1
|
Kimata-Ariga Y, Tanaka H, Kuwano S. Amino acid residues responsible for the different pH dependency of cell-specific ferredoxins in the electron transfer reaction with ferredoxin-NADP+ reductase from maize leaves. J Biochem 2024; 176:237-244. [PMID: 38861409 DOI: 10.1093/jb/mvae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
In the chloroplast stroma, dynamic pH changes occur from acidic to alkaline in response to fluctuating light conditions. We investigated the pH dependency of the electron transfer reaction of ferredoxin-NADP+ reductase (FNR) with ferredoxin (Fd) isoproteins, Fd1 and Fd2, which are localized in mesophyll cells and bundle sheath cells, respectively, in the leaves of C4 plant maize. The pH-dependent profile of the electron transfer activity with FNR was quite different between Fd1 and Fd2, which was mainly explained by the opposite pH dependency of the Km value of these Fds for FNR. Replacement of the amino acid residue at position of 65 (D65N) and 78 (H78A) between the two Fds conferred different effect on their pH dependency of the Km value. Double mutations of the two residues between Fd1 and Fd2 (Fd1D65N/H78A and Fd2N65D/A78H) led to the mutual exchange of the pH dependency of the electron transfer activity. This exchange was mainly explained by the changes in the pH-dependent profile of the Km values. Therefore, the differences in Asp/Asn at position 65 and His/Ala at position 78 between Fd1 and Fd2 were shown to be the major determinants for their different pH dependency in the electron transfer reaction with FNR.
Collapse
Affiliation(s)
| | - Hikaru Tanaka
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shunsuke Kuwano
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
2
|
Karikomi M, Katayama N, Osanai T. Pyruvate kinase 2 from Synechocystis sp. PCC 6803 increased substrate affinity via glucose-6-phosphate and ribose-5-phosphate for phosphoenolpyruvate consumption. PLANT MOLECULAR BIOLOGY 2024; 114:60. [PMID: 38758412 PMCID: PMC11101554 DOI: 10.1007/s11103-023-01401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/30/2023] [Indexed: 05/18/2024]
Abstract
Pyruvate kinase (Pyk, EC 2.7.1.40) is a glycolytic enzyme that generates pyruvate and adenosine triphosphate (ATP) from phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP), respectively. Pyk couples pyruvate and tricarboxylic acid metabolisms. Synechocystis sp. PCC 6803 possesses two pyk genes (encoded pyk1, sll0587 and pyk2, sll1275). A previous study suggested that pyk2 and not pyk1 is essential for cell viability; however, its biochemical analysis is yet to be performed. Herein, we biochemically analyzed Synechocystis Pyk2 (hereafter, SyPyk2). The optimum pH and temperature of SyPyk2 were 7.0 and 55 °C, respectively, and the Km values for PEP and ADP under optimal conditions were 1.5 and 0.053 mM, respectively. SyPyk2 is activated in the presence of glucose-6-phosphate (G6P) and ribose-5-phosphate (R5P); however, it remains unaltered in the presence of adenosine monophosphate (AMP) or fructose-1,6-bisphosphate. These results indicate that SyPyk2 is classified as PykA type rather than PykF, stimulated by sugar monophosphates, such as G6P and R5P, but not by AMP. SyPyk2, considering substrate affinity and effectors, can play pivotal roles in sugar catabolism under nonphotosynthetic conditions.
Collapse
Affiliation(s)
- Masahiro Karikomi
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Noriaki Katayama
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
3
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. J Mol Biol 2024; 436:168313. [PMID: 37839679 PMCID: PMC11218821 DOI: 10.1016/j.jmb.2023.168313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The phytochrome superfamily comprises three groups of photoreceptors sharing a conserved GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) domain that uses a covalently attached linear tetrapyrrole (bilin) chromophore to sense light. Knotted red/far-red phytochromes are widespread in both bacteria and eukaryotes, but cyanobacteria also contain knotless red/far-red phytochromes and cyanobacteriochromes (CBCRs). Unlike typical phytochromes, CBCRs require only the GAF domain for bilin binding, chromophore ligation, and full, reversible photoconversion. CBCRs can sense a wide range of wavelengths (ca. 330-750 nm) and can regulate phototaxis, second messenger metabolism, and optimization of the cyanobacterial light-harvesting apparatus. However, the origins of CBCRs are not well understood: we do not know when or why CBCRs evolved, or what selective advantages led to retention of early CBCRs in cyanobacterial genomes. In the current work, we use the increasing availability of genomes and metagenome-assembled-genomes from early-branching cyanobacteria to explore the origins of CBCRs. We reaffirm the earliest branches in CBCR evolution. We also show that early-branching cyanobacteria contain late-branching CBCRs, implicating early appearance of CBCRs during cyanobacterial evolution. Moreover, we show that early-branching CBCRs behave as integrators of light and pH, providing a potential unique function for early CBCRs that led to their retention and subsequent diversification. Our results thus provide new insight into the origins of these diverse cyanobacterial photoreceptors.
Collapse
Affiliation(s)
- Nathan C Rockwell
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| | - J Clark Lagarias
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Ito S, Watanabe A, Osanai T. Regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2024; 194:945-957. [PMID: 37936332 DOI: 10.1093/plphys/kiad580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Cyanobacteria have been promoted as a biomass resource that can contribute to carbon neutrality. Synechocystis sp. PCC 6803 is a model cyanobacterium that is widely used in various studies. NADP+ and NAD+ are electron receptors involved in energy metabolism. The NADP+/NAD+ ratio in Synechocystis sp. PCC 6803 is markedly higher than that in the heterotrophic bacterium Escherichia coli. In Synechocystis sp. PCC 6803, NADP+ primarily functions as an electron receptor during the light reaction of photosynthesis, and NADP+ biosynthesis is essential for photoautotrophic growth. Generally, the regulatory enzyme of NADP+ biosynthesis is NAD kinase, which catalyzes the phosphorylation of NAD+. However, a previous study suggested that the regulation of another enzyme contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. L-Aspartate oxidase is the first enzyme in NAD(P)+ biosynthesis. In this study, we biochemically characterized Synechocystis sp. PCC 6803 L-aspartate oxidase and determined the phenotype of a Synechocystis sp. PCC 6803 mutant overexpressing L-aspartate oxidase. The catalytic efficiency of L-aspartate oxidase from Synechocystis sp. PCC 6803 was lower than that of L-aspartate oxidases and NAD kinases from other organisms. L-Aspartate oxidase activity was affected by different metabolites such as NADP+ and ATP. The L-aspartate oxidase-overexpressing strain grew faster than the wild-type strain under photoautotrophic conditions. The L-aspartate oxidase-overexpressing strain accumulated NADP+ under photoautotrophic conditions. These results indicate that the regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. These findings provide insight into the regulatory mechanism of cyanobacterial NADP+ biosynthesis.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Atsuko Watanabe
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
5
|
Shimakawa G, Yashiro E, Matsuda Y. Mapping of subcellular local pH in the marine diatom Phaeodactylum tricornutum. PHYSIOLOGIA PLANTARUM 2023; 175:e14086. [PMID: 38148208 DOI: 10.1111/ppl.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
Diatoms are one of the most important phytoplankton on Earth. They comprise at least ten thousand species and contribute to up to 20% of the global primary production. Because of serial endosymbiotic events and horizontal gene transfers, diatoms have developed a "secondary plastid" bounded by four membranes containing a large phase-separated compartment, termed the pyrenoid. However, the physiological significance of this unique chloroplast morphology is poorly understood. Characterization of fundamental physiological parameters such as local pH in various subcellular compartments should facilitate a greater understanding of the physiological roles of the unique structure of the secondary plastid. A promising method to estimate local pH is the in situ expression of the pH-sensitive green fluorescent protein. Here, we first developed the molecular tool for the mapping of in situ local pH in the diatom Phaeodactylum tricornutum by heterologously expressing pHluorin2 in the cytosol, periplastidal compartment (PPC; the space in between two sets of outer and inner chloroplast envelopes), chloroplast stroma, and the pyrenoid matrix. Our data suggested that PPC and the pyrenoid matrix are more acidic than the adjacent areas, the cytosol and the chloroplast stroma. Finally, absolute pH values at each compartment were estimated from the ratiometric fluorescence of a recombinant pHluorin2 protein, giving pH values of approximately 7.9, 6.8, 8.0, and 7.5 respectively, for the cytosol, PPC, stroma, and pyrenoid of the P. tricornutum cells, indicating the occurrence of pH gradients and the associated electrochemical potentials at their boundary.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Emi Yashiro
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
6
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
7
|
Nandy S, Crum M, Wasden K, Strych U, Goyal A, Maranholkar V, Mo W, Vu B, Kourentzi K, Willson RC. Protein A-Nanoluciferase fusion protein for generalized, sensitive detection of immunoglobulin G. Anal Biochem 2023; 660:114929. [PMID: 36270332 PMCID: PMC9826736 DOI: 10.1016/j.ab.2022.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Detection and quantification of antibodies, especially immunoglobulin G (IgG), is a cornerstone of ELISAs, many diagnostics, and the development of antibody-based drugs. Current state-of-the-art immunoassay techniques for antibody detection require species-specific secondary antibodies and carefully-controlled bioconjugations. Poor conjugation efficiency degrades assay performance and increases the risk of clinical false positives due to non-specific binding. We developed a generic, highly-sensitive platform for IgG quantification by fusing the IgG-Fc binding Z domain of Staphylococcal Protein A with the ultrabright bioluminescence reporter Nanoluc-luciferase (Nluc). We demonstrated the application of this fusion protein in a sandwich IgG detection immunoassay using surface-bound antigens to capture target IgG and protein A-Nanoluc fusion as the detector. We optimized the platform's sensitivity by incorporating multiple repeats of the Z domain into the fusion protein constructs. Using rabbit and mouse anti-SARS-CoV-2 Nucleoprotein IgGs as model analytes, we performed ELISAs in two different formats, either with SARS-CoV-2 Nucleoprotein as the capture antigen or with polyclonal chicken IgY as the capture antibody. Using standard laboratory equipment, the platform enabled the quantitation of antibody analytes at concentrations as low as 10 pg/mL (67 fM).
Collapse
Affiliation(s)
- Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Mary Crum
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA,Present address: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Wasden
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA,Present address: Harvard Medical School, Boston, MA, USA
| | - Ulrich Strych
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA,Present address: Department of Paediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Atul Goyal
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA,Present address: Vaccine Research and Development, Pfizer, Pearl River, NY, USA
| | - Vijay Maranholkar
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - William Mo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA,Present address: Department of Biomedical Engineering, The University of Texas at Austin, TX, USA
| | - Binh Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA,Department of Biology and Biochemistry, University of Houston, Houston, TX, USA,Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico,Corresponding author. (Richard C Willson)
| |
Collapse
|
8
|
Malic Enzyme, not Malate Dehydrogenase, Mainly Oxidizes Malate That Originates from the Tricarboxylic Acid Cycle in Cyanobacteria. mBio 2022; 13:e0218722. [PMID: 36314837 PMCID: PMC9765476 DOI: 10.1128/mbio.02187-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Oxygenic photoautotrophic bacteria, cyanobacteria, have the tricarboxylic acid (TCA) cycle, and metabolite production using the cyanobacterial TCA cycle has been spotlighted recently. The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 (Synechocystis 6803) has been used in various studies on the cyanobacterial TCA cycle. Malate oxidation in the TCA cycle is generally catalyzed by malate dehydrogenase (MDH). However, Synechocystis 6803 MDH (SyMDH) is less active than MDHs from other organisms. Additionally, SyMDH uses only NAD+ as a coenzyme, unlike other TCA cycle enzymes from Synechocystis 6803 that use NADP+. These results suggest that MDH rarely catalyzes malate oxidation in the cyanobacterial TCA cycle. Another enzyme catalyzing malate oxidation is malic enzyme (ME). We clarified which enzyme oxidizes malate that originates from the cyanobacterial TCA cycle using analyses focusing on ME and MDH. In contrast to SyMDH, Synechocystis 6803 ME (SyME) showed high activity when NADP+ was used as a coenzyme. Unlike the Synechocystis 6803 mutant lacking SyMDH, the mutant lacking SyME accumulated malate in the cells. ME was more highly preserved in the cyanobacterial genomes than MDH. These results indicate that ME mainly oxidizes malate that originates from the cyanobacterial TCA cycle (named the ME-dependent TCA cycle). The ME-dependent TCA cycle generates NADPH, not NADH. This is consistent with previous reports that NADPH is an electron carrier in the cyanobacterial respiratory chain. Our finding suggests the diversity of enzymes involved in the TCA cycle in the organisms, and analyses such as those performed in this study are necessary to determine the enzymes. IMPORTANCE Oxygenic photoautotrophic bacteria, namely, cyanobacteria, have the tricarboxylic acid (TCA) cycle. Recently, metabolite production using the cyanobacterial TCA cycle has been well studied. To enhance the production volume of metabolites, understanding the biochemical properties of the cyanobacterial TCA cycle is required. Generally, malate dehydrogenase oxidizes malate in the TCA cycle. However, cyanobacterial malate dehydrogenase shows low activity and does not use NADP+ as a coenzyme, unlike other cyanobacterial TCA cycle enzymes. Our analyses revealed that another malate oxidation enzyme, the malic enzyme, mainly oxidizes malate that originates from the cyanobacterial TCA cycle. These findings provide better insights into metabolite production using the cyanobacterial TCA cycle. Furthermore, our findings suggest that the enzymes related to the TCA cycle vary from organism to organism and emphasize the importance of analyses to identify the enzymes such as those performed in this study.
Collapse
|
9
|
Tran Q, Osabe K, Entani T, Wazawa T, Hattori M, Nagai T. Application of Green-enhanced Nano-lantern as a bioluminescent ratiometric indicator for measurement of Arabidopsis thaliana root apoplastic fluid pH. PLANT, CELL & ENVIRONMENT 2022; 45:3157-3170. [PMID: 35864560 PMCID: PMC9542637 DOI: 10.1111/pce.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant root absorbs water and nutrients from the soil, and the root apoplastic fluid (AF) is an important intermediate between cells and the surrounding environment. The acid growth theory suggests that an acidic AF is needed for cell wall expansion during root growth. However, technical limitations have precluded the quantification of root apoplastic fluid pH (AF-pH). Here, we used Green-enhanced Nano-lantern (GeNL), a chimeric protein of the luciferase NanoLuc (Nluc) and the green fluorescent protein mNeonGreen (mNG), as a ratiometric pH indicator based on the pH dependency of bioluminescence resonance energy transfer efficiency from Nluc to mNG. Luminescence spectrum of GeNL changed reciprocally from pH 4.5 to 7.5, with a pKa of 5.5. By fusing GeNL to a novel signal peptide from Arabidopsis thaliana Cellulase 1, we localised GeNL in A. thaliana AF. We visualised AF dynamics at subcellular resolution over 30 min and determined flow velocity in the maturation zone to be 0.97± 0.06 μm/s. We confirmed that the developing root AF is acidic in the pH range of 5.1-5.7, suggesting that the AF-pH is tightly regulated during root elongation. These results support the acid growth theory and provide evidence for AF-pH maintenance despite changes in ambient pH.
Collapse
Affiliation(s)
- Quang Tran
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Kenji Osabe
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Tetsuyuki Entani
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| |
Collapse
|
10
|
Katayama N, Osanai T. Arginine inhibition of the argininosuccinate lyases is conserved among three orders in cyanobacteria. PLANT MOLECULAR BIOLOGY 2022; 110:13-22. [PMID: 35583703 DOI: 10.1007/s11103-022-01280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
This study revealed different catalytic efficiencies of cyanobacterial argininosuccinate lyases in non-nitrogen-fixing and nitrogen-fixing cyanobacteria, demonstrating that L-arginine inhibition of L-argininosuccinate lyase is conserved among enzymes of three cyanobacterial orders. Arginine is a nitrogen-rich amino acid that uses a nitrogen reservoir, and its biosynthesis is strictly controlled by feedback inhibition. Argininosuccinate lyase (EC 4.3.2.1) is the final enzyme in arginine biosynthesis that catalyzes the conversion of argininosuccinate to L-arginine and fumarate. Cyanobacteria synthesize intracellular cyanophycin, which is a nitrogen reservoir composed of aspartate and arginine. Arginine is an important source of nitrogen for cyanobacteria. We expressed and purified argininosuccinate lyases, ArgHs, from Synechocystis sp. PCC 6803, Nostoc sp. PCC 7120, and Arthrospira platensis NIES-39. The catalytic efficiency of the Nostoc sp. PCC 7120 ArgH was 2.8-fold higher than those of Synechocystis sp. PCC 6803 and Arthrospira platensis NIES-39. All three ArgHs were inhibited in the presence of arginine, and their inhibitory effects were lowered at pH 7.0, compared to those at pH 8.0. These results indicate that arginine inhibition of ArgH is widely conserved among the three cyanobacterial orders. The current results demonstrate the conserved regulation of enzymes in the cyanobacterial aspartase/fumarase superfamily.
Collapse
Affiliation(s)
- Noriaki Katayama
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
11
|
Kimata-Ariga Y, Fukuta K, Miyata M. Role of Histidine 78 of leaf ferredoxin in the interaction with ferredoxin-NADP+ reductase: regulation of pH dependency and negative cooperativity with NADP(H). Biosci Biotechnol Biochem 2022; 86:618-623. [PMID: 35136937 DOI: 10.1093/bbb/zbac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 11/12/2022]
Abstract
In chloroplast stroma, dynamic pH change occurs in response to fluctuating light conditions. We investigated the pH-dependent electron transfer activity between ferredoxin-NADP+ reductase (FNR) and ferredoxin (Fd) isoproteins from maize leaves. By increasing pH (from 5.5 to 8.5), the electron transfer activity from FNR to photosynthetic-type Fd (Fd1) significantly increased while the activity to nonphotosynthetic type Fd (Fd3) decreased, which was mainly due to their differences in the pH dependency of Km for Fd. Mutation of His78 of Fd1 to Val, corresponding amino acid residue in Fd3, lost the pH dependency, indicating a regulatory role of the His78 in the interaction with FNR. We previously showed that the interaction between FNR and Fd was weakened by the allosteric binding of NADP(H) on FNR. His78Val Fd1 mutant largely suppressed this negative cooperativity. These results indicate the involvement of Fd1 His78 in pH dependency and negative cooperativity in the interaction with FNR.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Karen Fukuta
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Masayuki Miyata
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi, Japan
| |
Collapse
|
12
|
Liu T, Barbour MM, Yu D, Rao S, Song X. Mesophyll conductance exerts a significant limitation on photosynthesis during light induction. THE NEW PHYTOLOGIST 2022; 233:360-372. [PMID: 34601732 DOI: 10.1111/nph.17757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Past studies have established mesophyll diffusion conductance to CO2 (gm ) as a variable and significant limitation to plant photosynthesis under steady-state conditions. However, the role of gm in influencing photosynthesis (A) during the transient period of light induction is largely unknown. We combined gas exchange measurements with laser-enabled carbon isotope discrimination measurements to assess gm during photosynthetic induction, using Arabidopsis as the measurement species. Our measurements revealed three key findings: (1) we found that the rate at which gm approached steady state during induction was not necessarily faster than the induction rate of the carboxylation process, contradictory to what has been suggested in previous studies; (2) gm displayed a strong and consistent coordination with A under both induction and steady-state settings, hinting that the mechanism driving gm -A coupling does not require physiological stability as a prerequisite; and (3) photosynthetic limitation analysis of our data revealed that when integrated over the entire induction period, the relative limitation of A imposed by gm can be as high as > 35%. The present study provides the first demonstration of the important role of gm in limiting CO2 assimilation during photosynthetic induction, thereby pointing to a need for more research attention to be devoted to gm in future induction studies.
Collapse
Affiliation(s)
- Tao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Margaret M Barbour
- Te Aka Mātuatua - School of Science, The University of Waikato, Hamilton, 3240, New Zealand
| | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Sen Rao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
13
|
Development of a highly sensitive luciferase-based reporter system to study two-step protein secretion in cyanobacteria. J Bacteriol 2021; 204:e0050421. [PMID: 34898262 DOI: 10.1128/jb.00504-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria, ubiquitous oxygenic photosynthetic bacteria, interact with the environment and their surrounding microbiome through the secretion of a variety of small molecules and proteins. The release of these compounds is mediated by sophisticated multi-protein complexes, also known as secretion systems. Genomic analyses indicate that protein and metabolite secretion systems are widely found in cyanobacteria; however little is known regarding their function, regulation and secreted effectors. One such system, the type IVa pilus system (T4aPS), is responsible for the assembly of dynamic cell surface appendages, type IVa pili (T4aP), that mediate ecologically relevant processes such as phototactic motility, natural competence and adhesion. Several studies have suggested that the T4aPS can also act as a two-step protein secretion system in cyanobacteria akin to the homologous type II secretion system in heterotrophic bacteria. To determine whether the T4aP are involved in two-step secretion of non-pilin proteins, we developed a NanoLuc-based quantitative secretion reporter for the model cyanobacterium Synechocystis sp. PCC 6803. The NLuc reporter presented a wide dynamic range with at least one order of magnitude more sensitivity than traditional immunoblotting. Application of the reporter to a collection of Synechocystis T4aPS mutants demonstrated that the two-step secretion of NLuc is independent of T4aP. In addition, our data suggest that secretion differences typically observed in T4aPS mutants are likely due to a disruption of cell envelope homeostasis. This study opens the door to explore protein secretion in cyanobacteria further. Importance Protein secretion allows bacteria to interact and communicate with the external environment. Secretion is also biotechnologically relevant, where it is often beneficial to target proteins to the extracellular space. Due to a shortage of quantitative assays, many aspects of protein secretion are not understood. Here we introduce a NanoLuc (NLuc)-based secretion reporter in cyanobacteria. NLuc is highly sensitive and can be assayed rapidly and in small volumes. The NLuc reporter allowed us to clarify the role of type IVa pili in protein secretion and identify mutations that increase secretion yield. This study expands our knowledge on cyanobacterial secretion and offers a valuable tool for future studies of protein secretion systems in cyanobacteria.
Collapse
|
14
|
Fu N, Sugiura K, Kondo K, Nakamura S, Wakabayashi KI, Hisabori T. Monitoring cellular redox dynamics using newly developed BRET-based redox sensor proteins. J Biol Chem 2021; 297:101186. [PMID: 34517006 PMCID: PMC8487062 DOI: 10.1016/j.jbc.2021.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species are key factors that strongly affect the cellular redox state and regulate various physiological and cellular phenomena. To monitor changes in the redox state, we previously developed fluorescent redox sensors named Re-Q, the emissions of which are quenched under reduced conditions. However, such fluorescent probes are unsuitable for use in the cells of photosynthetic organisms because they require photoexcitation that may change intracellular conditions and induce autofluorescence, primarily in chlorophylls. In addition, the presence of various chromophore pigments may interfere with fluorescence-based measurements because of their strong absorbance. To overcome these problems, we adopted the bioluminescence resonance energy transfer (BRET) mechanism for the sensor and developed two BRET-based redox sensors by fusing cyan fluorescent protein–based or yellow fluorescent protein–based Re-Q with the luminescent protein Nluc. We named the resulting redox-sensitive BRET-based indicator probes “ROBINc” and “ROBINy.” ROBINc is pH insensitive, which is especially vital for observation in photosynthetic organisms. By using these sensors, we successfully observed dynamic redox changes caused by an anticancer agent in HeLa cells and light/dark-dependent redox changes in the cells of photosynthetic cyanobacterium Synechocystis sp. PCC 6803. Since the newly developed sensors do not require excitation light, they should be especially useful for visualizing intracellular phenomena caused by redox changes in cells containing colored pigments.
Collapse
Affiliation(s)
- Nae Fu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazunori Sugiura
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Kumiko Kondo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Shungo Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ken-Ichi Wakabayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Toru Hisabori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|