1
|
Pollard MD, Meyer WK, Puckett EE. Convergent relaxation of molecular constraint in herbivores reveals the changing role of liver and kidney functions across mammalian diets. Genome Res 2024; 34:2176-2189. [PMID: 39578099 PMCID: PMC11694762 DOI: 10.1101/gr.278930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Mammalia comprises a great diversity of diet types and associated adaptations. An understanding of the genomic mechanisms underlying these adaptations may offer insights for improving human health. Comparative genomic studies of diet that employ taxonomically restricted analyses or simplified diet classifications may suffer reduced power to detect molecular convergence associated with diet evolution. Here, we use a quantitative carnivory score-indicative of the amount of animal protein in the diet-for 80 mammalian species to detect significant correlations between the relative evolutionary rates of genes and changes in diet. We have identified six genes-ACADSB, CLDN16, CPB1, PNLIP, SLC13A2, and SLC14A2-that experienced significant changes in evolutionary constraint alongside changes in carnivory score, becoming less constrained in lineages evolving more herbivorous diets. We further consider the biological functions associated with diet evolution and observe that pathways related to amino acid and lipid metabolism, biological oxidation, and small molecule transport experienced reduced purifying selection as lineages became more herbivorous. Liver and kidney functions show similar patterns of constraint with dietary change. Our results indicate that these functions are important for the consumption of animal matter and become less important with the evolution of increasing herbivory. So, genes expressed in these tissues experience a relaxation of evolutionary constraint in more herbivorous lineages.
Collapse
Affiliation(s)
- Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA;
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
2
|
Li N, Zhang H, Wang S, Xu Y, Ying Y, Li J, Li X, Li M, Yang B. Urea transporter UT-A1 as a novel drug target for hyponatremia. FASEB J 2024; 38:e23760. [PMID: 38924449 DOI: 10.1096/fj.202400555rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Hyponatremia is the most common disorder of electrolyte imbalances. It is necessary to develop new type of diuretics to treat hyponatremia without losing electrolytes. Urea transporters (UT) play an important role in the urine concentrating process and have been proved as a novel diuretic target. In this study, rat and mouse syndromes of inappropriate antidiuretic hormone secretion (SIADH) models were constructed and analyzed to determine if UTs are a promising drug target for treating hyponatremia. Experimental results showed that 100 mg/kg UT inhibitor 25a significantly increased serum osmolality (from 249.83 ± 5.95 to 294.33 ± 3.90 mOsm/kg) and serum sodium (from 114 ± 2.07 to 136.67 ± 3.82 mmol/L) respectively in hyponatremia rats by diuresis. Serum chemical examination showed that 25a neither caused another electrolyte imbalance nor influenced the lipid metabolism. Using UT-A1 and UT-B knockout mouse SIADH model, it was found that serum osmolality and serum sodium were lowered much less in UT-A1 knockout mice than in UT-B knockout mice, which suggest UT-A1 is a better therapeutic target than UT-B to treat hyponatremia. This study provides a proof of concept that UT-A1 is a diuretic target for SIADH-induced hyponatremia and UT-A1 inhibitors might be developed into new diuretics to treat hyponatremia.
Collapse
Affiliation(s)
- Nannan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuyuan Wang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yi Ying
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing Li
- The State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan, China
| | - Xiaowei Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Bankir L, Crambert G, Vargas-Poussou R. The SLC6A18 Transporter Is Most Likely a Na-Dependent Glycine/Urea Antiporter Responsible for Urea Secretion in the Proximal Straight Tubule: Influence of This Urea Secretion on Glomerular Filtration Rate. Nephron Clin Pract 2024; 148:796-822. [PMID: 38824912 PMCID: PMC11651341 DOI: 10.1159/000539602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Urea is the major end-product of protein metabolism in mammals. In carnivores and omnivores, a large load of urea is excreted daily in urine, with a concentration that is 30-100 times above that in plasma. This is important for the sake of water economy. Too little attention has been given to the existence of energy-dependent urea transport that plays an important role in this concentrating activity. SUMMARY This review first presents functional evidence for an energy-dependent urea secretion that occurs exclusively in the straight part of the proximal tubule (PST). Second, it proposes a candidate transmembrane transporter responsible for this urea secretion in the PST. SLC6A18 is expressed exclusively in the PST and has been identified as a glycine transporter, based on findings in SLC6A18 knockout mice. We propose that it is actually a glycine/urea antiport, secreting urea into the lumen in exchange for glycine and Na. Glycine is most likely recycled back into the cell via a transporter located in the brush border. Urea secretion in the PST modifies the composition of the tubular fluid in the thick ascending limb and, thus, contributes, indirectly, to influence the "signal" at the macula densa that plays a crucial role in the regulation of the glomerular filtration rate (GFR) by the tubulo-glomerular feedback. KEY MESSAGES Taking into account this secondary active secretion of urea in the mammalian kidney provides a new understanding of the influence of protein intake on GFR, of the regulation of urea excretion, and of the urine-concentrating mechanism.
Collapse
Affiliation(s)
- Lise Bankir
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Rosa Vargas-Poussou
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
- Service de Médecine Génomique des Maladies Rares, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
4
|
Hoogenboom JL, Wong MKS, Hyodo S, Anderson WG. Nitrogen transporters along the intestinal spiral valve of cloudy catshark (Scyliorhinus torazame): Rhp2, Rhbg, UT. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111418. [PMID: 36965831 DOI: 10.1016/j.cbpa.2023.111418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
As part of their osmoregulatory strategy, marine elasmobranchs retain large quantities of urea to balance the osmotic pressure of the marine environment. The main source of nitrogen used to synthesize urea comes from the digestion and absorption of food across the gastrointestinal tract. In this study we investigated possible mechanisms of nitrogen movement across the spiral valve of the cloudy catshark (Scyliorhinus torazame) through the molecular identification of two Rhesus glycoprotein ammonia transporters (Rhp2 and Rhbg) and a urea transporter (UT). We used immunohistochemistry to determine the cellular localizations of Rhp2 and UT. Within the spiral valve, Rhp2 was expressed along the apical brush-border membrane, and UT was expressed along the basolateral membrane and the blood vessels. The mRNA abundance of Rhp2 was significantly higher in all regions of the spiral valve of fasted catsharks compared to fed catsharks. The mRNA abundance of UT was significantly higher in the anterior spiral valve of fasted catsharks compared to fed. The mRNA transcript of four ornithine urea cycle (OUC) enzymes were detected along the length of the spiral valve and in the renal tissue, indicating the synthesis of urea via the OUC occurs in these tissues. The presence of Rhp2, Rhbg, and UT along the length of the spiral valve highlights the importance of ammonia and urea movement across the intestinal tissues, and increases our understanding of the mechanisms involved in maintaining whole-body nitrogen homeostasis in the cloudy catshark.
Collapse
Affiliation(s)
- J Lisa Hoogenboom
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 0A8, Canada.
| | - Marty Kwok-Shing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 0A8, Canada
| |
Collapse
|
5
|
Zhang Y, Huang H, Kong Y, Xu C, Dai L, Geng X, Deng Y, Wang Y, Liu Y, Meng C, Zhang X, Li J, Qin J, Feng B, Mak KK, Wang L, Huang Y, Wang W, Lan HY, Yang B, Lu HAJ, Xia Y. Kidney tubular transcription co-activator, Yes-associated protein 1 (YAP), controls the expression of collecting duct aquaporins and water homeostasis. Kidney Int 2023; 103:501-513. [PMID: 36328098 DOI: 10.1016/j.kint.2022.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Final urine volume and concentration are defined by water reabsorption through the water channel proteins aquaporin (AQP)-2, -3 and -4 in the collecting duct. However, the transcriptional regulation of these AQPs is not well understood. The Hippo/Yes-associated protein 1 (YAP) pathway plays an important role in organ size control and tissue homeostasis. When the Hippo pathway including the Mst1/Mst2 kinases is inhibited, YAP is activated and functions as a transcription co-activator. Our previous work revealed a pathological role of tubular YAP activation in chronic kidney disease, but the physiological role of YAP in the kidney remains to be established. Here, we found that tubule-specific Yap knockout mice showed increased urine output and decreased urinary osmolality. Decreases in Aqp2, -3 and -4 mRNA and protein abundance in the kidney were evident in Yap knockout mice. Analysis of Mst1/Mst2 double knockout and Mst1/Mst2/Yap triple knockout mice showed that expression of Aqp2 and Aqp4 but not Aqp3 was dependent on YAP. Furthermore, YAP was recruited to the promoters of the Aqp2 and Aqp4 genes and stimulated their transcription. Interestingly, YAP was found to interact with transcription factors GATA2, GATA3 and NFATc1. These three factors promoted Aqp2 transcription in a YAP dependent manner in collecting duct cells. These three factors also promoted Aqp4 transcription whereas only GATA2 and GATA3 enhanced Aqp3 transcription. Thus, our results suggest that YAP promotes Aqp2 and Aqp4 transcription, interacts with GATA2, GATA3 and NFATc1 to control Aqp2 expression, while Aqp-2, -3 and -4 exploit overlapping mechanisms for their baseline transcriptional regulation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huihui Huang
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yonglun Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chunhua Xu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Liujiang Dai
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Geng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | - Yang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenling Meng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyi Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinhong Li
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinzhong Qin
- The Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kingston Kinglun Mak
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua A Jenny Lu
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Bankir L, Guerrot D, Bichet DG. Vaptans or voluntary increased hydration to protect the kidney: how do they compare? Nephrol Dial Transplant 2023; 38:562-574. [PMID: 34586414 DOI: 10.1093/ndt/gfab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The adverse effects of vasopressin (AVP) in diverse forms of chronic kidney disease have been well described. They depend on the antidiuretic action of AVP mediated by V2 receptors (V2R). Tolvaptan, a selective V2R antagonist, is now largely used for the treatment of patients with autosomal dominant polycystic kidney disease. Another way to reduce the adverse effects of AVP is to reduce endogenous AVP secretion by a voluntary increase in fluid intake. These two approaches differ in several ways, including the level of thirst and AVP. With voluntary increased drinking, plasma osmolality will decline and so will AVP secretion. Thus, not only will V2R-mediated effects be reduced, but also those mediated by V1a and V1b receptors (V1aR and V1bR). In contrast, selective V2R antagonism will induce a loss of fluid that will stimulate AVP secretion and thus increase AVP's influence on V1a and V1b receptors. V1aR is expressed in the luminal side of the collecting duct (CD) and in inner medullary interstitial cells, and their activation induces the production of prostaglandins, mostly prostaglandin E2 (PGE2). Intrarenal PGE2 has been shown to reduce sodium and water reabsorption in the CD and increase blood flow in the renal medulla, both effects contributing to increase sodium and water excretion and reduce urine-concentrating activity. Conversely, non-steroidal anti-inflammatory drugs have been shown to induce significant water and sodium retention and potentiate the antidiuretic effects of AVP. Thus, during V2R antagonism, V1aR-mediated actions may be responsible for part of the diuresis observed with this drug. These V1aR-dependent effects do not take place with a voluntary increase in fluid intake. In summary, while both strategies may have beneficial effects, the information reviewed here leads us to assume that pharmacological V2R antagonism, with resulting stimulation of V1aR and increased PGE2 production, may provide greater benefit than voluntary high water intake. The influence of tolvaptan on the PGE2 excretion rate and the possibility to use somewhat lower tolvaptan doses than presently prescribed remain to be evaluated.
Collapse
Affiliation(s)
- Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Dominique Guerrot
- Départment de Néphrologie, Hôpital Universitaire de Rouen, Rouen, France.,Université de Normandie, UNIROUEN, INSERM U1096, Rouen, France
| | - Daniel G Bichet
- Université de Montréal, Montréal, Quebec, Canada.,Département de Pharmacologie, Département de Physiologie, and Département de Médecine, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
7
|
Ying Y, Li N, Wang S, Zhang H, Zuo Y, Tang Y, Qiao P, Quan Y, Li M, Yang B. Urea Transporter Inhibitor 25a Reduces Ascites in Cirrhotic Rats. Biomedicines 2023; 11:biomedicines11020607. [PMID: 36831143 PMCID: PMC9953117 DOI: 10.3390/biomedicines11020607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Ascites is a typical symptom of liver cirrhosis that is caused by a variety of liver diseases. Ascites severely affects the life quality of patients and needs long-term treatment. 25a is a specific urea transporter inhibitor with a diuretic effect that does not disturb the electrolyte balance. In this study, we aimed to determine the therapeutic effect of 25a on ascites with a dimethylnitrosamine (DMN)-induced cirrhotic rat model. It was found that 100 mg/kg of 25a significantly increased the daily urine output by 60% to 97% and reduced the daily abdominal circumference change by 220% to 260% in cirrhotic rats with a water intake limitation. The 25a treatment kept the serum electrolyte levels within normal ranges in cirrhotic rats. The H&E and Masson staining of liver tissue showed that 25a did not change the cirrhotic degree. A serum biochemical examination showed that 25a did not improve the liver function in cirrhotic rats. A Western blot analysis showed that 25a did not change the expression of fibrosis-related marker protein α-SMA, but significantly decreased the expressions of type I collagen in the liver of cirrhotic rats, indicating that 25a did not reverse cirrhosis, but could slow the cirrhotic progression. These data indicated that 25a significantly reduced ascites via diuresis without an electrolyte imbalance in cirrhotic rats. Our study provides a proof of concept that urea transporter inhibitors might be developed as novel diuretics to treat cirrhotic ascites.
Collapse
Affiliation(s)
- Yi Ying
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Nannan Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuyuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yinglin Zuo
- The State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China
| | - Yiwen Tang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Panshuang Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yazhu Quan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
- Correspondence:
| |
Collapse
|
8
|
Xu Y, Zhang H, Li N, Ma W, Wang S, Sun J, Yang B. Preclinical Pharmacokinetic Studies of a Novel Diuretic Inhibiting Urea Transporters. Molecules 2022; 27:2451. [PMID: 35458649 PMCID: PMC9027532 DOI: 10.3390/molecules27082451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Urea transporter (UT) inhibitors are a class of promising novel diuretics that do not cause the imbalance of Na+, K+, Cl-, and other electrolytes. In our previous studies, 25a, a promising diuretic candidate inhibiting UT, was discovered and showed potent diuretic activities in rodents. Here, a sensitive liquid chromatography-tandem mass spectrometry method for the quantitation of 25a in rat plasma, urine, feces, bile, and tissue homogenates was developed and validated to support the preclinical pharmacokinetic studies. The tissue distribution, excretion, and plasma protein binding were investigated in rats. After a single oral dose of 25a at 25, 50, and 100 mg/kg, the drug exposure increased linearly with the dose. The drug accumulation was observed after multiple oral doses compared to a single dose. In the distribution study, 25a exhibited a wide distribution to tissues with high blood perfusion, such as kidney, heart, lung, and spleen, and the lowest distribution in the brain and testis. The accumulative excretion rate of 25a was 0.14%, 3.16%, and 0.018% in urine, feces, and bile, respectively. The plasma protein binding of 25a was approximately 60% in rats and 40% in humans. This is the first study on the preclinical pharmacokinetic profiles of 25a.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.X.); (H.Z.); (N.L.); (S.W.)
| | - Hang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.X.); (H.Z.); (N.L.); (S.W.)
| | - Nannan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.X.); (H.Z.); (N.L.); (S.W.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.X.); (H.Z.); (N.L.); (S.W.)
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China;
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.X.); (H.Z.); (N.L.); (S.W.)
| |
Collapse
|
9
|
Wang S, Xu Y, Zhao Y, Zhang S, Li M, Li X, He J, Zhou H, Ge Z, Li R, Yang B. N-(4-acetamidophenyl)-5-acetylfuran-2-carboxamide as a novel orally available diuretic that targets urea transporters with improved PD and PK properties. Eur J Med Chem 2021; 226:113859. [PMID: 34601246 DOI: 10.1016/j.ejmech.2021.113859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Urea transporters (UTs) have been identified as new targets for diuretics. Functional deletion of UTs led to urea-selective urinary concentrating defects with relative salt sparing. In our previous study, a UT inhibitor with a diarylamide scaffold, which is denoted as 11a, was demonstrated as the first orally available UT inhibitor. However, the oral bioavailability of 11a was only 4.38%, which obstructed its clinical application. In this work, by replacing the nitro group of 11a with an acetyl group, 25a was obtained. Compared with 11a, 25a showed a 10 times stronger inhibitory effect on UT-B (0.14 μM vs. 1.41 μM in rats, and 0.48 μM vs. 5.82 μM in mice) and a much higher inhibition rate on UT-A1. Moreover, the metabolic stability both in vitro and in vivo and the drug-like properties (permeability and solubility) of 25a were obviously improved compared with those of 11a. Moreover, the bioavailability of 25a was 15.18%, which was 3 times higher than that of 11a, thereby resulting in significant enhancement of the diuretic activities in rats and mice. 25a showed excellent potential for development as a promising clinical diuretic candidate for targeting UTs to treat diseases that require long-term usage of diuretics, such as hyponatremia.
Collapse
Affiliation(s)
- Shuyuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Yue Xu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; College of Pharmacy, Inner Mongolia Medical University, 010110, China
| | - Shun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jinzhao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zemei Ge
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
10
|
Zhang S, Zhao Y, Wang S, Li M, Xu Y, Ran J, Geng X, He J, Meng J, Shao G, Zhou H, Ge Z, Chen G, Li R, Yang B. Discovery of novel diarylamides as orally active diuretics targeting urea transporters. Acta Pharm Sin B 2021; 11:181-202. [PMID: 33532188 PMCID: PMC7838058 DOI: 10.1016/j.apsb.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Urea transporters (UT) play a vital role in the mechanism of urine concentration and are recognized as novel targets for the development of salt-sparing diuretics. Thus, UT inhibitors are promising for development as novel diuretics. In the present study, a novel UT inhibitor with a diarylamide scaffold was discovered by high-throughput screening. Optimization of the inhibitor led to the identification of a promising preclinical candidate, N-[4-(acetylamino)phenyl]-5-nitrofuran-2-carboxamide (1H), with excellent in vitro UT inhibitory activity at the submicromolar level. The half maximal inhibitory concentrations of 1H against UT-B in mouse, rat, and human erythrocyte were 1.60, 0.64, and 0.13 μmol/L, respectively. Further investigation suggested that 8 μmol/L 1H more powerfully inhibited UT-A1 at a rate of 86.8% than UT-B at a rate of 73.9% in MDCK cell models. Most interestingly, we found for the first time that oral administration of 1H at a dose of 100 mg/kg showed superior diuretic effect in vivo without causing electrolyte imbalance in rats. Additionally, 1H did not exhibit apparent toxicity in vivo and in vitro, and possessed favorable pharmacokinetic characteristics. 1H shows promise as a novel diuretic to treat hyponatremia accompanied with volume expansion and may cause few side effects.
Collapse
Key Words
- AQP1, aquaporin 1
- BCRP, breast cancer resistance protein
- CCK-8, cell counting kit-8
- CMC-Na, carboxymethylcellulose sodium
- DMF, N,N-dimethylformamide
- Diuretic
- Fa, fraction absorbance
- GFR, glomerular filtration rate
- HDL-C and LDL-C, high- and low-density lipoprotein
- IC50, half maximal inhibitory concentration
- IMCD, inner medulla collecting duct
- Oral administration
- P-gp, P-glycoprotein
- PBS, phosphate buffered saline
- Papp, apparent permeability
- Structure optimization
- THF, tetrahydrofuran
- UT, urea transporter
- Urea transporter inhibitor
- r.t., room temperature
Collapse
|