1
|
Zaccolo M, Kovanich D. Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2025; 105:541-591. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Smith MR, Costa G. Insights into the regulation of mRNA translation by scaffolding proteins. Biochem Soc Trans 2024; 52:2569-2578. [PMID: 39641595 PMCID: PMC11668292 DOI: 10.1042/bst20241021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Regionalisation of molecular mechanisms allows cells to fine-tune their responses to dynamic environments. In this context, scaffolds are well-known mediators of localised protein activity. These phenomenal proteins act as docking sites where pathway components are brought together to ensure efficient and reliable flow of information within the cell. Although scaffolds are mostly understood as hubs for signalling communication, some have also been studied as regulators of mRNA translation. Here, we provide a brief overview of the work unravelling how scaffolding proteins facilitate the cross-talk between the two processes. Firstly, we examine the activity of AKAP1 and AKAP12, two signalling proteins that not only have the capacity to anchor mRNAs to membranes but can also regulate protein synthesis. Next, we review the studies that uncovered how the ribosome-associated protein RACK1 orchestrates translation initiation. We also discuss the evidence pointing to the scaffolds Ezrin and LASP1 as regulators of early translation stages. In the end, we conclude with some open questions and propose future directions that will bring new insights into the regulation of mRNA translation by scaffolding proteins.
Collapse
Affiliation(s)
- Madeleine R. Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, U.K
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, U.K
| |
Collapse
|
3
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Marsh NM, MacEwen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Atilla-Gokcumen GE, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial Calcium Signaling Regulates Branched-Chain Amino Acid Catabolism in Fibrolamellar Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596106. [PMID: 38853984 PMCID: PMC11160645 DOI: 10.1101/2024.05.27.596106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Metabolic adaptations in response to changes in energy supply and demand are essential for survival. The mitochondrial calcium uniporter plays a key role in coordinating metabolic homeostasis by regulating TCA cycle activation, mitochondrial fatty acid oxidation, and cellular calcium signaling. However, a comprehensive analysis of uniporter-regulated mitochondrial pathways has remained unexplored. Here, we investigate metabolic consequences of uniporter loss- and gain-of-function using uniporter knockout cells and the liver cancer fibrolamellar carcinoma (FLC), which we demonstrate to have elevated mitochondrial calcium levels. Our results reveal that branched-chain amino acid (BCAA) catabolism and the urea cycle are uniporter-regulated metabolic pathways. Reduced uniporter function boosts expression of BCAA catabolism genes, and the urea cycle enzyme ornithine transcarbamylase (OTC). In contrast, high uniporter activity in FLC suppresses their expression. This suppression is mediated by reduced expression of the transcription factor KLF15, a master regulator of liver metabolism. Thus, uniporter responsive calcium signaling plays a central role in FLC-associated metabolic changes, including hyperammonemia. Our study identifies an important role for mitochondrial calcium signaling in metabolic adaptation through transcriptional regulation of metabolism and elucidates its importance for BCAA and ammonia metabolism in FLC.
Collapse
Affiliation(s)
- Nicole M Marsh
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Melissa J S MacEwen
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jane Chea
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Albert A Kwong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | | | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Natasha Gozali
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Madeleine L Hart
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
6
|
Shi L, Zha H, Huang H, Xia Y, Li H, Huang J, Yue R, Li C, Zhu J, Song Z. miR-199a-5p aggravates renal ischemia-reperfusion and transplant injury by targeting AKAP1 to disrupt mitochondrial dynamics. Am J Physiol Renal Physiol 2024; 327:F910-F929. [PMID: 39265082 DOI: 10.1152/ajprenal.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a complex pathophysiological process and a major cause of delayed graft function (DGF) after transplantation. MicroRNA (miRNA) has important roles in the pathogenesis of IRI and may represent promising therapeutic targets for mitigating renal IRI. miRNA sequencing was performed to profile microRNA expression in mouse kidneys after cold storage and transplantation (CST). Lentivirus incorporating a miR-199a-5p modulator was injected into mouse kidney in situ before syngenetic transplantation and unilateral IRI to determine the effect of miR-199a-5p in vivo. miR-199a-5p mimic or inhibitor was transfected cultured tubular cells before ATP depletion recovery treatment to examine the role of miR-199a-5p in vitro. Sequencing data and microarray showed upregulation of miR-199a-5p in mice CST and human DGF samples. Lentivirus incorporating a miR-199a-5p mimic aggravated renal IRI, and protective effects were obtained with a miR-199a-5p inhibitor. Treatment with the miR-199a-5p inhibitor ameliorated graft function loss, tubular injury, and immune response after CST. In vitro experiments revealed exacerbation of mitochondria dysfunction upon ATP depletion and repletion model in the presence of the miR-199a-5p mimic, whereas dysfunction was attenuated when the miR-199a-5p inhibitor was applied. miR-199a-5p was shown to target A-kinase anchoring protein 1 (AKAP1) by double luciferase assay and miR-199a-5p activation reduced dynamin-related protein 1 (Drp1)-s637 phosphorylation and mitochondrial length. Overexpression of AKAP1 preserved Drp1-s637 phosphorylation and reduced mitochondrial fission. miR-199a-5p activation reduced AKAP1 expression, promoted Drp1-s637 dephosphorylation, aggravated the disruption of mitochondrial dynamics, and contributed to renal IRI.NEW & NOTEWORTHY This study identifies miR-199a-5p as a key regulator in renal ischemia-reperfusion injury through microRNA sequencing in mouse models and human delayed graft function. miR-199a-5p worsens renal IRI by aggravating graft dysfunction, tubular injury, and immune response, while its inhibition shows protective effects. miR-199a-5p downregulates A-kinase anchoring protein 1 (AKAP1), reducing dynamin-related protein 1 (Drp1)-s637 phosphorylation, increasing mitochondrial fission, and causing dysfunction. Targeting the miR-199a-5p/AKAP1/Drp1 axis offers therapeutic potential for renal IRI, as AKAP1 overexpression preserves mitochondrial integrity by maintaining Drp1-s637 phosphorylation.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Hua Huang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Huimin Li
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruchi Yue
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- Department of Nephrology, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
7
|
Ranjan A, Mattijssen S, Charlly N, Cruz Gallardo I, Pitman LF, Coleman JC, Conte MR, Maraia RJ. The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621267. [PMID: 39554137 PMCID: PMC11565960 DOI: 10.1101/2024.11.01.621267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
LARP4 interacts with poly(A)-binding protein (PABP) to protect mRNAs from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved, and relevance had been undetermined. Here, yeast two-hybrid domain mapping followed by other methods identified positions 615-625 in conserved region-2 (CR2) of LARP4 (and LARP4B) as directly binding RACK1 region 200-317. Consistent with these results, AlphaFold2-multimer predicted high confidence interaction of CR2 with RACK1 propellers 5-6. CR2 mutations strongly decreased LARP4 association with cellular RACK1 and ribosomes by multiple assays, whereas less effect was observed for PABP association, consistent with independent interactions. CR2 mutations decreased LARP4 ability to optimally stabilize a β-globin mRNA reporter containing an AU-rich element (ARE) more significantly than a β-globin and other reporters lacking this element. While polysome profiles indicate the β-glo-ARE mRNA is inefficiently translated, consistent with published data, we show that LARP4 increases its translation whereas the LARP4-CR2 mutant is impaired. Analysis of nanoLuc-ARE mRNA for production of luciferase activity confirmed LARP4 promotes translation efficiency while CR2 mutations are disabling. Thus, LARP4 CR2-mediated interaction with RACK1 can promote translational efficiency of some mRNAs.
Collapse
|
8
|
Gao Y, Kwan J, Orofino J, Burrone G, Mitra S, Fan TY, English J, Hekman R, Emili A, Lyons SM, Cardamone MD, Perissi V. Inhibition of K63 ubiquitination by G-Protein pathway suppressor 2 (GPS2) regulates mitochondria-associated translation. Pharmacol Res 2024; 207:107336. [PMID: 39094987 DOI: 10.1016/j.phrs.2024.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
G-Protein Pathway Suppressor 2 (GPS2) is an inhibitor of non-proteolytic K63 ubiquitination mediated by the E2 ubiquitin-conjugating enzyme Ubc13. Previous studies have associated GPS2-mediated restriction of ubiquitination with the regulation of insulin signaling, inflammatory responses and mitochondria-nuclear communication across different tissues and cell types. However, a detailed understanding of the targets of GPS2/Ubc13 activity is lacking. Here, we have dissected the GPS2-regulated K63 ubiquitome in mouse embryonic fibroblasts and human breast cancer cells, unexpectedly finding an enrichment for proteins involved in RNA binding and translation on the outer mitochondrial membrane. Validation of selected targets of GPS2-mediated regulation, including the RNA-binding protein PABPC1 and translation factors RPS1, RACK1 and eIF3M, revealed a mitochondrial-specific strategy for regulating the translation of nuclear-encoded mitochondrial proteins via non-proteolytic ubiquitination. Removal of GPS2-mediated inhibition, either via genetic deletion or stress-induced nuclear translocation, promotes the import-coupled translation of selected mRNAs leading to the increased expression of an adaptive antioxidant program. In light of GPS2 role in nuclear-mitochondria communication, these findings reveal an exquisite regulatory network for modulating mitochondrial gene expression through spatially coordinated transcription and translation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Julian Kwan
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States
| | - Joseph Orofino
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Giulia Burrone
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Department of Computer Science, University of Torino, Torino, Italy; Department of Clinical and Biological Science, University of Torino, Torino, Italy; Graduate Program in Complex Systems for Quantitative Biomedicine, University of Torino, Torino, Italy
| | - Sahana Mitra
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Ting-Yu Fan
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Justin English
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Graduate Program in Pharmacology and Experimental Therapeutics, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Ryan Hekman
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States
| | - Andrew Emili
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States; Biology Department, Boston University, Boston, MA 02115, United States
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Maria Dafne Cardamone
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Valentina Perissi
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States.
| |
Collapse
|
9
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04357-4. [PMID: 39030441 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
10
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
11
|
Coleman JC, Tattersall L, Yianni V, Knight L, Yu H, Hallett SR, Johnson P, Caetano AJ, Cosstick C, Ridley AJ, Gartland A, Conte MR, Grigoriadis AE. The RNA binding proteins LARP4A and LARP4B promote sarcoma and carcinoma growth and metastasis. iScience 2024; 27:109288. [PMID: 38532886 PMCID: PMC10963253 DOI: 10.1016/j.isci.2024.109288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important regulators of cancer pathogenesis. We reveal that the RBPs LARP4A and LARP4B are differentially overexpressed in osteosarcoma and osteosarcoma lung metastases, as well as in prostate cancer. Depletion of LARP4A and LARP4B reduced tumor growth and metastatic spread in xenografts, as well as inhibiting cell proliferation, motility, and migration. Transcriptomic profiling and high-content multiparametric analyses unveiled a central role for LARP4B, but not LARP4A, in regulating cell cycle progression in osteosarcoma and prostate cancer cells, potentially through modulating key cell cycle proteins such as Cyclins B1 and E2, Aurora B, and E2F1. This first systematic comparison between LARP4A and LARP4B assigns new pro-tumorigenic functions to LARP4A and LARP4B in bone and prostate cancer, highlighting their similarities while also indicating distinct functional differences. Uncovering clear biological roles for these paralogous proteins provides new avenues for identifying tissue-specific targets and potential druggable intervention.
Collapse
Affiliation(s)
- Jennifer C. Coleman
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, S10 2RX UK
| | - Val Yianni
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Laura Knight
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Hongqiang Yu
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Sadie R. Hallett
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | - Philip Johnson
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Ana J. Caetano
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Charlie Cosstick
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, S10 2RX UK
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | | |
Collapse
|
12
|
Feichtner A, Enzler F, Kugler V, Hoppe K, Mair S, Kremser L, Lindner H, Huber RG, Stelzl U, Stefan E, Torres-Quesada O. Phosphorylation of the compartmentalized PKA substrate TAF15 regulates RNA-protein interactions. Cell Mol Life Sci 2024; 81:162. [PMID: 38568213 PMCID: PMC10991009 DOI: 10.1007/s00018-024-05204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.
Collapse
Affiliation(s)
- Andreas Feichtner
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Katharina Hoppe
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
- Vascage, Center of Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, 138671, Singapore
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
Lewis BM, Cho CY, Her HL, Mizrahi O, Hunter T, Yeo GW. LARP4 is an RNA-binding protein that binds nuclear-encoded mitochondrial mRNAs to promote mitochondrial function. RNA (NEW YORK, N.Y.) 2024; 30:223-239. [PMID: 38164626 PMCID: PMC10870378 DOI: 10.1261/rna.079799.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024]
Abstract
Mitochondria-associated RNA-binding proteins (RBPs) have emerged as key contributors to mitochondrial biogenesis and homeostasis. With few examples known, we set out to identify RBPs that regulate nuclear-encoded mitochondrial mRNAs (NEMmRNAs). Our systematic analysis of RNA targets of 150 RBPs identified RBPs with a preference for binding NEMmRNAs, including LARP4, a La RBP family member. We show that LARP4's targets are particularly enriched in mRNAs that encode respiratory chain complex proteins (RCCPs) and mitochondrial ribosome proteins (MRPs) across multiple human cell lines. Through quantitative proteomics, we demonstrate that depletion of LARP4 leads to a significant reduction in RCCP and MRP protein levels. Furthermore, we show that LARP4 depletion reduces mitochondrial function, and that LARP4 re-expression rescues this phenotype. Our findings shed light on a novel function for LARP4 as an RBP that binds to and positively regulates NEMmRNAs to promote mitochondrial respiratory function.
Collapse
Affiliation(s)
- Benjamin M Lewis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92037, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Chae Yun Cho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92037, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California 92037, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92037, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92037, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
| |
Collapse
|
14
|
Cohen B, Golani-Armon A, Arava YS. Emerging implications for ribosomes in proximity to mitochondria. Semin Cell Dev Biol 2024; 154:123-130. [PMID: 36642616 DOI: 10.1016/j.semcdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/11/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Synthesis of all proteins in eukaryotic cells, apart from a few organellar proteins, is done by cytosolic ribosomes. Many of these ribosomes are localized in the vicinity of the functional site of their encoded protein, enabling local protein synthesis. Studies in various organisms and tissues revealed that such locally translating ribosomes are also present near mitochondria. Here, we provide a brief summary of evidence for localized translation near mitochondria, then present data suggesting that these localized ribosomes may enable local translational regulatory processes in response to mitochondria needs. Finally, we describe the involvement of such localized ribosomes in the quality control of protein synthesis and mitochondria. These emerging views suggest that ribosomes localized near mitochondria are a hub for a variety of activities with diverse implications on mitochondria physiology.
Collapse
Affiliation(s)
- Bar Cohen
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Adi Golani-Armon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav S Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
15
|
Coleman JC, Hallett SR, Grigoriadis AE, Conte MR. LARP4A and LARP4B in cancer: The new kids on the block. Int J Biochem Cell Biol 2023; 161:106441. [PMID: 37356415 DOI: 10.1016/j.biocel.2023.106441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Recent developments have mounted a stunning body of evidence underlying the importance of RNA binding proteins (RBPs) in cancer research. In this minireview we focus on LARP4A and LARP4B, two paralogs belonging to the superfamily of La-related proteins, and provide a critical overview of current research, including their roles in cancer pathogenesis and cell proliferation, migration, cell cycle and apoptosis. We highlight current controversies surrounding LARP4A and LARP4B and conclude that their complex roles in tumorigenesis are cell-, tissue- and context-dependent, warning that caution must be exercised before categorising either protein as an oncoprotein or tumour-suppressor. We also reveal that LARP4A and LARP4B have often been confused with one another, adding uncertainty in delineating their functions. We suggest that further functional and mechanistic studies of LARP4 proteins present significant challenges for future investigations to recognise the vital contributions of these RBPs in cancer research.
Collapse
Affiliation(s)
- Jennifer C Coleman
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Sadie R Hallett
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
16
|
Meurant S, Mauclet L, Dieu M, Arnould T, Eyckerman S, Renard P. Endogenous TOM20 Proximity Labeling: A Swiss-Knife for the Study of Mitochondrial Proteins in Human Cells. Int J Mol Sci 2023; 24:ijms24119604. [PMID: 37298552 DOI: 10.3390/ijms24119604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Biotin-based proximity labeling approaches, such as BioID, have demonstrated their use for the study of mitochondria proteomes in living cells. The use of genetically engineered BioID cell lines enables the detailed characterization of poorly characterized processes such as mitochondrial co-translational import. In this process, translation is coupled to the translocation of the mitochondrial proteins, alleviating the energy cost typically associated with the post-translational import relying on chaperone systems. However, the mechanisms are still unclear with only few actors identified but none that have been described in mammals yet. We thus profiled the TOM20 proxisome using BioID, assuming that some of the identified proteins could be molecular actors of the co-translational import in human cells. The obtained results showed a high enrichment of RNA binding proteins close to the TOM complex. However, for the few selected candidates, we could not demonstrate a role in the mitochondrial co-translational import process. Nonetheless, we were able to demonstrate additional uses of our BioID cell line. Indeed, the experimental approach used in this study is thus proposed for the identification of mitochondrial co-translational import effectors and for the monitoring of protein entry inside mitochondria with a potential application in the prediction of mitochondrial protein half-life.
Collapse
Affiliation(s)
- Sébastien Meurant
- URBC, Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| | - Lorris Mauclet
- URBC, Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| | - Marc Dieu
- Mass Spectrometry Platform (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| | - Thierry Arnould
- URBC, Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Patricia Renard
- URBC, Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
- Mass Spectrometry Platform (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
17
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
18
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|
19
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
20
|
Sherpa RT, Fiore C, Moshal KS, Wadsworth A, Rudokas MW, Agarwal SR, Harvey RD. Mitochondrial A-kinase anchoring proteins in cardiac ventricular myocytes. Physiol Rep 2021; 9:e15015. [PMID: 34514737 PMCID: PMC8436057 DOI: 10.14814/phy2.15015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Compartmentation of cAMP signaling is a critical factor for maintaining the integrity of receptor-specific responses in cardiac myocytes. This phenomenon relies on various factors limiting cAMP diffusion. Our previous work in adult rat ventricular myocytes (ARVMs) indicates that PKA regulatory subunits anchored to the outer membrane of mitochondria play a key role in buffering the movement of cytosolic cAMP. PKA can be targeted to discrete subcellular locations through the interaction of both type I and type II regulatory subunits with A-kinase anchoring proteins (AKAPs). The purpose of this study is to identify which AKAPs and PKA regulatory subunit isoforms are associated with mitochondria in ARVMs. Quantitative PCR data demonstrate that mRNA for dual specific AKAP1 and 2 (D-AKAP1 & D-AKAP2), acyl-CoA-binding domain-containing 3 (ACBD3), optic atrophy 1 (OPA1) are most abundant, while Rab32, WAVE-1, and sphingosine kinase type 1 interacting protein (SPHKAP) were barely detectable. Biochemical and immunocytochemical analysis suggests that D-AKAP1, D-AKAP2, and ACBD3 are the predominant mitochondrial AKAPs exposed to the cytosolic compartment in these cells. Furthermore, we show that both type I and type II regulatory subunits of PKA are associated with mitochondria. Taken together, these data suggest that D-AKAP1, D-AKAP2, and ACBD3 may be responsible for tethering both type I and type II PKA regulatory subunits to the outer mitochondrial membrane in ARVMs. In addition to regulating PKA-dependent mitochondrial function, these AKAPs may play an important role by buffering the movement of cAMP necessary for compartmentation.
Collapse
Affiliation(s)
| | - Chase Fiore
- Department of PharmacologyUniversity of NevadaRenoNevadaUSA
| | | | - Adam Wadsworth
- Department of PharmacologyUniversity of NevadaRenoNevadaUSA
| | | | | | | |
Collapse
|
21
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|