1
|
Li S, Sun L, Huang H, Wei X, Lu Y, Qian K, Wu Y. Identifying disulfidptosis-related biomarkers in epilepsy based on integrated bioinformatics and experimental analyses. Neurobiol Dis 2025; 205:106789. [PMID: 39805370 DOI: 10.1016/j.nbd.2025.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
One of the underlying mechanisms of epilepsy (EP), a brain disease characterized by recurrent seizures, is considered to be cell death. Disulfidptosis, a proposed novel cell death mechanism, is thought to play a part in the pathogenesis of epilepsy, but the exact role is unclear. The gene expression omnibus series (GSE) 33000 and GSE63808 datasets were used to search for differentially expressed disulfidptosis-related molecules (DE-DRMs). A correlation between the DE-DRMs was discovered. Individuals with epilepsy were then used to investigate molecular clusters based on the expression of DE-DRMs. Following that, the best machine learning model which is validated by GSE143272 dataset and predictor molecules were identified. The correlation between predictive molecules and clinical traits was determined. Based on the in vitro and in vivo seizures models, experimental analyses were applied to verify the DE-DRMs expressions and the correlation between them. Nine molecules were identified as DE-DRMs: glycogen synthase 1 (GYS1), solute carrier family 3 member 2 (SLC3A2), solute carrier family 7 member 11 (SLC7A11), NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1), 3-oxoacyl-ACP synthase, mitochondrial (OXSM), leucine rich pentatricopeptide repeat containing (LRPPRC), NADH:ubiquinone oxidoreductase subunit A11 (NDUFA11), NUBP iron‑sulfur cluster assembly factor, mitochondrial (NUBPL), and NCK associated protein 1 (NCKAP1). NDUFS1 interacted with NDUFA11, NUBPL, and LRPPRC, while SLC3A2 interacted with SLC7A11. The optimal machine learning model was revealed to be the random forest (RF) model. G protein guanine nucleotide-binding protein alpha subunit q (GNAQ) was linked to sodium valproate resistance. The experimental analyses suggested an upregulated SLC7A11 expression, an increased number of formed SLC3A2 and SLC7A11 complexes, and a decreased number of formed NDUFS1 and NDUFA11 complexes. This study provides previously undocumented evidence of the relationship between disulfidptosis and EP. In addition to suggesting that SLC7A11 may be a specific DRM for EP, this research demonstrates the alterations in two disulfidptosis-related protein complexes: SLC7A11-SLC3A2 and NDUFS1-NDUFA11.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Lanfeng Sun
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongmi Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Wei
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuling Lu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Qian
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Wu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Marr L, Biswas D, Sakamoto K, Zeqiraj E. Large-Scale Protein Production and Activity Assay Protocols for Human Glycogen Synthase-Glycogenin Complex. Methods Mol Biol 2025; 2882:249-277. [PMID: 39992514 DOI: 10.1007/978-1-0716-4284-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Glycogen synthase (GS) is the rate-limiting enzyme for glycogen production and together with glycogenin (GN) and glycogen branching enzyme (GBE), can generate glycogen particles containing up to 50,000 glucose units. Dysregulation of glycogen synthesis, for example overproduction or accumulation of malformed glycogen, is the source of many glycogen storage diseases affecting glucose homeostasis and muscle and neuronal cell function. As such, GS is an attractive candidate enzyme for therapeutic targeting, which until recently, was hampered by difficulties in producing active human GS enzyme preparations. Here, we describe the large-scale production of GS in complex with GN, and assay conditions to measure enzyme activity in the absence and presence of the allosteric activator glucose-6-phosphate (G6P). These protocols, together with assays for quality control assessment of enzyme preparations, provide a useful resource for studying the biochemical, biophysical, and structural properties of the GS-GN complex, and facilitate drug discovery pipelines to develop therapeutics for glycogen storage diseases.
Collapse
Affiliation(s)
- Laura Marr
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Dipsikha Biswas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-Cage Behavior. J Comp Neurol 2024; 532:e25660. [PMID: 39039998 PMCID: PMC11370821 DOI: 10.1002/cne.25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Treccarichi S, Calì F, Vinci M, Ragalmuto A, Musumeci A, Federico C, Costanza C, Bottitta M, Greco D, Saccone S, Elia M. Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders. Curr Issues Mol Biol 2024; 46:6407-6422. [PMID: 39057025 PMCID: PMC11276073 DOI: 10.3390/cimb46070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
SRY-box transcription factor (SOX) genes, a recently discovered gene family, play crucial roles in the regulation of neuronal stem cell proliferation and glial differentiation during nervous system development and neurogenesis. Whole exome sequencing (WES) in patients presenting with generalized epilepsy, intellectual disability, and childhood emotional behavioral disorder, uncovered a de novo variation within SOX12 gene. Notably, this gene has never been associated with neurodevelopmental disorders. No variants in known genes linked with the patient's symptoms have been detected by the WES Trio analysis. To date, any MIM phenotype number associated with intellectual developmental disorder has not been assigned for SOX12. In contrast, both SOX4 and SOX11 genes within the same C group (SoxC) of the Sox gene family have been associated with neurodevelopmental disorders. The variant identified in the patient here described was situated within the critical high-mobility group (HMG) functional site of the SOX12 protein. This domain, in the Sox protein family, is essential for DNA binding and bending, as well as being responsible for transcriptional activation or repression during the early stages of gene expression. Sequence alignment within SoxC (SOX12, SOX4 and SOX11) revealed a high conservation rate of the HMG region. The in silico predictive analysis described this novel variant as likely pathogenic. Furthermore, the mutated protein structure predictions unveiled notable changes with potential deleterious effects on the protein structure. The aim of this study is to establish a correlation between the SOX12 gene and the symptoms diagnosed in the patient.
Collapse
Affiliation(s)
- Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Alda Ragalmuto
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Carola Costanza
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy;
| | - Maria Bottitta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| |
Collapse
|
5
|
Ferrari Aggradi CR, Rimoldi M, Romagnoli G, Velardo D, Meneri M, Iacobucci D, Ripolone M, Napoli L, Ciscato P, Moggio M, Comi GP, Ronchi D, Corti S, Abati E. Lafora Disease: A Case Report and Evolving Treatment Advancements. Brain Sci 2023; 13:1679. [PMID: 38137127 PMCID: PMC10742041 DOI: 10.3390/brainsci13121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Lafora disease is a rare genetic disorder characterized by a disruption in glycogen metabolism. It manifests as progressive myoclonus epilepsy and cognitive decline during adolescence. Pathognomonic is the presence of abnormal glycogen aggregates that, over time, produce large inclusions (Lafora bodies) in various tissues. This study aims to describe the clinical and histopathological aspects of a novel Lafora disease patient, and to provide an update on the therapeutical advancements for this disorder. A 20-year-old Libyan boy presented with generalized tonic-clonic seizures, sporadic muscular jerks, eyelid spasms, and mental impairment. Electroencephalography showed multiple discharges across both brain hemispheres. Brain magnetic resonance imaging was unremarkable. Muscle biopsy showed increased lipid content and a very mild increase of intermyofibrillar glycogen, without the polyglucosan accumulation typically observed in Lafora bodies. Despite undergoing three lines of antiepileptic treatment, the patient's condition showed minimal to no improvement. We identified the homozygous variant c.137G>A, p.(Cys46Tyr), in the EPM2B/NHLRC1 gene, confirming the diagnosis of Lafora disease. To our knowledge, the presence of lipid aggregates without Lafora bodies is atypical. Lafora disease should be considered during the differential diagnosis of progressive, myoclonic, and refractory epilepsies in both children and young adults, especially when accompanied by cognitive decline. Although there are no effective therapies yet, the development of promising new strategies prompts the need for an early and accurate diagnosis.
Collapse
Affiliation(s)
- Carola Rita Ferrari Aggradi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Martina Rimoldi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gloria Romagnoli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Davide Iacobucci
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Patrizia Ciscato
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| |
Collapse
|
6
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-cage Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557226. [PMID: 37745312 PMCID: PMC10515855 DOI: 10.1101/2023.09.11.557226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Lafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ~6-7 months and ~12 months of age, malin deficient mice ("KO") and wild type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age dependent LB accumulation, gliosis and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. Using an in vitro assay of neocortical function, paroxysmal increases in network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but were similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced post-ictal suppression of movement, feeding and drinking behavior. Together, these results highlight a stark clinicopathologic dissociation in a mouse model of LD, where LBs accrue substantially without clinically meaningful changes in overall wellbeing. Our findings allude to a delay between LB accumulation and neurobehavioral decline: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
7
|
Duran J. Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells 2023; 12:cells12050722. [PMID: 36899857 PMCID: PMC10000527 DOI: 10.3390/cells12050722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5-10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.
Collapse
Affiliation(s)
- Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Burgos DF, Machío-Castello M, Iglesias-Cabeza N, Giráldez BG, González-Fernández J, Sánchez-Martín G, Sánchez MP, Serratosa JM. Early Treatment with Metformin Improves Neurological Outcomes in Lafora Disease. Neurotherapeutics 2023; 20:230-244. [PMID: 36303102 PMCID: PMC10119355 DOI: 10.1007/s13311-022-01304-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/31/2022] Open
Abstract
Lafora disease is a fatal form of progressive myoclonic epilepsy caused by mutations in the EPM2A or NHLRC1/EPM2B genes that usually appears during adolescence. The Epm2a-/- and Epm2b-/- knock-out mouse models of the disease develop behavioral and neurological alterations similar to those observed in patients. The aim of this work is to analyze whether early treatment with metformin (from conception to adulthood) ameliorates the formation of Lafora bodies and improves the behavioral and neurological outcomes observed with late treatment (during 2 months at 10 months of age). We also evaluated the benefits of metformin in patients with Lafora disease. To assess neurological improvements due to metformin administration in the two mouse models, we evaluated the effects on pentylenetetrazol sensitivity, posturing, motor coordination and activity, and memory. We also analyzed the effects on Lafora bodies, neurodegeneration, and astrogliosis. Furthermore, we conducted a follow-up study of an initial cohort of 18 patients with Lafora disease, 8 treated with metformin and 10 untreated. Our results indicate that early metformin was more effective than late metformin in Lafora disease mouse models improving neurological alterations of both models such as neuronal hyperexcitability, motor and memory alterations, neurodegeneration, and astrogliosis and decreasing the formation of Lafora bodies. Moreover, patients receiving metformin had a slower progression of the disease. Overall, early treatment improves the outcome seen with late metformin treatment in the two knock-out mouse models of Lafora disease. Metformin-treated patients exhibited an ameliorated course of the disease with slower deterioration of their daily living activities.
Collapse
Affiliation(s)
- Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, 28029, Madrid, Spain
| | - María Machío-Castello
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Beatriz G Giráldez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan González-Fernández
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
- Department of Parasitology, School of Pharmacy, Complutense de Madrid University, 28040, Madrid, Spain
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
9
|
Mitra S, Chen B, Wang P, Chown EE, Dear M, Guisso DR, Mariam U, Wu J, Gumusgoz E, Minassian BA. Laforin targets malin to glycogen in Lafora progressive myoclonus epilepsy. Dis Model Mech 2023; 16:dmm049802. [PMID: 36511140 PMCID: PMC9844227 DOI: 10.1242/dmm.049802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure. Laforin binds glycogen, and LD-causing mutations disrupt this binding, laforin-malin interactions and malin's ligase activity, all indicating a critical role for malin. Neither malin's endogenous function nor location had previously been studied due to lack of suitable antibodies. Here, we generated a mouse in which the native malin gene is tagged with the FLAG sequence. We show that the tagged gene expresses physiologically, malin localizes to glycogen, laforin and malin indeed interact, at glycogen, and malin's presence at glycogen depends on laforin. These results, and mice, open the way to understanding unknown mechanisms of glycogen synthesis critical to LD and potentially other much more common diseases due to incompletely understood defects in glycogen metabolism.
Collapse
Affiliation(s)
- Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baozhi Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Erin E. Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Mathew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dikran R. Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ummay Mariam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emrah Gumusgoz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berge A. Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Della Vecchia S, Marchese M, Santorelli FM. Glial Contributions to Lafora Disease: A Systematic Review. Biomedicines 2022; 10:biomedicines10123103. [PMID: 36551859 PMCID: PMC9776290 DOI: 10.3390/biomedicines10123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Lafora disease (LD) is a neurodegenerative condition characterized by the accumulation of polyglucosan bodies (PBs) throughout the brain. Alongside metabolic and molecular alterations, neuroinflammation has emerged as another key histopathological feature of LD. METHODS To investigate the role of astrocytes and microglia in LD, we performed a systematic review according to the PRISMA statement. PubMed, Scopus, and Web-of-Science database searches were performed independently by two reviewers. RESULTS Thirty-five studies analyzing the relationship of astrocytes and microglia with LD and/or the effects of anti-inflammatory treatments in LD animal models were identified and included in the review. Although LD has long been dominated by a neuronocentric view, a growing body of evidence suggests a role of glial cells in the disease, starting with the finding that these cells accumulate PBs. We discuss the potential meaning of glial PB accumulations, the likely factors activating glial cells, and the possible contribution of glial cells to LD neurodegeneration and epilepsy. CONCLUSIONS Given the evidence for the role of neuroinflammation in LD, future studies should consider glial cells as a potential therapeutic target for modifying/delaying LD progression; however, it should be kept in mind that these cells can potentially assume multiple reactive phenotypes, which could influence the therapeutic response.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Correspondence: (S.D.V.); (F.M.S.)
| | - Maria Marchese
- Neurobiology, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Neurobiology, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Correspondence: (S.D.V.); (F.M.S.)
| |
Collapse
|
11
|
Young LEA, Conroy LR, Clarke HA, Hawkinson TR, Bolton KE, Sanders WC, Chang JE, Webb MB, Alilain WJ, Vander Kooi CW, Drake RR, Andres DA, Badgett TC, Wagner LM, Allison DB, Sun RC, Gentry MS. In situ mass spectrometry imaging reveals heterogeneous glycogen stores in human normal and cancerous tissues. EMBO Mol Med 2022; 14:e16029. [PMID: 36059248 PMCID: PMC9641418 DOI: 10.15252/emmm.202216029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Glycogen dysregulation is a hallmark of aging, and aberrant glycogen drives metabolic reprogramming and pathogenesis in multiple diseases. However, glycogen heterogeneity in healthy and diseased tissues remains largely unknown. Herein, we describe a method to define spatial glycogen architecture in mouse and human tissues using matrix-assisted laser desorption/ionization mass spectrometry imaging. This assay provides robust and sensitive spatial glycogen quantification and architecture characterization in the brain, liver, kidney, testis, lung, bladder, and even the bone. Armed with this tool, we interrogated glycogen spatial distribution and architecture in different types of human cancers. We demonstrate that glycogen stores and architecture are heterogeneous among diseases. Additionally, we observe unique hyperphosphorylated glycogen accumulation in Ewing sarcoma, a pediatric bone cancer. Using preclinical models, we correct glycogen hyperphosphorylation in Ewing sarcoma through genetic and pharmacological interventions that ablate in vivo tumor growth, demonstrating the clinical therapeutic potential of targeting glycogen in Ewing sarcoma.
Collapse
Affiliation(s)
- Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
| | - Lindsey R Conroy
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Harrison A Clarke
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Tara R Hawkinson
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kayli E Bolton
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - William C Sanders
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Josephine E Chang
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Madison B Webb
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Warren J Alilain
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKYUSA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Tom C Badgett
- Pediatric Hematology‐Oncology, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Lars M Wagner
- Pediatric Hematology‐OncologyDuke UniversityDurhamNCUSA
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Ramon C Sun
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKYUSA
- Department of Biochemistry & Molecular Biology, College of MedicineUniversity of FloridaGainesvilleFLUSA
- Center for Advanced Spatial Biomolecule ResearchUniversity of FloridaGainesvilleFLUSA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Biochemistry & Molecular Biology, College of MedicineUniversity of FloridaGainesvilleFLUSA
- Center for Advanced Spatial Biomolecule ResearchUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
12
|
Nitschke S, Sullivan MA, Mitra S, Marchioni C, Lee JP Y, Smith BH, Ahonen S, Wu J, Chown E, Wang P, Petković S, Zhao X, DiGiovanni LF, Perri AM, Israelian L, Grossman TR, Kordasiewicz H, Vilaplana F, Iwai K, Nitschke F, Minassian BA. Glycogen synthase downregulation rescues the amylopectinosis of murine RBCK1 deficiency. Brain 2022; 145:2361-2377. [PMID: 35084461 PMCID: PMC9612801 DOI: 10.1093/brain/awac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 01/09/2022] [Indexed: 12/06/2023] Open
Abstract
Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.
Collapse
Affiliation(s)
- Silvia Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitchell A Sullivan
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Glycation and Diabetes Complications, Mater Research Institute–The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charlotte R Marchioni
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer P Y Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Brandon H Smith
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin E Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Sara Petković
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Laura F DiGiovanni
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Lori Israelian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Tamar R Grossman
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Holly Kordasiewicz
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm 10691, Sweden
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berge A Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Varea O, Guinovart JJ, Duran J. Malin restoration as proof of concept for gene therapy for Lafora disease. Brain Commun 2022; 4:fcac168. [PMID: 35813879 PMCID: PMC9260307 DOI: 10.1093/braincomms/fcac168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Lafora disease is a fatal neurodegenerative childhood dementia caused by loss-of-function mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of abnormal glycogen aggregates known as Lafora bodies (LBs) in the brain and other tissues. These aggregates are responsible for the pathological features of the disease. As a monogenic disorder, Lafora disease is a good candidate for gene therapy-based approaches. However, most patients are diagnosed after the appearance of the first symptoms and thus when LBs are already present in the brain. In this context, it was not clear whether the restoration of a normal copy of the defective gene (either laforin or malin) would prove effective. Here we evaluated the effect of restoring malin in a malin-deficient mouse model of Lafora disease as a proof of concept for gene replacement therapy. To this end, we generated a malin-deficient mouse in which malin expression can be induced at a certain time. Our results reveal that malin restoration at an advanced stage of the disease arrests the accumulation of LBs in brain and muscle, induces the degradation of laforin and glycogen synthase bound to the aggregates, and ameliorates neuroinflammation. These results identify malin restoration as the first therapeutic strategy to show effectiveness when applied at advanced stages of Lafora disease.
Collapse
Affiliation(s)
- Olga Varea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid 28029 , Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona , Barcelona 08028 , Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid 28029 , Spain
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) , Barcelona 08017 , Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
| |
Collapse
|
14
|
Gentry MS, Markussen KH, Donohue KJ. Two Diseases-One Preclinical Treatment Targeting Glycogen Synthesis. Neurotherapeutics 2022; 19:977-981. [PMID: 35460010 PMCID: PMC9294113 DOI: 10.1007/s13311-022-01240-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 01/30/2023] Open
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Kia H Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Katherine J Donohue
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Gumusgoz E, Kasiri S, Guisso DR, Wu J, Dear M, Verhalen B, Minassian BA. AAV-Mediated Artificial miRNA Reduces Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics 2022; 19:982-993. [PMID: 35347645 PMCID: PMC9294094 DOI: 10.1007/s13311-022-01218-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Dikran R Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Matthew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Brandy Verhalen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Present affiliation: Corteva Agriscience, Johnston, IA, 50131, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
16
|
Pellegrini P, Hervera A, Varea O, Brewer MK, López-Soldado I, Guitart A, Aguilera M, Prats N, del Río JA, Guinovart JJ, Duran J. Lack of p62 Impairs Glycogen Aggregation and Exacerbates Pathology in a Mouse Model of Myoclonic Epilepsy of Lafora. Mol Neurobiol 2021; 59:1214-1229. [PMID: 34962634 PMCID: PMC8857170 DOI: 10.1007/s12035-021-02682-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/04/2021] [Indexed: 01/06/2023]
Abstract
Lafora disease (LD) is a fatal childhood-onset dementia characterized by the extensive accumulation of glycogen aggregates—the so-called Lafora Bodies (LBs)—in several organs. The accumulation of LBs in the brain underlies the neurological phenotype of the disease. LBs are composed of abnormal glycogen and various associated proteins, including p62, an autophagy adaptor that participates in the aggregation and clearance of misfolded proteins. To study the role of p62 in the formation of LBs and its participation in the pathology of LD, we generated a mouse model of the disease (malinKO) lacking p62. Deletion of p62 prevented LB accumulation in skeletal muscle and cardiac tissue. In the brain, the absence of p62 altered LB morphology and increased susceptibility to epilepsy. These results demonstrate that p62 participates in the formation of LBs and suggest that the sequestration of abnormal glycogen into LBs is a protective mechanism through which it reduces the deleterious consequences of its accumulation in the brain.
Collapse
Affiliation(s)
- Pasquale Pellegrini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain
| | - Olga Varea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - M. Kathryn Brewer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Anna Guitart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - José Antonio del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
17
|
LUBAC: a new player in polyglucosan body disease. Biochem Soc Trans 2021; 49:2443-2454. [PMID: 34709403 PMCID: PMC8589444 DOI: 10.1042/bst20210838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Altered protein ubiquitination is associated with the pathobiology of numerous diseases; however, its involvement in glycogen metabolism and associated polyglucosan body (PB) disease has not been investigated in depth. In PB disease, excessively long and less branched glycogen chains (polyglucosan bodies, PBs) are formed, which precipitate in different tissues causing myopathy, cardiomyopathy and/or neurodegeneration. Linear ubiquitin chain assembly complex (LUBAC) is a multi-protein complex composed of two E3 ubiquitin ligases HOIL-1L and HOIP and an adaptor protein SHARPIN. Together they are responsible for M1-linked ubiquitination of substrates primarily related to immune signaling and cell death pathways. Consequently, severe immunodeficiency is a hallmark of many LUBAC deficient patients. Remarkably, all HOIL-1L deficient patients exhibit accumulation of PBs in different organs especially skeletal and cardiac muscle resulting in myopathy and cardiomyopathy with heart failure. This emphasizes LUBAC's important role in glycogen metabolism. To date, neither a glycogen metabolism-related LUBAC substrate nor the molecular mechanism are known. Hence, current reviews on LUBAC's involvement in glycogen metabolism are lacking. Here, we aim to fill this gap by describing LUBAC's involvement in PB disease. We present a comprehensive review of LUBAC structure, its role in M1-linked and other types of atypical ubiquitination, PB pathology in human patients and findings in new mouse models to study the disease. We conclude the review with recent drug developments and near-future gene-based therapeutic approaches to treat LUBAC related PB disease.
Collapse
|
18
|
Kakhlon O, Vaknin H, Mishra K, D’Souza J, Marisat M, Sprecher U, Wald‐Altman S, Dukhovny A, Raviv Y, Da’adoosh B, Engel H, Benhamron S, Nitzan K, Sweetat S, Permyakova A, Mordechai A, Akman HO, Rosenmann H, Lossos A, Tam J, Minassian BA, Weil M. Alleviation of a polyglucosan storage disorder by enhancement of autophagic glycogen catabolism. EMBO Mol Med 2021; 13:e14554. [PMID: 34486811 PMCID: PMC8495453 DOI: 10.15252/emmm.202114554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.
Collapse
Affiliation(s)
- Or Kakhlon
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Hilla Vaknin
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Kumudesh Mishra
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Jeevitha D’Souza
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Monzer Marisat
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Uri Sprecher
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Shane Wald‐Altman
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Anna Dukhovny
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Yuval Raviv
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Benny Da’adoosh
- Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel AvivIsrael
| | - Hamutal Engel
- Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel AvivIsrael
| | - Sandrine Benhamron
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Keren Nitzan
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Sahar Sweetat
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Anna Permyakova
- Obesity and Metabolism LaboratoryInstitute for Drug ResearchSchool of PharmacyFaculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Anat Mordechai
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Hasan Orhan Akman
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Hanna Rosenmann
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Alexander Lossos
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Joseph Tam
- Obesity and Metabolism LaboratoryInstitute for Drug ResearchSchool of PharmacyFaculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Berge A. Minassian
- Division of NeurologyDepartment of PediatricsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
19
|
Markussen KH, Macedo JKA, Machío M, Dolce A, Goldberg YP, Vander Kooi CW, Gentry MS. The 6th International Lafora Epilepsy Workshop: Advances in the search for a cure. Epilepsy Behav 2021; 119:107975. [PMID: 33946009 PMCID: PMC8154720 DOI: 10.1016/j.yebeh.2021.107975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Lafora disease (LD) is a fatal childhood dementia with severe epilepsy and also a glycogen storage disease that is caused by recessive mutations in either the EPM2A or EPM2B genes. Aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) are both a hallmark and driver of the disease. The 6th International Lafora Epilepsy Workshop was held online due to the pandemic. Nearly 300 clinicians, academic and industry scientists, trainees, NIH representatives, and LD friends and family members participated in the event. Speakers covered aspects of LD including progress towards the clinic, the importance of establishing clinical progression, translational progress with repurposed drugs and additional pre-clinical therapies, and novel discoveries that define foundational LD mechanisms.
Collapse
Affiliation(s)
- Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Alliance, and Epilepsy Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Jessica K. A. Macedo
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Alliance, and Epilepsy Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - María Machío
- Fundación Jimenez Diaz Hospital, UAM, 28045 Madrid, Spain
| | - Alison Dolce
- Division of Neurology, Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas 75390, USA
| | - Y. Paul Goldberg
- Department of Clinical Development, Ionis Pharmaceuticals, Carlsbad, CA, 92008 USA
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Alliance, and Epilepsy Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA,Lafora Epilepsy Cure Initiative (LECI), USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Alliance, and Epilepsy Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA,Lafora Epilepsy Cure Initiative (LECI), USA
| |
Collapse
|
20
|
Ahonen S, Nitschke S, Grossman TR, Kordasiewicz H, Wang P, Zhao X, Guisso DR, Kasiri S, Nitschke F, Minassian BA. Gys1 antisense therapy rescues neuropathological bases of murine Lafora disease. Brain 2021; 144:2985-2993. [PMID: 33993268 DOI: 10.1093/brain/awab194] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 11/14/2022] Open
Abstract
Lafora disease is a fatal progressive myoclonus epilepsy. At root, it is due to constant acquisition of branches that are too long in a subgroup of glycogen molecules, leading them to precipitate and accumulate into Lafora bodies, which drive a neuroinflammatory response and neurodegeneration. As a potential therapy, we aimed to downregulate glycogen synthase, the enzyme responsible for glycogen branch elongation, in the disease's mouse models. We synthesized an antisense oligonucleotide (Gys1-ASO) that targets the mRNA of the brain-expressed glycogen synthase 1 gene (Gys1). We administered Gys1-ASO by intracerebroventricular injection and analyzed the pathological hallmarks of Lafora disease, namely glycogen accumulation, Lafora body formation, and neuroinflammation. Gys1-ASO prevented Lafora body formation in young mice that had not yet formed them. In older mice that already exhibited Lafora bodies, Gys1-ASO inhibited further accumulation, markedly preventing large Lafora bodies characteristic of advanced disease. Inhibition of Lafora body formation was associated with prevention of astrogliosis and strong trends towards correction of dysregulated expression of disease immune and neuroinflammatory markers. Lafora disease manifests gradually in previously healthy teenagers. Our work provides proof of principle that an antisense oligonucleotide targeting the GYS1 mRNA could prevent, and halt progression of, this catastrophic epilepsy.
Collapse
Affiliation(s)
- Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Silvia Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tamar R Grossman
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Holly Kordasiewicz
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Dikran R Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berge A Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Gumusgoz E, Guisso DR, Kasiri S, Wu J, Dear M, Verhalen B, Nitschke S, Mitra S, Nitschke F, Minassian BA. Targeting Gys1 with AAV-SaCas9 Decreases Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics 2021; 18:1414-1425. [PMID: 33830476 PMCID: PMC8423949 DOI: 10.1007/s13311-021-01040-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Many adult and most childhood neurological diseases have a genetic basis. CRISPR/Cas9 biotechnology holds great promise in neurological therapy, pending the clearance of major delivery, efficiency, and specificity hurdles. We applied CRISPR/Cas9 genome editing in its simplest modality, namely inducing gene sequence disruption, to one adult and one pediatric disease. Adult polyglucosan body disease is a neurodegenerative disease resembling amyotrophic lateral sclerosis. Lafora disease is a severe late childhood onset progressive myoclonus epilepsy. The pathogenic insult in both is formation in the brain of glycogen with overlong branches, which precipitates and accumulates into polyglucosan bodies that drive neuroinflammation and neurodegeneration. We packaged Staphylococcus aureus Cas9 and a guide RNA targeting the glycogen synthase gene, Gys1, responsible for brain glycogen branch elongation in AAV9 virus, which we delivered by neonatal intracerebroventricular injection to one mouse model of adult polyglucosan body disease and two mouse models of Lafora disease. This resulted, in all three models, in editing of approximately 17% of Gys1 alleles and a similar extent of reduction of Gys1 mRNA across the brain. The latter led to approximately 50% reductions of GYS1 protein, abnormal glycogen accumulation, and polyglucosan bodies, as well as ameliorations of neuroinflammatory markers in all three models. Our work represents proof of principle for virally delivered CRISPR/Cas9 neurotherapeutics in an adult-onset (adult polyglucosan body) and a childhood-onset (Lafora) neurological diseases.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dikran R Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brandy Verhalen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Present address: Corteva Agriscience, IA, 50131, Johnston, USA
| | - Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
22
|
Li X, Ye Y, Wang B, Zhao S. miR-140-5p Aggravates Insulin Resistance via Directly Targeting GYS1 and PPP1CC in Insulin-Resistant HepG2 Cells. Diabetes Metab Syndr Obes 2021; 14:2515-2524. [PMID: 34113143 PMCID: PMC8187005 DOI: 10.2147/dmso.s304055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Much attention has been paid to the regulatory role of microRNA (miRNA) in insulin resistance. Nevertheless, how miR-140-5p regulates insulin resistance remains unclear. In this research, we aim to investigate the roles of miR-140-5p in insulin resistance. METHODS qRT-PCR is used to analyze the expression level of miR-140-5p in insulin-resistant HepG2 cells. Glucose consumption and glucose uptake are detected to study the effect of miR-140-5p knockdown in insulin-resistant HepG2 cells and miR-140-5p overexpression in HepG2 cells. Bioinformatic analysis, luciferase reporter assay and confirmatory experiments are applied to identify the target gene bound with miR-140-5p and study the effect of miR-140-5p on the downstream substrates of target genes. Rescue experiments have verified the roles of miR-140-5p and target gene in glucose metabolism. RESULTS The expression level of miR-140-5p was upregulated in insulin-resistant HepG2 cells and was significantly correlated with cellular glucose metabolism. Functionally, miR-140-5p overexpression induced impairment of glucose consumption and glucose uptake. Besides, bioinformatics analysis indicated that glycogen synthetase (GYS1) and protein phosphatase 1 catalytic subunit gamma (PPP1CC) were the target genes of miR-140-5p. Western blotting and qRT-PCR results revealed a negative correlation between GYS1, PPP1CC and miR-140-5p. The glycogen detection results showed that miR140-5p inhibited the production of the downstream substrates of the target gene. Rescue experiments showed that inhibition of GYS1 or PPP1CC partially enhanced the insulin-resistant effects of miR-140-5p knockdown in insulin-resistant HepG2 cells. CONCLUSION miR-140-5p overexpression augments the development of insulin resistance and miR-140-5p may be served as a therapeutic target of metabolic diseases.
Collapse
Affiliation(s)
- Xuemei Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
- Correspondence: Xuemei Li; Shujun Zhao NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China Email ;
| | - Yan Ye
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| | - Shujun Zhao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| |
Collapse
|