue. The in vitro results showed that PPI II increased the expression of the uncoupling protein 1 (UCP1) protein and gene and beige-specific genes, including Cd137, Cited1, Tbx1, and Tmem26 in vitro. PPI II treatment for three months in diet-induced obesity mice increased the levels of the UCP1 protein in white adipose tissue, causing elevated energy expenditure, thus preventing obesity and improving glucose tolerance. Mechanistic studies further revealed that PPI II regulated the abundance and activity of β3 adrenergic receptor (β3 -AR) in white adipocytes. Chemical-inhibition experiments revealed the crucial role of β3 -AR-dependent protein kinase A (PKA)-p38 kinase (p38)/extracellular signal-related kinase1/2 (ERK1/2) signaling in PPI II-mediated browning program of white adipose tissues. In summary, our findings highlight the role of PPI II in beige adipocyte differentiation and thermogenesis and provide new insights into its use in preventing obesity.
Collapse
Affiliation(s)
- Nana Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlin Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minjie Wang
- School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Xinxin Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Pagano Zottola AC, Severi I, Cannich A, Ciofi P, Cota D, Marsicano G, Giordano A, Bellocchio L. Expression of Functional Cannabinoid Type-1 (CB 1) Receptor in Mitochondria of White Adipocytes. Cells 2022; 11:cells11162582. [PMID: 36010658 PMCID: PMC9406404 DOI: 10.3390/cells11162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.
Collapse
Affiliation(s)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Astrid Cannich
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Philippe Ciofi
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Daniela Cota
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luigi Bellocchio
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
- Correspondence: ; Tel.: +33-557-573-754
| |
Collapse
|
10
|
Zhang G, Liu J, Liu C, Ding F, Li Y, Tang H, Ma M. Phosphate Group-Derivated Bipyridine-Ruthenium Complex and Titanium Dioxide Nanoparticles for Electrochemical Sensing of Protein Kinase Activity. ACS Sens 2021; 6:4451-4460. [PMID: 34870972 DOI: 10.1021/acssensors.1c01908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring of protein kinase activity is of significance for fundamentals of biochemistry, biomedical diagnose, and drug screening. To reduce the usage of a relatively complicated bio-labeled signal probe, the phosphate group-derivated bipyridine-ruthenium (Pbpy-Ru) complex and titanium dioxide nanoparticles (TiO2 NPs) were employed as signal probes to develop an electrochemical sensor for evaluating the protein kinase A (PKA) activity. Through the specific interaction between the phosphate groups and TiO2 NPs, the preparation of a Pbpy-Ru-TiO2 NP signal probe and its linkage with the phosphorylated PKA substrate peptides could be performed in a simple and effective way. The tethering of Pbpy-Ru onto the TiO2 NP surface does not degrade the electrochemical property of the complex. The Pbpy-Ru-TiO2 NP probe exhibits well-defined redox signals at about 1.0 V versus Ag/AgCl reference and notably has about fivefold current response than that of the TiO2 NPs with physically adsorbed tris-(bipyridine)-Ru. The PKA activity evaluation was realized by measuring the electrochemical response of the Pbpy-Ru-TiO2 NPs at the phosphorylated peptide-assembled electrode. Operating at optimal conditions, the cathodic signals at the potential of 1.03 V exhibit a good linearity with the PKA concentrations of 0.5-40 U mL-1. The electrochemical sensor shows good selectivity, low detection limit (0.2 U mL-1, signal/noise = 3), qualified reproducibility, and satisfactory applicability for PKA determination in the cell lysate. The Pbpy-Ru-TiO2 NPs/electrode system would be an excellent electrochemical platform for protein phosphorylation monitoring and sensing.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Jingwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Chengying Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Fan Ding
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Yingqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Hao Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| |
Collapse
|
11
|
Li Y, Zhang K, Liu J, Liu S, Nie C, Yan Y, Guan Y, Fan M, Qian H, Ying H, Wang L. Geniposide suppresses thermogenesis via regulating PKA catalytic subunit in adipocytes. Toxicology 2021; 464:153014. [PMID: 34718029 DOI: 10.1016/j.tox.2021.153014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Geniposide has been widely found to ameliorate many metabolic diseases. The recruitment and activation of brown/beige adipocytes are effective and promising methods for counteracting obesity and related diseases. However, the effect of geniposide on thermogenesis of adipocytes and its underlying mechanism have not yet been investigated. Here, we demonstrate that geniposide (25 mg/kg) reduces body temperature and cold tolerance of mice via suppressing thermogenic genes in interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT). Consistently, geniposide (20 mg/mL) suppresses thermogenic capacity of adipocytes (brown adipocytes and 3T3L1 preadipocyte cells) in vitro. Mechanistically, geniposide reduces the level of protein kinase A (PKA) catalytic subunit and further suppresses transcription activity and protein stability of uncoupling protein 1 (UCP1), leading to reduction of thermogenic capacity in adipocytes. Moreover, pharmacological PKA activation reverses geniposide-induced UCP1 inhibition, which indicated that geniposide suppresses thermogenesis of adipocytes via regulating PKA signaling. Together, our findings suggest that geniposide is an inhibitor of fat thermogenesis, establishing a novel function characteristic of geniposide.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengnan Liu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Yan
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Yanming Guan
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Reddy Sankaran K, Ganjayi MS, Oruganti L, Chippada AR, Meriga B. A bioactive fraction of Pterocarpus santalinus inhibits adipogenesis and inflammation in 3T3-L1 cells via modulation of PPAR-γ/SREBP-1c and TNF-α/IL-6. 3 Biotech 2021; 11:233. [PMID: 33968577 DOI: 10.1007/s13205-021-02771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/01/2021] [Indexed: 10/21/2022] Open
Abstract
Pterocarpus santalinus has huge demand owing to its commercial and medicinal value. However, there are limited research studies on its therapeutic activity against obesity and obesity-induced inflammation and underlying mechanism of action. Therefore, in the present study, chloroform bioactive fraction of P. santalinus (CFP) was isolated and evaluated for its activity against adipogenesis and adipogenesis-induced inflammation in 3T3-L1 cell culture model. LC-MS/MS analysis of CFP was performed to identify the compounds present. CFP-treated 3T3-L1 cells (50, 100 and 200 μg/ml) have significantly (p < 0.01 or < 0.05) enhanced glycerol release and adiponectin level, but reduced lipid accumulation and leptin, and MTT assay demonstrated CFP was non-toxic till a dose of 300 µg/ml at 24 and 48 h. A considerable reduction in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels was witnessed in lipopolysaccharide (LPS)-induced 3T3-L1 cells with CFP treatment in dose-dependent manner. Gene expression studies demonstrated down-regulation of mRNA expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element-binding protein-1c (SREBP-1c), leptin, TNF-α and IL-6 but up-regulation of adiponectin and uncoupling protein-1 (UCP-1) and the same trend was observed in protein expression also. In conclusion, it is suggested that CFP could be beneficial to treat obesity and associated inflammation.
Collapse
|