1
|
Tattoli I, Mathew AR, Verrienti A, Pallotta L, Severi C, Andreola F, Cavallucci V, Giorgi M, Massimi M, Bencini L, Fidaleo M. The Interplay between Liver and Adipose Tissue in the Onset of Liver Diseases: Exploring the Role of Vitamin Deficiency. Cells 2024; 13:1631. [PMID: 39404394 PMCID: PMC11475612 DOI: 10.3390/cells13191631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The deficiency of vitamins, a condition known as "hidden hunger", causes comprehensive pathological states. Research over the years has identified a relationship between liver diseases and hypovitaminosis or defects in vitamin metabolism. The exact mechanisms remain elusive; however, the crucial involvement of specific vitamins in metabolic functions, alongside the reclassification of liver disease as metabolic dysfunction-associated steatotic liver disease (MASLD), has prompted researchers to investigate the potential cause-effect dynamics between vitamin deficiency and liver disease. Moreover, scientists are increasingly investigating how the deficiency of vitamins might disrupt specific organ crosstalk, potentially contributing to liver disease. Although the concept of a dysmetabolic circuit linking adipose tissue and the liver, leading to liver disease, has been discussed, the possible involvement of vitamin deficiency in this axis is a relatively recent area of study, with numerous critical aspects yet to be fully understood. In this review, we examine research from 2019 to July 2024 focusing on the possible link between liver-adipose tissue crosstalk and vitamin deficiency involved in the onset and progression of non-alcoholic fatty liver disease (NAFLD). Studies report that vitamin deficiency can affect the liver-adipose tissue axis, mainly affecting the regulation of systemic energy balance and inflammation.
Collapse
Affiliation(s)
- Ivan Tattoli
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK;
| | - Virve Cavallucci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lapo Bencini
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Chen Y, Sewsurn S, Amand S, Kunz C, Pietrancosta N, Calabro K, Buisson D, Mann S. Metabolic Investigation and Auxiliary Enzyme Modelization of the Pyrrocidine Pathway Allow Rationalization of Paracyclophane-Decahydrofluorene Formation. ACS Chem Biol 2024; 19:886-895. [PMID: 38576157 DOI: 10.1021/acschembio.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Fungal paracyclophane-decahydrofluorene-containing natural products are complex polycyclic metabolites derived from similar hybrid PKS-NRPS pathways. Herein we studied the biosynthesis of pyrrocidines, one representative of this family, by gene inactivation in the producer Sarocladium zeae coupled to thorough metabolic analysis and molecular modeling of key enzymes. We characterized nine pyrrocidines and analogues as well as in mutants a variety of accumulating metabolites with new structures including rare cis-decalin, cytochalasan, and fused 6/15/5 macrocycles. This diversity highlights the extraordinary plasticity of the pyrrocidine biosynthetic gene cluster. From accumulating metabolites, we delineated the scenario of pyrrocidine biosynthesis. The ring A of the decahydrofluorene is installed by PrcB, a membrane-bound cyclizing isomerase, on a PKS-NRPS-derived pyrrolidone precursor. Docking experiments in PrcB allowed us to characterize the active site suggesting a mechanism triggered by arginine-mediated deprotonation at the terminal methyl of the substrate. Next, two integral membrane proteins, PrcD and PrcE, each predicted as a four-helix bundle, perform hydroxylation of the pyrrolidone ring and paracyclophane formation, respectively. Modelization of PrcE highlights a topological homology with vitamin K oxido-reductase and the presence of a disulfide bond. Our results suggest a previously unsuspected coupling mechanism via a transient loss of aromaticity of tyrosine residue to form the strained paracyclophane motif. Finally, the lipocalin-like protein PrcX drives the exo-cycloaddition yielding ring B and C of the decahydrofluorene to afford pyrrocidine A, which is transformed by a reductase PrcI to form pyrrocidine B. These insights will greatly facilitate the microbial production of pyrrocidine analogues by synthetic biology.
Collapse
Affiliation(s)
- Youwei Chen
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Steffi Sewsurn
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Séverine Amand
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Caroline Kunz
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927, F-75005 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, F-75005 Paris, France
- Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, F-75005 Paris, France
| | - Kevin Calabro
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Didier Buisson
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Stéphane Mann
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
3
|
Stolyarchuk M, Botnari M, Tchertanov L. Vitamin K Epoxide Reductase Complex-Protein Disulphide Isomerase Assemblies in the Thiol-Disulphide Exchange Reactions: Portrayal of Precursor-to-Successor Complexes. Int J Mol Sci 2024; 25:4135. [PMID: 38673722 PMCID: PMC11050172 DOI: 10.3390/ijms25084135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.
Collapse
Affiliation(s)
| | | | - Luba Tchertanov
- Centre Borelli, ENS Paris-Saclay, CNRS, Université Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France; (M.S.); (M.B.)
| |
Collapse
|
4
|
Jiang R, Rempel DL, Gross ML. Toward a MALDI in-source decay (ISD) method for top-down analysis of protein footprinting. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:292-302. [PMID: 37750197 PMCID: PMC11092977 DOI: 10.1177/14690667231202695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Irreversible protein footprinting is a mass spectrometry-based approach in which solvent-accessible sites of a protein are modified to assess high-order protein structure. Structural insights can be gained by determining the position and extents of modification. The usual approach to obtain the "footprint" is to analyze the protein through bottom-up LC-MS/MS. In this approach, the proteins are digested to yield a mixture of peptides that are then separated by LC before locating the modification sites by MS/MS. This process consumes substantial amounts of time and is difficult to accelerate for applications that require quick and high-throughput analysis. Here, we describe employing matrix-assisted laser desorption/ionization (MALDI) in-source decay (ISD) to analyze a footprinted small test protein (ubiquitin) via a top-down approach. Matrix-assisted laser desorption/ionization is easily adapted for high-throughput analysis, and top-down strategies can avoid lengthy proteolysis and LC separation. We optimized the method with model peptides and then demonstrated its feasibility on ubiquitin submitted to two types of footprinting. We found that MALDI ISD can produce a comprehensive set of fragment ions for small proteins, affording footprinting information in a fast manner and giving results that agree with the established methods, and serve as a rough measure of protein solvent accessibility. To assist in the implementation of the MALDI approach, we developed a method of processing top-down ISD data.
Collapse
Affiliation(s)
- Ruidong Jiang
- Department of Chemistry, Washington University in St Louis, St Louis, MO, USA
| | - Don L Rempel
- Department of Chemistry, Washington University in St Louis, St Louis, MO, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
5
|
Jiang R, Rempel DL, Gross ML. MALDI Peptide Mapping for Fast Analysis in Protein Footprinting. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 490:117080. [PMID: 38465269 PMCID: PMC10923600 DOI: 10.1016/j.ijms.2023.117080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although protein footprinting results are commonly obtained by ESI-based LC-MS/MS, a more rapid-turnaround alternative approach is desirable to expand the scope of protein footprinting and facilitate routine analysis such as monitoring protein high order structure in quality control or checking epitope maps. Considering that MALDI is a faster procedure that can be easily adapted for high-throughput analysis, we explore here the feasibility of developing a MALDI-based analysis "portfolio" of bottom-up peptide mass mapping for footprinting. The approach was applied to several model proteins that were submitted to two footprinting strategies, FPOP and GEE labeling, and their performance was evaluated. We found adequate coverage that can be improved with automatic off-line separation and spotting, demonstrating the capability to footprint accurately protein conformational change, showing that MALDI may be useful for selected applications in protein footprinting.
Collapse
Affiliation(s)
- Ruidong Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
6
|
Li S, Sun J, Liu S, Zhou F, Gross ML, Li W. Missense VKOR mutants exhibit severe warfarin resistance but lack VKCFD via shifting to an aberrantly reduced state. Blood Adv 2023; 7:2271-2282. [PMID: 36508285 PMCID: PMC10225482 DOI: 10.1182/bloodadvances.2021006876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
Missense vitamin K epoxide reductase (VKOR) mutations in patients cause resistance to warfarin treatment but not abnormal bleeding due to defective VKOR activity. The underlying mechanism of these phenotypes remains unknown. Here we show that the redox state of these mutants is essential to their activity and warfarin resistance. Using a mass spectrometry-based footprinting method, we found that severe warfarin-resistant mutations change the VKOR active site to an aberrantly reduced state in cells. Molecular dynamics simulation based on our recent crystal structures of VKOR reveals that these mutations induce an artificial opening of the protein conformation that increases access of small molecules, enabling them to reduce the active site and generating constitutive activity uninhibited by warfarin. Increased activity also compensates for the weakened substrate binding caused by these mutations, thereby maintaining normal VKOR function. The uninhibited nature of severe resistance mutations suggests that patients showing signs of such mutations should be treated by alternative anticoagulation strategies.
Collapse
Affiliation(s)
- Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO
| | - Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Fengbo Zhou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Li W. Distinct enzymatic strategies for de novo generation of disulfide bonds in membranes. Crit Rev Biochem Mol Biol 2023; 58:36-49. [PMID: 37098102 PMCID: PMC10460286 DOI: 10.1080/10409238.2023.2201404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Disulfide bond formation is a catalyzed reaction essential for the folding and stability of proteins in the secretory pathway. In prokaryotes, disulfide bonds are generated by DsbB or VKOR homologs that couple the oxidation of a cysteine pair to quinone reduction. Vertebrate VKOR and VKOR-like enzymes have gained the epoxide reductase activity to support blood coagulation. The core structures of DsbB and VKOR variants share the architecture of a four-transmembrane-helix bundle that supports the coupled redox reaction and a flexible region containing another cysteine pair for electron transfer. Despite considerable similarities, recent high-resolution crystal structures of DsbB and VKOR variants reveal significant differences. DsbB activates the cysteine thiolate by a catalytic triad of polar residues, a reminiscent of classical cysteine/serine proteases. In contrast, bacterial VKOR homologs create a hydrophobic pocket to activate the cysteine thiolate. Vertebrate VKOR and VKOR-like maintain this hydrophobic pocket and further evolved two strong hydrogen bonds to stabilize the reaction intermediates and increase the quinone redox potential. These hydrogen bonds are critical to overcome the higher energy barrier required for epoxide reduction. The electron transfer process of DsbB and VKOR variants uses slow and fast pathways, but their relative contribution may be different in prokaryotic and eukaryotic cells. The quinone is a tightly bound cofactor in DsbB and bacterial VKOR homologs, whereas vertebrate VKOR variants use transient substrate binding to trigger the electron transfer in the slow pathway. Overall, the catalytic mechanisms of DsbB and VKOR variants have fundamental differences.
Collapse
Affiliation(s)
- Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Liu S, Shen G, Li W. Structural and cellular basis of vitamin K antagonism. J Thromb Haemost 2022; 20:1971-1983. [PMID: 35748323 DOI: 10.1111/jth.15800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Vitamin K antagonists (VKAs), such as warfarin, are oral anticoagulants widely used to treat and prevent thromboembolic diseases. Therapeutic use of these drugs requires frequent monitoring and dose adjustments, whereas overdose often causes severe bleeding. Addressing these drawbacks requires mechanistic understandings at cellular and structural levels. As the target of VKAs, vitamin K epoxide reductase (VKOR) generates the active, hydroquinone form of vitamin K, which in turn drives the γ-carboxylation of several coagulation factors required for their activity. Crystal structures revealed that VKAs inhibit VKOR via mimicking its catalytic process. At the active site, two strong hydrogen bonds that facilitate the catalysis also afford the binding specificity for VKAs. Binding of VKAs induces a global change from open to closed conformation. Similar conformational change is induced by substrate binding to promote an electron transfer process that reduces the VKOR active site. In the cellular environment, reducing partner proteins or small reducing molecules may afford electrons to maintain the VKOR activity. The catalysis and VKA inhibition require VKOR in different cellular redox states, explaining the complex kinetics behavior of VKAs. Recent studies also revealed the mechanisms underlying warfarin resistance, warfarin dose variation, and antidoting by vitamin K. These mechanistic understandings may lead to improved anticoagulation strategies targeting the vitamin K cycle.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guomin Shen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Henan International Joint Laboratory of Thrombosis and Hemostasis, School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Shen G, Li C, Cao Q, Megta AK, Li S, Gao M, Liu H, Shen Y, Chen Y, Yu H, Li S, Li W. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases. FEBS J 2022; 289:4564-4579. [PMID: 35113495 PMCID: PMC9346089 DOI: 10.1111/febs.16386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Vitamin K epoxide reductases (VKORs) are a large family of integral membrane enzymes found from bacteria to humans. Human VKOR, specific target of warfarin, has both the epoxide and quinone reductase activity to maintain the vitamin K cycle. Bacterial VKOR homologs, however, are insensitive to warfarin inhibition and are quinone reductases incapable of epoxide reduction. What affords the epoxide reductase activity in human VKOR remains unknown. Here, we show that a representative bacterial VKOR homolog can be converted to an epoxide reductase that is also inhibitable by warfarin. To generate this new activity, we first substituted several regions surrounding the active site of bacterial VKOR by those from human VKOR based on comparison of their crystal structures. Subsequent systematic substitutions narrowed down to merely eight residues, with the addition of a membrane anchor domain, that are responsible for the epoxide reductase activity. Substitutions corresponding to N80 and Y139 in human VKOR provide strong hydrogen bonding interactions to facilitate the epoxide reduction. The rest of six substitutions increase the size and change the shape of the substrate-binding pocket, and the membrane anchor domain stabilizes this pocket while allowing certain flexibility for optimal binding of the epoxide substrate. Overall, our study reveals the structural features of the epoxide reductase activity carried out by a subset of VKOR family in the membrane environment.
Collapse
Affiliation(s)
- Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Chaokun Li
- Sino‐UK Joint Laboratory for Brain Function and Injury School of Basic Medical Science Xinxiang Medical University China
| | - Qing Cao
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Abhin Kumar Megta
- Department of Biochemistry and Molecular Biophysics Washington University in St. Louis School of Medicine MO USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics Washington University in St. Louis School of Medicine MO USA
| | - Meng Gao
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Hongli Liu
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Yan Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Haichuan Yu
- School of Medical Laboratory Xinxiang Medical University China
| | - Sanqiang Li
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics Washington University in St. Louis School of Medicine MO USA
| |
Collapse
|
10
|
Sun J, Li W, Gross ML. Advances in mass spectrometry-based footprinting of membrane proteins. Proteomics 2022; 22:e2100222. [PMID: 35290716 PMCID: PMC10493193 DOI: 10.1002/pmic.202100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|