1
|
Hirayama Y, Matsunaga M, Fukao A, Kobayashi K. Biological evaluation of signal transducer and activator of transcription 3 (STAT3) targeting by phaeosphaeride A and its analogs. Bioorg Med Chem Lett 2024; 114:130004. [PMID: 39426431 DOI: 10.1016/j.bmcl.2024.130004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The inhibitory activities of phaeosphaeride A (PPA), phaeosphaeride B, and four synthetic derivatives against phosphorylation of signal transducer and activator of transcription 3 (STAT3) and cell proliferation in cervical (HeLa) and breast (MDA-MB-231) cancer cells were evaluated. PPA inhibited IL-6-induced STAT3 phosphorylation and cell proliferation at similar concentrations. The structure-activity relationship studies revealed that the enantiomer of PPA was the most potent of the evaluated phaeosphaerides in both inhibiting STAT3 phosphorylation and cell growth. PPA clearly inhibited the IL-6-activated STAT3 signaling pathway. However, the presence or absence of activation of the STAT3 signaling pathway in cells showed no relationship to the antiproliferative activity. Notably, the possible covalent bond-forming ability of PPA was critical for its biological activities.
Collapse
Affiliation(s)
- Yuichiro Hirayama
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| | - Masahiro Matsunaga
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Ayaka Fukao
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Kenichi Kobayashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
2
|
Oleksak P, Rysanek D, Vancurova M, Vasicova P, Urbancokova A, Novak J, Maurencova D, Kashmel P, Houserova J, Mikyskova R, Novotny O, Reinis M, Juda P, Hons M, Kroupova J, Sedlak D, Sulimenko T, Draber P, Chlubnova M, Nepovimova E, Kuca K, Lisa M, Andrys R, Kobrlova T, Soukup O, Janousek J, Prchal L, Bartek J, Musilek K, Hodny Z. Discovery of a 6-Aminobenzo[ b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities. ACS Pharmacol Transl Sci 2024; 7:2755-2783. [PMID: 39296273 PMCID: PMC11406704 DOI: 10.1021/acsptsci.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.
Collapse
Affiliation(s)
- Patrik Oleksak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Vancurova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Dominika Maurencova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Kashmel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Houserova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ondrej Novotny
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Jirina Kroupova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Draber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Chlubnova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Miroslav Lisa
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Janousek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Danish Cancer Institute, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
3
|
Nie P, Cao Z, Yu R, Dong C, Zhang W, Meng Y, Zhang H, Pan Y, Tong Z, Jiang X, Wang S, Zhu M, Han Y, Wang W, Zhang Y, Tan L, Li C, Xu Y, An L, Li B, Jiao S, Zhou Z. Targeting p97-Npl4 interaction inhibits tumor T reg cell development to enhance tumor immunity. Nat Immunol 2024; 25:1623-1636. [PMID: 39107403 DOI: 10.1038/s41590-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/28/2024] [Indexed: 09/01/2024]
Abstract
Targeting tumor-infiltrating regulatory T (TI-Treg) cells is a potential strategy for cancer therapy. The ATPase p97 in complex with cofactors (such as Npl4) has been investigated as an antitumor drug target; however, it is unclear whether p97 has a function in immune cells or immunotherapy. Here we show that thonzonium bromide is an inhibitor of the interaction of p97 and Npl4 and that this p97-Npl4 complex has a critical function in TI-Treg cells. Thonzonium bromide boosts antitumor immunity without affecting peripheral Treg cell homeostasis. The p97-Npl4 complex bridges Stat3 with E3 ligases PDLIM2 and PDLIM5, thereby promoting Stat3 degradation and enabling TI-Treg cell development. Collectively, this work shows an important role for the p97-Npl4 complex in controlling Treg-TH17 cell balance in tumors and identifies possible targets for immunotherapy.
Collapse
Affiliation(s)
- Pingping Nie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Ruixian Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weihong Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Yan Meng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhu Tong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoya Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengwen Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
5
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Zhu Y, Tan J, Wang Y, Gong Y, Zhang X, Yuan Z, Lu X, Tang H, Zhang Z, Jiang X, Zhu W, Gong L. Atg5 deficiency in macrophages protects against kidney fibrosis via the CCR6-CCL20 axis. Cell Commun Signal 2024; 22:223. [PMID: 38594728 PMCID: PMC11003172 DOI: 10.1186/s12964-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway that regulates macrophage activation, differentiation, and polarization. Autophagy related 5 (Atg5) is a key protein involved in phagocytic membrane elongation in autophagic vesicles that forms a complex with Atg12 and Atg16L1. Alterations in Atg5 are related to both acute and chronic kidney diseases in experimental models. However, the role of macrophage-expressed Atg5 in acute kidney injury remains unclear. METHODS Using a myeloid cell-specific Atg5 knockout (MΦ atg5-/-) mouse, we established renal ischemia/reperfusion and unilateral ureteral obstruction models to evaluate the role of macrophage Atg5 in renal macrophage migration and fibrosis. RESULTS Based on changes in the serum urea nitrogen and creatinine levels, Atg5 deletion had a minimal effect on renal function in the early stages after mild injury; however, MΦ atg5-/- mice had reduced renal fibrosis and reduced macrophage recruitment after 4 weeks of ischemia/reperfusion injury and 2 weeks of unilateral ureteral obstruction injury. Atg5 deficiency impaired the CCL20-CCR6 axis after severe ischemic kidneys. Chemotactic responses of bone marrow-derived monocytes (BMDMs) from MΦ atg5-/- mice to CCL20 were significantly attenuated compared with those of wild-type BMDMs, and this might be caused by the inhibition of PI3K, AKT, and ERK1/2 activation. CONCLUSIONS Our data indicate that Atg5 deficiency decreased macrophage migration by impairing the CCL20-CCR6 axis and inhibited M2 polarization, thereby improving kidney fibrosis.
Collapse
Affiliation(s)
- Yufeng Zhu
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Jiexing Tan
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Yuanzhan Wang
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Yuhong Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyu Lu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huifang Tang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Zhiming Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| | - Wei Zhu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Fu X, Murakami M, Hashimoto O, Matsui T, Funaba M. Regulatory mechanisms underlying interleukin-6 expression in murine brown adipocytes. Cell Biochem Funct 2024; 42:e3915. [PMID: 38269513 DOI: 10.1002/cbf.3915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Three types of adipocytes, white, brown, and beige, regulate the systemic energy balance through the storage and expenditure of chemical energy. In addition, adipocytes produce various bioactive molecules known as adipokines. In contrast to white adipocyte-derived molecules, less information is available on the adipokines produced by brown adipocytes (batokine). This study explored the regulatory expression of interleukin (IL)-6 in cell culture studies. Norepinephrine or a nonselective β-adrenergic receptor agonist increased the expression of IL-6 in primary brown adipocytes and HB2 brown adipocytes. Treatment with forskolin (Fsk), an activator of the cAMP-dependent protein kinase (PKA) pathway (downstream signaling of the β-adrenergic receptor), efficiently stimulated IL-6 expression in brown adipocytes and myotubes. Phosphorylated CREB and phosphorylated p38 MAP kinase levels were increased in Fsk-treated brown adipocytes within 5 min. In contrast, a long-term (∼60 min and ∼4 h) treatment with Fsk was required for increase in STAT3 phosphorylation and C/EBPβ expression, respectively. The PKA, p38 MAP kinase, STAT3, and C/EBPβ pathways are required for the maximal IL-6 expression induced by Fsk, which were verified by use of various inhibitors of these signal pathways. Vitamin C enhanced Fsk-induced IL-6 expression through the extracellular signal-regulated kinase activity. The present study provides basic information on the regulatory expression of IL-6 in activated brown adipocytes.
Collapse
Affiliation(s)
- Xiajie Fu
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Osamu Hashimoto
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Jaradat NJ, Hatmal M, Alqudah D, Taha MO. Computational workflow for discovering small molecular binders for shallow binding sites by integrating molecular dynamics simulation, pharmacophore modeling, and machine learning: STAT3 as case study. J Comput Aided Mol Des 2023; 37:659-678. [PMID: 37597062 DOI: 10.1007/s10822-023-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
STAT3 belongs to a family of seven transcription factors. It plays an important role in activating the transcription of various genes involved in a variety of cellular processes. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. However, since STAT3 inhibitors bind to the shallow SH2 domain of the protein, it is expected that hydration water molecules play significant role in ligand-binding complicating the discovery of potent binders. To remedy this issue, we herein propose to extract pharmacophores from molecular dynamics (MD) frames of a potent co-crystallized ligand complexed within STAT3 SH2 domain. Subsequently, we employ genetic function algorithm coupled with machine learning (GFA-ML) to explore the optimal combination of MD-derived pharmacophores that can account for the variations in bioactivity among a list of inhibitors. To enhance the dataset, the training and testing lists were augmented nearly a 100-fold by considering multiple conformers of the ligands. A single significant pharmacophore emerged after 188 ns of MD simulation to represent STAT3-ligand binding. Screening the National Cancer Institute (NCI) database with this model identified one low micromolar inhibitor most likely binds to the SH2 domain of STAT3 and inhibits this pathway.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Dana Alqudah
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
9
|
Strobel TD, Weber M, Heber N, Holzer A, Hoppe-Seyler K, Hoppe-Seyler F. Revisiting the role of endogenous STAT3 in HPV-positive cervical cancer cells. J Med Virol 2023; 95:e29230. [PMID: 38009614 DOI: 10.1002/jmv.29230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Novel treatment options for human papillomavirus (HPV)-induced cancers are urgently required. The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is considered to be constitutively active in HPV-positive cervical cancer cells and essential for their proliferation. Moreover, STAT3 was reported to undergo mutually stimulatory interactions with the HPV E6/E7 oncogenes. Thus, inhibiting STAT3 in HPV-positive cancer cells is under discussion to provide a powerful novel therapeutic strategy. We here show that the antifungal drug ciclopirox destabilizes the STAT3 protein by acting as an iron chelator. However, by exploring the functional consequences of STAT3 inhibition in HPV-positive cancer cells, we obtained several unexpected results. Chemical STAT3 inhibitors heterogeneously affect cervical cancer cell proliferation and those which act antiproliferative also block the growth of STAT3 knockout cells, indicating induction of off-target effects. In contrast to several chemical inhibitors, genetic inhibition of STAT3 expression by either RNA interference or the CRISPR/Cas9 method does not appreciably affect cervical cancer cell proliferation. Transcriptome analyses indicate that blocking STAT3 expression in HPV-positive cancer cells has very limited effects on putative STAT3 target genes. Although the targeted inhibition of specific growth-promoting signaling pathways leads to a feedback activation of STAT3 in cervical cancer cells via Janus kinase 1/2, this does not lead to treatment resistance. Moreover, we did not obtain experimental evidence for a STAT3-linked activation of HPV E6/E7 oncogene expression or, vice versa, an E6/E7-dependent activation of STAT3, at endogenous conditions in cervical cancer cells. Collectively, these findings question the essential role of STAT3 in cervical cancer cell proliferation and the strategy to inhibit STAT3 in these cells for therapeutic purposes.
Collapse
Affiliation(s)
- Tobias D Strobel
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maria Weber
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nora Heber
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Angela Holzer
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Xu J, Yu C, Zeng X, Tang W, Xu S, Tang L, Huang Y, Sun Z, Yu T. Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis. Eur J Med Res 2023; 28:461. [PMID: 37885035 PMCID: PMC10605986 DOI: 10.1186/s40001-023-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer, as a daunting global health threat, has driven an exponential growth in related research activity in recent decades. An area of research of paramount importance is protein synthesis, and the analysis of specific proteins inextricably linked to breast cancer. In this article, we undertake a bibliometric analysis of the literature on breast cancer and protein synthesis, aiming to provide crucial insights into this esoteric realm of investigation. Our approach was to scour the Web of Science database, between 2003 and 2022, for articles containing the keywords "breast cancer" and "protein synthesis" in their title, abstract, or keywords. We deployed bibliometric analysis software, exploring a range of measures such as publication output, citation counts, co-citation analysis, and keyword analysis. Our search yielded 2998 articles that met our inclusion criteria. The number of publications in this area has steadily increased, with a significant rise observed after 2003. Most of the articles were published in oncology or biology-related journals, with the most publications in Journal of Biological Chemistry, Cancer Research, Proceedings of the National Academy of Sciences of the United States of America, and Oncogene. Keyword analysis revealed that "breast cancer," "expression," "cancer," "protein," and "translation" were the most commonly researched topics. In conclusion, our bibliometric analysis of breast cancer and related protein synthesis literature underscores the burgeoning interest in this research. The focus of the research is primarily on the relationship between protein expression in breast cancer and the development and treatment of tumors. These studies have been instrumental in the diagnosis and treatment of breast cancer. Sustained research in this area will yield essential insights into the biology of breast cancer and the genesis of cutting-edge therapies.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Weifeng Tang
- Fuzhou Medical College of Nanchang University, Fuzhou, 344000, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| |
Collapse
|
11
|
Wang R, Du TT, Liu WQ, Liu YC, Yang YD, Hu JP, Ji M, Yang BB, Li L, Chen XG. Discovery, Optimization, and Evaluation of Novel N-(Benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine Analogues as Potent STAT3 Inhibitors for Cancer Treatment. J Med Chem 2023; 66:12373-12395. [PMID: 37594012 DOI: 10.1021/acs.jmedchem.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive target for cancer therapy. However, identifying potent and selective STAT3 small-molecule inhibitors with drug-like properties remains challenging. Based on a scaffold combination strategy, compounds with a novel N-(benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine scaffold were designed and their inhibition of the interleukin-6 (IL-6)/JAK/STAT3 pathway was tested in HEK-Blue IL-6 reporter cells. After optimization of lead compound 12, compound 40 was identified as a selective STAT3 inhibitor that directly binds the SH2 domain to inhibit STAT3 phosphorylation, translocation, and downstream gene transcription. Compound 40 exhibited antiproliferative activities against STAT3-overactivated DU145 (IC50 value = 2.97 μM) and MDA-MB-231 (IC50 value = 3.26 μM) cancer cells and induced cell cycle arrest and apoptosis. In the DU145 xenograft model, compound 40 showed in vivo antitumor efficacy following intraperitoneal administration, with a tumor growth inhibition rate of 65.3% at 50 mg/kg, indicating promise for further development.
Collapse
Affiliation(s)
- Ru Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Ting-Ting Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Liu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Yi-Chen Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Jin-Ping Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Xiao-Guang Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Hu X, Jiao F, Deng J, Zhou Z, Chen S, Liu C, Liu Z, Guo F. Intestinal Epithelial Cell-specific Deletion of Cytokine-inducible SH2-containing Protein Alleviates Experimental Colitis in Ageing Mice. J Crohns Colitis 2023; 17:1278-1290. [PMID: 36881790 DOI: 10.1093/ecco-jcc/jjad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 03/09/2023]
Abstract
BACKGROUND AND AIMS The incidence of inflammatory bowel disease [IBD] in the elderly has increased in recent years. However, the mechanisms underlying the ageing-related IBD susceptibility remain elusive. Cytokine-inducible SH2-containing protein [CISH] is involved in regulating metabolism, the expansion of intestinal tuft cells and type-2 innate lymphoid cells, and ageing-related airway inflammation. Here, we investigated the role of CISH in ageing-related colitis susceptibility. METHODS CISH and phosphorylated signal transducer and activator of transcription-3 [p-STAT3] levels were evaluated in the colons of ageing mice and older ulcerative colitis [UC] patients. Mice with intestinal epithelial cell-specific knockout of Cish [CishΔIEC] and Cish-floxed mice were administered dextran sodium sulphate [DSS] or trinitrobenzene sulphonic acid [TNBS] to induce colitis. Colonic tissues were analysed in quantitative real-time polymerase chain reaction, immunoblotting, immunohistochemical, and histological staining experiments. Differentially expressed genes from colonic epithelia were analysed by RNA sequencing. RESULTS Ageing increased the severity of DSS-induced colitis and the expression of colonic epithelial CISH in mice. CishΔIEC prevented DSS- or TNBS-induced colitis in middle-aged mice but not in young mice. RNA-sequencing analysis revealed that CishΔIEC significantly suppressed DSS-induced oxidative stress and proinflammatory responses. During ageing in the CCD841 cell model, knockdown of CISH decreased ageing-induced oxidative stress and proinflammatory responses, whereas these effects were compromised by knocking down or inhibiting STAT3. The increase in CISH expression was higher in the colonic mucosa of older patients with UC than in that of healthy controls. CONCLUSIONS CISH might be a proinflammatory regulator in ageing; therefore, targeted therapy against CISH may provide a novel strategy for treating ageing-related IBD.
Collapse
Affiliation(s)
- Xiaoming Hu
- Zhongshan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Fuxin Jiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ziheng Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- Zhongshan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Changqin Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Feifan Guo
- Zhongshan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:cancers15092485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
14
|
Hartl L, Duitman J, Maarten FB, Spek CA. The Dual Role of C/EBPδ in Cancer. Crit Rev Oncol Hematol 2023; 185:103983. [PMID: 37024021 DOI: 10.1016/j.critrevonc.2023.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
CCAAT/Enhancer-Binding Protein delta (C/EBPδ) is a transcription factor involved in differentiation and inflammation. While sparsely expressed in adult tissues, aberrant expression of C/EBPδ has been associated with different cancers. Initially, re-expression of C/EBPδ in cell cultures limited tumor cell proliferation, assigning it a tumor suppressor role. However, opposing observations were made in pre-clinical models and patients, suggesting that C/EBPδ not only mediates cell proliferation but dictates a broader spectrum of tumorigenesis-related effects. It is now widely accepted that C/EBPδ contributes to an inflammatory, tumor-promoting microenvironment, aids hypoxia adaption and contributes to the recruitment of blood vessels for improved nutrient supply to tumor cells and facilitated extravasation. This review summarizes the work published on this transcription factor in the field of cancer over the past decade. It points out areas in which a consensus on C/EBPδ's role appears to emerge and seek to explain seemingly contradictory results.
Collapse
Affiliation(s)
- Leonie Hartl
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands.
| | - JanWillem Duitman
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, 1105 AZ Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, the Netherlands
| | - F Bijlsma Maarten
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| | - C Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
15
|
Mikyskova R, Sapeg O, Psotka M, Novotny O, Hodny Z, Balintova S, Malinak D, Svobodova J, Andrys R, Rysanek D, Musilek K, Reinis M. STAT3 inhibitor Stattic and its analogues inhibit STAT3 phosphorylation and modulate cytokine secretion in senescent tumour cells. Mol Med Rep 2023; 27:81. [PMID: 36825563 PMCID: PMC10018236 DOI: 10.3892/mmr.2023.12968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) signalling serves an important role in carcinogenesis and cellular senescence, and its inhibition in tumour cells represents an attractive therapeutic target. Premature cellular senescence, a process of permanent proliferative arrest of cells in response to various inducers, such as cytostatic drugs or ionizing radiation, is accompanied by morphological and secretory changes, and by altered susceptibility to chemotherapeutic agents, which can thereby complicate their eradication by cancer therapies. In the present study, the responsiveness of proliferating and docetaxel (DTX)‑induced senescent cancer cells to small molecule STAT3 inhibitor Stattic and its analogues was evaluated using tumour cell lines. These agents displayed cytotoxic effects in cell viability assays on both proliferating and senescent murine TRAMP‑C2 and TC‑1 cells; however, senescent cells were markedly more resistant. Western blot analysis revealed that Stattic and its analogues effectively inhibited constitutive STAT3 phosphorylation in both proliferating and senescent cells. Furthermore, whether the Stattic‑derived inhibitor K1836 could affect senescence induction or modulate the phenotype of senescent cells was evaluated. K1836 treatment demonstrated no effect on senescence induction by DTX. However, the K1836 compound significantly modulated secretion of certain cytokines (interleukin‑6, growth‑regulated oncogene α and monocyte chemoattractant protein‑1). In summary, the present study demonstrated differences between proliferating and senescent tumour cells in terms of their susceptibility to STAT3 inhibitors and demonstrated the ability of the new STAT3 inhibitor K1836 to affect the secretion of essential components of the senescence‑associated secretory phenotype. The present study may be useful for further development of STAT3 inhibitor‑based therapy of cancer or age‑related diseases.
Collapse
Affiliation(s)
- Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Olena Sapeg
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Novotny
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Zdeněk Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Sona Balintova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jana Svobodova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
16
|
Jaradat NJ, Alshaer W, Hatmal M, Taha MO. Discovery of new STAT3 inhibitors as anticancer agents using ligand-receptor contact fingerprints and docking-augmented machine learning. RSC Adv 2023; 13:4623-4640. [PMID: 36760267 PMCID: PMC9896621 DOI: 10.1039/d2ra07007c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
STAT3 belongs to a family of seven vital transcription factors. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. In this work, we used multiple docked poses of STAT3 inhibitors to augment training data for machine learning QSAR modeling. Ligand-Receptor Contact Fingerprints and scoring values were implemented as descriptor variables. Escalating docking-scoring consensus levels were scanned against orthogonal machine learners, and the best learners (Random Forests and XGBoost) were coupled with genetic algorithm and Shapley additive explanations (SHAP) to identify critical descriptors that determine anti-STAT3 bioactivity to be translated into pharmacophore model(s). Two successful pharmacophores were deduced and subsequently used for in silico screening against the National Cancer Institute (NCI) database. A total of 26 hits were evaluated in vitro for their anti-STAT3 bioactivities. Out of which, three hits of novel chemotypes, showed cytotoxic IC50 values in the nanomolar range (35 nM to 6.7 μM). However, two are potent dihydrofolate reductase (DHFR) inhibitors and therefore should have significant indirect STAT3 inhibitory effects. The third hit (cytotoxic IC50 = 0.44 μM) is purely direct STAT3 inhibitor (devoid of DHFR activity) and caused, at its cytotoxic IC50, more than two-fold reduction in the expression of STAT3 downstream genes (c-Myc and Bcl-xL). The presented work indicates that the concept of data augmentation using multiple docked poses is a promising strategy for generating valid machine learning models capable of discriminating active from inactive compounds.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University P.O. Box 330127 Zarqa 13133 Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| |
Collapse
|
17
|
Tan J, Xu T, Gou Y, Wang H, Liang Z, Cao Y, Wang H, Yu Y, Jiao N, Zhang Z. CCL20/CCR6 axis mediates macrophages to promote proliferation and migration of ESCs by blocking autophagic flux in endometriosis. Stem Cell Res Ther 2022; 13:294. [PMID: 35841069 PMCID: PMC9284876 DOI: 10.1186/s13287-022-02981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Endometriosis (EMs) is a common benign gynecological disease that affects approximately 10% of females of reproductive age. Endometriosis ectopic lesions could recruit macrophages, which in turn facilitates endometriosis progression. Several studies have indicated that CCL20 derived from macrophages activates the expression of CCR6 in several cells and induces cell proliferation and migration. However, the function of the CCL20/CCR6 axis in the interactions between macrophages and endometriotic stromal cells (ESCs) in EMs has yet to be elucidated. Methods Ectopic and normal endometrial tissues were collected from 35 ovarian endometriosis patients and 21 control participants for immunohistochemical staining. It was confirmed that macrophages secreted CCL20 to promote CCR6 activation of ESCs during co-culture by ELISA, qRT-PCR and western blot analysis. CCK8 and Edu assays were used to detect cell proliferation, and wound healing and Transwell assay were used to detect cell migration. Autophagic flux was detected by measuring the protein expression levels of LC3 and P62by western blot and analyzing the red/yellow puncta after ESCs were transfected with mRFP-GFP-LC3 double fluorescence adenovirus (Ad‐LC3). Lysosomal function was tested by quantifying the fluorescent intensities of Lyso-tracker and Gal3 and activity of acid phosphatase. In addition, co-IP experiments verified the binding relationship between CCR6 and TFEB. Finally, the suppressive effect of CCL20-NAb on endometriosis lesions in vivo was demonstrated in mice models. Results We demonstrated that macrophages secreted CCL20 to promote CCR6 activation of ESCs during co-culture, which further induced the proliferation and migration of ESCs. We observed that the CCL20/CCR6 axis impaired lysosomal function and then blocked the autolysosome degradation process of autophagic flux in ESCs. The combination of CCR6 and TFEB to inhibit TFEB nuclear translocation mediates the role of the CCL20/CCR6 axis in the above process. We also found that co-culture with ESCs upregulated the production and secretion of CCL20 by macrophages. The suppression effect of CCL20-NAb on endometriosis lesions in vivo was demonstrated in mice models. Conclusions Our data indicate that macrophages block TFEB-mediated autolysosome degradation process of autophagic flux in ESCs via the CCL20/CCR6 axis, thereby promoting ESC proliferation and migration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02981-2.
Collapse
Affiliation(s)
- Jiahuan Tan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Tenghan Xu
- Department of Obstetrics and Gynecology, Luohe Central Hospital, Luohe, China
| | - Yanling Gou
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Honglin Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Zongwen Liang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Yingying Cao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Han Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Yangyang Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Na Jiao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Zongfeng Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
18
|
Guan YH, Wang N, Deng ZW, Chen XG, Liu Y. Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials 2022; 282:121434. [DOI: 10.1016/j.biomaterials.2022.121434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
19
|
Sommer U, Siciliano T, Ebersbach C, Beier AMK, Stope MB, Jöhrens K, Baretton GB, Borkowetz A, Thomas C, Erb HHH. Impact of Androgen Receptor Activity on Prostate-Specific Membrane Antigen Expression in Prostate Cancer Cells. Int J Mol Sci 2022; 23:1046. [PMID: 35162969 PMCID: PMC8835452 DOI: 10.3390/ijms23031046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is an essential molecular regulator of prostate cancer (PCa) progression coded by the FOLH1 gene. The PSMA protein has become an important factor in metastatic PCa diagnosis and radioligand therapy. However, low PSMA expression is suggested to be a resistance mechanism to PSMA-based imaging and therapy. Clinical studies revealed that androgen receptor (AR) inhibition increases PSMA expression. The mechanism has not yet been elucidated. Therefore, this study investigated the effect of activation and inhibition of androgen signaling on PSMA expression levels in vitro and compared these findings with PSMA levels in PCa patients receiving systemic therapy. To this end, LAPC4, LNCaP, and C4-2 PCa cells were treated with various concentrations of the synthetic androgen R1881 and antiandrogens. Changes in FOLH1 mRNA were determined using qPCR. Open access databases were used for ChIP-Seq and tissue expression analysis. Changes in PSMA protein were determined using western blot. For PSMA staining in patients' specimens, immunohistochemistry (IHC) was performed. Results revealed that treatment with the synthetic androgen R1881 led to decreased FOLH1 mRNA and PSMA protein. This effect was partially reversed by antiandrogen treatment. However, AR ChIP-Seq analysis revealed no canonical AR binding sites in the regulatory elements of the FOLH1 gene. IHC analysis indicated that androgen deprivation only resulted in increased PSMA expression in patients with low PSMA levels. The data demonstrate that AR activation and inhibition affects PSMA protein levels via a possible non-canonical mechanism. Moreover, analysis of PCa tissue reveals that low PSMA expression rates may be mandatory to increase PSMA by androgen deprivation.
Collapse
Affiliation(s)
- Ulrich Sommer
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Tiziana Siciliano
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
- UroFors Consortium (Natural Scientists in Urological Research), German Society of Urology, 14163 Berlin, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden and German Cancer Center, 69120 Heidelberg, Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden, 01069 Dresden, Germany
| | - Angelika Borkowetz
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Holger H H Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
- UroFors Consortium (Natural Scientists in Urological Research), German Society of Urology, 14163 Berlin, Germany
| |
Collapse
|
20
|
PERK signaling through C/EBPδ contributes to ER stress-induced expression of immunomodulatory and tumor promoting chemokines by cancer cells. Cell Death Dis 2021; 12:1038. [PMID: 34725321 PMCID: PMC8560861 DOI: 10.1038/s41419-021-04318-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer cells experience endoplasmic reticulum (ER) stress due to activated oncogenes and conditions of nutrient deprivation and hypoxia. The ensuing unfolded protein response (UPR) is executed by ATF6, IRE1 and PERK pathways. Adaptation to mild ER stress promotes tumor cell survival and aggressiveness. Unmitigated ER stress, however, will result in cell death and is a potential avenue for cancer therapies. Because of this yin-yang nature of ER stress, it is imperative that we fully understand the mechanisms and dynamics of the UPR and its contribution to the complexity of tumor biology. The PERK pathway inhibits global protein synthesis while allowing translation of specific mRNAs, such as the ATF4 transcription factor. Using thapsigargin and tunicamycin to induce acute ER stress, we identified the transcription factor C/EBPδ (CEBPD) as a mediator of PERK signaling to secretion of tumor promoting chemokines. In melanoma and breast cancer cell lines, PERK mediated early induction of C/EBPδ through ATF4-independent pathways that involved at least in part Janus kinases and the STAT3 transcription factor. Transcriptional profiling revealed that C/EBPδ contributed to 20% of thapsigargin response genes including chaperones, components of ER-associated degradation, and apoptosis inhibitors. In addition, C/EBPδ supported the expression of the chemokines CXCL8 (IL-8) and CCL20, which are known for their tumor promoting and immunosuppressive properties. With a paradigm of short-term exposure to thapsigargin, which was sufficient to trigger prolonged activation of the UPR in cancer cells, we found that conditioned media from such cells induced cytokine expression in myeloid cells. In addition, activation of the CXCL8 receptor CXCR1 during thapsigargin exposure supported subsequent sphere formation by cancer cells. Taken together, these investigations elucidated a novel mechanism of ER stress-induced transmissible signals in tumor cells that may be particularly relevant in the context of pharmacological interventions.
Collapse
|