1
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Batori RK, Chen F, Bordan Z, Haigh S, Su Y, Verin AD, Barman SA, Stepp DW, Chakraborty T, Lucas R, Fulton DJR. Protective role of Cav-1 in pneumolysin-induced endothelial barrier dysfunction. Front Immunol 2022; 13:945656. [PMID: 35967431 PMCID: PMC9363592 DOI: 10.3389/fimmu.2022.945656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 01/16/2023] Open
Abstract
Pneumolysin (PLY) is a bacterial pore forming toxin and primary virulence factor of Streptococcus pneumonia, a major cause of pneumonia. PLY binds cholesterol-rich domains of the endothelial cell (EC) plasma membrane resulting in pore assembly and increased intracellular (IC) Ca2+ levels that compromise endothelial barrier integrity. Caveolae are specialized plasmalemma microdomains of ECs enriched in cholesterol. We hypothesized that the abundance of cholesterol-rich domains in EC plasma membranes confers cellular susceptibility to PLY. Contrary to this hypothesis, we found increased PLY-induced IC Ca2+ following membrane cholesterol depletion. Caveolin-1 (Cav-1) is an essential structural protein of caveolae and its regulation by cholesterol levels suggested a possible role in EC barrier function. Indeed, Cav-1 and its scaffolding domain peptide protected the endothelial barrier from PLY-induced disruption. In loss of function experiments, Cav-1 was knocked-out using CRISPR-Cas9 or silenced in human lung microvascular ECs. Loss of Cav-1 significantly enhanced the ability of PLY to disrupt endothelial barrier integrity. Rescue experiments with re-expression of Cav-1 or its scaffolding domain peptide protected the EC barrier against PLY-induced barrier disruption. Dynamin-2 (DNM2) is known to regulate caveolar membrane endocytosis. Inhibition of endocytosis, with dynamin inhibitors or siDNM2 amplified PLY induced EC barrier dysfunction. These results suggest that Cav-1 protects the endothelial barrier against PLY by promoting endocytosis of damaged membrane, thus reducing calcium entry and PLY-dependent signaling.
Collapse
Affiliation(s)
- Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Critical Care and Pulmonary Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Scott A. Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Phyiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute of Human Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Critical Care and Pulmonary Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Qifti A, Balaji S, Scarlata S. Deformation of caveolae impacts global transcription and translation processes through relocalization of cavin-1. J Biol Chem 2022; 298:102005. [PMID: 35513070 PMCID: PMC9168624 DOI: 10.1016/j.jbc.2022.102005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Caveolae are invaginated membrane domains that provide mechanical strength to cells in addition to being focal points for the localization of signaling molecules. Caveolae are formed through the aggregation of caveolin-1 or -3 (Cav1/3), membrane proteins that assemble into multifunctional complexes with the help of caveola-associated protein cavin-1. In addition to its role in the formation of caveolae, cavin-1, also called polymerase I and transcript release factor, is further known to promote ribosomal RNA transcription in the nucleus. However, the mechanistic link between these functions is not clear. Here, we found that deforming caveolae by subjecting cells to mild osmotic stress (150–300 mOsm) changes levels of GAPDH, Hsp90, and Ras only when Cav1/cavin-1 levels are reduced, suggesting a link between caveola deformation and global protein expression. We show that this link may be due to relocalization of cavin-1 to the nucleus upon caveola deformation. Cavin-1 relocalization is also seen when Cav1-Gαq contacts change upon stimulation. Furthermore, Cav1 and cavin-1 levels have been shown to have profound effects on cytosolic RNA levels, which in turn impact the ability of cells to form stress granules and RNA-processing bodies (p-bodies) which sequester and degrade mRNAs, respectively. Our studies here using a cavin-1-knockout cell line indicate adaptive changes in cytosolic RNA levels but a reduced ability to form stress granules. Taken together, our findings suggest that caveolae, through release of cavin-1, communicate extracellular cues to the cell interior to impact transcriptional and translational.
Collapse
|
4
|
Mathew R. Critical Role of Caveolin-1 Loss/Dysfunction in Pulmonary Hypertension. Med Sci (Basel) 2021; 9:medsci9040058. [PMID: 34698188 PMCID: PMC8544475 DOI: 10.3390/medsci9040058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare disease with a high morbidity and mortality rate. A number of systemic diseases and genetic mutations are known to lead to PH. The main features of PH are altered vascular relaxation responses and the activation of proliferative and anti-apoptotic pathways, resulting in pulmonary vascular remodeling, elevated pulmonary artery pressure, and right ventricular hypertrophy, ultimately leading to right heart failure and premature death. Important advances have been made in the field of pulmonary pathobiology, and several deregulated signaling pathways have been shown to be associated with PH. Clinical and experimental studies suggest that, irrespective of the underlying disease, endothelial cell disruption and/or dysfunction play a key role in the pathogenesis of PH. Endothelial caveolin-1, a cell membrane protein, interacts with and regulates several transcription factors and maintains homeostasis. Disruption of endothelial cells leads to the loss or dysfunction of endothelial caveolin-1, resulting in reciprocal activation of proliferative and inflammatory pathways, leading to cell proliferation, medial hypertrophy, and PH, which initiates PH and facilitates its progression. The disruption of endothelial cells, accompanied by the loss of endothelial caveolin-1, is accompanied by enhanced expression of caveolin-1 in smooth muscle cells (SMCs) that leads to pro-proliferative and pro-migratory responses, subsequently leading to neointima formation. The neointimal cells have low caveolin-1 and normal eNOS expression that may be responsible for promoting nitrosative and oxidative stress, furthering cell proliferation and metabolic alterations. These changes have been observed in human PH lungs and in experimental models of PH. In hypoxia-induced PH, there is no endothelial disruption, loss of endothelial caveolin-1, or enhanced expression of caveolin-1 in SMCs. Hypoxia induces alterations in membrane composition without caveolin-1 or any other membrane protein loss. However, caveolin-1 is dysfunctional, resulting in cell proliferation, medial hypertrophy, and PH. These alterations are reversible upon removal of hypoxia, provided there is no associated EC disruption. This review examined the role of caveolin-1 disruption and dysfunction in PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Section of Pediatric Cardiology, Departments of Pediatrics and Physiology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
5
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 378] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
6
|
Caveolin-1 in autophagy: A potential therapeutic target in atherosclerosis. Clin Chim Acta 2021; 513:25-33. [DOI: 10.1016/j.cca.2020.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
|
7
|
Lessons from cavin-1 deficiency. Biochem Soc Trans 2020; 48:147-154. [PMID: 31922193 DOI: 10.1042/bst20190380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023]
Abstract
Caveolae have been implicated in a wide range of critical physiological functions. In the past decade, the dominant role of cavin-1 in caveolae formation has been established, and it has been recognized as another master regulator for caveolae biology. Human patients with cavin-1 mutations develop lipodystrophy and muscular dystrophy and have some major pathological dysfunctions in fat tissue, skeleton muscle, heart, lung and other organs. Cavin-1 deficiency animal models consistently show similar phenotypes. However, the underlying molecular mechanisms remain to be elucidated. Recent studies have suggested many possible pathways, including mechanosensing, stress response, signal transduction, exosome secretion, and potential functions in the nucleus. Many excellent and comprehensive review articles already exist on the topics of caveolae structure formation, caveolins, and their pathophysiological functions. We will focus on recent studies using cavin-1 deficiency models, to summarize the pathophysiological changes in adipose, muscle, and other organs, followed by a summary of mechanistic studies about the roles of cavin-1, which includes caveolae formation, ribosomal RNA transcription, mechanical sensing, stress response, and exosome secretion. Further studies may help to elucidate the exact underlying molecular mechanism to explain the pathological changes observed in cavin-1 deficient human patients and animal models, so potential new therapeutic strategies can be developed.
Collapse
|
8
|
Hasan SS, Jabs M, Taylor J, Wiedmann L, Leibing T, Nordström V, Federico G, Roma LP, Carlein C, Wolff G, Ekim-Üstünel B, Brune M, Moll I, Tetzlaff F, Gröne HJ, Fleming T, Géraud C, Herzig S, Nawroth PP, Fischer A. Endothelial Notch signaling controls insulin transport in muscle. EMBO Mol Med 2020; 12:e09271. [PMID: 32187826 PMCID: PMC7136962 DOI: 10.15252/emmm.201809271] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022] Open
Abstract
The role of the endothelium is not just limited to acting as an inert barrier for facilitating blood transport. Endothelial cells (ECs), through expression of a repertoire of angiocrine molecules, regulate metabolic demands in an organ‐specific manner. Insulin flux across the endothelium to muscle cells is a rate‐limiting process influencing insulin‐mediated lowering of blood glucose. Here, we demonstrate that Notch signaling in ECs regulates insulin transport to muscle. Notch signaling activity was higher in ECs isolated from obese mice compared to non‐obese. Sustained Notch signaling in ECs lowered insulin sensitivity and increased blood glucose levels. On the contrary, EC‐specific inhibition of Notch signaling increased insulin sensitivity and improved glucose tolerance and glucose uptake in muscle in a high‐fat diet‐induced insulin resistance model. This was associated with increased transcription of Cav1, Cav2, and Cavin1, higher number of caveolae in ECs, and insulin uptake rates, as well as increased microvessel density. These data imply that Notch signaling in the endothelium actively controls insulin sensitivity and glucose homeostasis and may therefore represent a therapeutic target for diabetes.
Collapse
Affiliation(s)
- Sana S Hasan
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Jabs
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jacqueline Taylor
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Lena Wiedmann
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Viola Nordström
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giuseppina Federico
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Christopher Carlein
- Biophysics Department, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Gretchen Wolff
- Institute for Diabetes and Cancer (IDC) and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Bilgen Ekim-Üstünel
- Institute for Diabetes and Cancer (IDC) and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Maik Brune
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Iris Moll
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Tetzlaff
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pharmacology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC) and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany.,Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Institute for Diabetes and Cancer (IDC) and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany.,Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Bai X, Yang X, Jia X, Rong Y, Chen L, Zeng T, Deng X, Li W, Wu G, Wang L, Li Y, Zhang J, Xiong Z, Xiong L, Wang Y, Zhu L, Zhao Y, Jin S. CAV1-CAVIN1-LC3B-mediated autophagy regulates high glucose-stimulated LDL transcytosis. Autophagy 2019; 16:1111-1129. [PMID: 31448673 DOI: 10.1080/15548627.2019.1659613] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a recognized high-risk factor for the development of atherosclerosis, in which macroautophagy/autophagy is emerging to play essential roles. The retention of low-density lipoprotein (LDL) particles in subendothelial space following transcytosis across the endothelium is the initial step of atherosclerosis. Here, we identified that high glucose could promote atherosclerosis by stimulating transcytosis of LDL. By inhibiting AMPK-MTOR-PIK3C3 pathway, high glucose suppresses the CAV-CAVIN-LC3B-mediated autophagic degradation of CAV1; therefore, more CAV1 is accumulated in the cytosol and utilized to form more caveolae in the cell membrane and facilitates the LDL transcytosis across endothelial cells. For a proof of concept, higher levels of lipids were accumulated in the subendothelial space of umbilical venous walls from pregnant women with gestational diabetes mellitus (GDM), compared to those of pregnant women without GDM. Our results reveal that high glucose stimulates LDL transcytosis by a novel CAV1-CAVIN1-LC3B signaling-mediated autophagic degradation pathway. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AMPK: AMP-activated protein kinase; Bafi: bafilomycin A1; CAV1: caveolin-1; CAVIN1: caveolae associated protein 1; CSD: the CAV1 scaffolding domain; GDM: gestational diabetes mellitus; IMD: intramembrane domain; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule- associated protein 1 light chain 3; MFI: mean fluorescence intensity; MTOR: mechanistic target of rapamycin kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Xiangli Bai
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China.,Department of laboratory medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Xiaoyan Yang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Xiong Jia
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Yueguang Rong
- Department of Pathogenic biology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Lulu Chen
- Department of endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Tianshu Zeng
- Department of endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Xiuling Deng
- Department of endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Wenjing Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Guangjie Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Ling Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Ye Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Jing Zhang
- Department of laboratory medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Zhifan Xiong
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Liang Xiong
- Department of laboratory medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Yumei Wang
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Lin Zhu
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Ying Zhao
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Si Jin
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China.,Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| |
Collapse
|
10
|
Huang J, Mathew R. Loss of cavin1 and expression of p-caveolin-1 in pulmonary hypertension: Possible role in neointima formation. World J Hypertens 2019; 9:17-29. [DOI: 10.5494/wjh.v9.i2.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disease with a high morbidity and mortality rate; and neointima formation leads to the irreversibility of the disease. We have previously reported that in rats, monocrotaline (MCT) injection leads to progressive disruption of endothelial cells (EC), and endothelial caveolin-1 (cav-1) loss, accompanied by the activation of pro-proliferative pathways leading to PH. Four weeks post-MCT, extensive endothelial cav-1 loss is associated with increased cav-1 expression in smooth muscle cells (SMC). Exposing the MCT-treated rats to hypoxia hastens the disease process; and at 4 wk, neointimal lesions and occlusion of the small arteries are observed.
AIM To identify the alterations that occur during the progression of PH that lead to neointima formation.
METHODS Male Sprague-Dawley rats (150-175 g) were divided in 4 groups (n = 6-8 per group): controls (C); MCT (M, a single sc injection 40 mg/kg); Hypoxia (H, hypobaric hypoxia); MCT + hypoxia (M+H, MCT-injected rats subjected to hypobaric hypoxia starting on day1). Four weeks later, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), lung histology, and cav-1 localization using immunofluorescence technique were analyzed. In addition, the expression of cav-1, tyrosine 14 phosphorylated cav-1 (p-cav-1), caveolin-2 (cav-2), cavin-1, vascular endothelial cadherin (VE-Cad) and p-ERK1/2 in the lungs were examined, and the results were compared with the controls.
RESULTS Significant PH and right ventricular hypertrophy were present in M and H groups [RVSP, mmHg, M 54±5*, H 45±2*, vs C 20±1, P < 0.05; RVH, RV/LV ratio M 0.57±0.02*, H 0.50±0.03*, vs C 0.23±0.007, P < 0.05]; with a further increase in M+H group [RVSP 69±9 mmHg, RV/LV 0.59±0.01 P < 0.05 vs M and H]. All experimental groups revealed medial hypertrophy; but only M+H group exhibited small occluded arteries and neointimal lesions. Immunofluorescence studies revealed endothelial cav-1 loss and increased cav-1 expression in SMC in M group; however, the total cav-1 level in the lungs remained low. In the M+H group, significant endothelial cav-1 loss was associated with increasing expression of cav-1 in SMC; resulting in near normalization of cav-1 levels in the lungs [cav-1, expressed as % control, C 100±0, M 22±4*, H 96±7, M+H 77±6, * = P < 0.05 vs C]. The expression of p-cav-1 was observed in M and M+H groups [M 314±4%, M+H 255±22% P < 0.05 vs C]. Significant loss of cav-2 [% control, C 100±0, M 15±1.4*, H 97±7, M+H 15±2*; M and M+H vs C, * = P < 0.05], cavin-1 [% control, C 100±0, M 20±3*, H 117±7, M+H 20±4*; M and M+H vs C, P < 0.05] and VE-Cad [% control, C 100±0, M 17±4*, H 96±9, M+H 8±3*; M and M+H vs C, P < 0.05] was present in M and M+H groups, confirming extensive disruption of EC. Hypoxia alone did not alter the expression of cav-1 or cav-1 related proteins. Expression of p-ERK1/2 was increased in all 3 PH groups [%control, C 100±0, M 284±23*, H 254±25*, M+H 270±17*; * = P < 0.05 vs C].
CONCLUSION Both cavin-1 loss and p-cav-1 expression are known to facilitate cell migration; thus, these alterations may in part play a role in neointima formation in PH.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, United States
| | - Rajamma Mathew
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, United States
- Department of Physiology, New York Medical College, Valhalla, NY 10595, United States
| |
Collapse
|
11
|
Mohamed A, Robinson H, Erramouspe PJ, Hill MM. Advances and challenges in understanding the role of the lipid raft proteome in human health. Expert Rev Proteomics 2018; 15:1053-1063. [PMID: 30403891 DOI: 10.1080/14789450.2018.1544895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Phase separation as a biophysical principle drives the formation of liquid-ordered 'lipid raft' membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health. Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts. Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.
Collapse
Affiliation(s)
- Ahmed Mohamed
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Harley Robinson
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Pablo Joaquin Erramouspe
- c Department of Emergency Medicine , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Michelle M Hill
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,d The University of Queensland Diamantina Institute, Faculty of Medicine , Translational Research Institute, The University of Queensland , Brisbane , Australia
| |
Collapse
|
12
|
Keshavarz M, Skill M, Hollenhorst MI, Maxeiner S, Walecki M, Pfeil U, Kummer W, Krasteva-Christ G. Caveolin-3 differentially orchestrates cholinergic and serotonergic constriction of murine airways. Sci Rep 2018; 8:7508. [PMID: 29760450 PMCID: PMC5951923 DOI: 10.1038/s41598-018-25445-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/16/2018] [Indexed: 01/22/2023] Open
Abstract
The mechanisms of controlling airway smooth muscle (ASM) tone are of utmost clinical importance as inappropriate constriction is a hallmark in asthma and chronic obstructive pulmonary disease. Receptors for acetylcholine and serotonin, two relevant mediators in this context, appear to be incorporated in specialized, cholesterol-rich domains of the plasma membrane, termed caveolae due to their invaginated shape. The structural protein caveolin-1 partly accounts for anchoring of these receptors. We here determined the role of the other major caveolar protein, caveolin-3 (cav-3), in orchestrating cholinergic and serotonergic ASM responses, utilizing newly generated cav-3 deficient mice. Cav-3 deficiency fully abrogated serotonin-induced constriction of extrapulmonary airways in organ baths while leaving intrapulmonary airways unaffected, as assessed in precision cut lung slices. The selective expression of cav-3 in tracheal, but not intrapulmonary bronchial epithelial cells, revealed by immunohistochemistry, might explain the differential effects of cav-3 deficiency on serotonergic ASM constriction. The cholinergic response of extrapulmonary airways was not altered, whereas a considerable increase was observed in cav-3-/- intrapulmonary bronchi. Thus, cav-3 differentially organizes serotonergic and cholinergic signaling in ASM through mechanisms that are specific for airways of certain caliber and anatomical position. This may allow for selective and site-specific intervention in hyperreactive states.
Collapse
Affiliation(s)
- M Keshavarz
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - M Skill
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - M I Hollenhorst
- Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Saarbrucken, Germany
| | - S Maxeiner
- Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Saarbrucken, Germany
| | - M Walecki
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - U Pfeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - W Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| | - G Krasteva-Christ
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany. .,German Center for Lung Research (DZL), Marburg, Germany. .,Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Saarbrucken, Germany.
| |
Collapse
|
13
|
Copeland CA, Han B, Tiwari A, Austin ED, Loyd JE, West JD, Kenworthy AK. A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal. Mol Biol Cell 2017; 28:3095-3111. [PMID: 28904206 PMCID: PMC5662265 DOI: 10.1091/mbc.e17-06-0421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Heterozygous mutations in caveolin-1 (CAV1) have been linked to pulmonary arterial hypertension (PAH), but their impact on caveolae is unclear. We show that a PAH-associated frameshift mutation introduces an endoplasmic reticulum retention signal in CAV1 that partially disrupts caveolae assembly and interferes with their ability to serve as membrane buffers. Caveolin-1 (CAV1) is an essential component of caveolae and is implicated in numerous physiological processes. Recent studies have identified heterozygous mutations in the CAV1 gene in patients with pulmonary arterial hypertension (PAH), but the mechanisms by which these mutations impact caveolae assembly and contribute to disease remain unclear. To address this question, we examined the consequences of a familial PAH-associated frameshift mutation in CAV1, P158PfsX22, on caveolae assembly and function. We show that C-terminus of the CAV1 P158 protein contains a functional ER-retention signal that inhibits ER exit and caveolae formation and accelerates CAV1 turnover in Cav1–/– MEFs. Moreover, when coexpressed with wild-type (WT) CAV1 in Cav1–/– MEFs, CAV1-P158 functions as a dominant negative by partially disrupting WT CAV1 trafficking. In patient skin fibroblasts, CAV1 and caveolar accessory protein levels are reduced, fewer caveolae are observed, and CAV1 complexes exhibit biochemical abnormalities. Patient fibroblasts also exhibit decreased resistance to a hypo-osmotic challenge, suggesting the function of caveolae as membrane reservoir is compromised. We conclude that the P158PfsX22 frameshift introduces a gain of function that gives rise to a dominant negative form of CAV1, defining a new mechanism by which disease-associated mutations in CAV1 impair caveolae assembly.
Collapse
Affiliation(s)
- Courtney A. Copeland
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bing Han
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - James E. Loyd
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - James D. West
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Epithelial Biology Program, Vanderbilt University School of Medicine, Nashville, TN 37232
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
14
|
Cheng JPX, Nichols BJ. Caveolae: One Function or Many? Trends Cell Biol 2015; 26:177-189. [PMID: 26653791 DOI: 10.1016/j.tcb.2015.10.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Caveolae are small, bulb-shaped plasma membrane invaginations. Mutations that ablate caveolae lead to diverse phenotypes in mice and humans, making it challenging to uncover their molecular mechanisms. Caveolae have been described to function in endocytosis and transcytosis (a specialized form of endocytosis) and in maintaining membrane lipid composition, as well as acting as signaling platforms. New data also support a model in which the central function of caveolae could be related to the protection of cells from mechanical stress within the plasma membrane. We present evidence for these diverse roles and consider in vitro and in vivo experiments confirming a mechanoprotective role. We conclude by highlighting current gaps in our knowledge of how mechanical signals may be transduced by caveolae.
Collapse
Affiliation(s)
- Jade P X Cheng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Benjamin J Nichols
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
15
|
Kraehling JR, Hao Z, Lee MY, Vinyard DJ, Velazquez H, Liu X, Stan RV, Brudvig GW, Sessa WC. Uncoupling Caveolae From Intracellular Signaling In Vivo. Circ Res 2015; 118:48-55. [PMID: 26602865 DOI: 10.1161/circresaha.115.307767] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/24/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Caveolin-1 (Cav-1) negatively regulates endothelial nitric oxide (NO) synthase-derived NO production, and this has been mapped to several residues on Cav-1, including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. OBJECTIVE This study was designed to separate caveolae formation from its downstream signaling effects. METHODS AND RESULTS An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of vasodilator-stimulated phosphoprotein were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of caveolin-2, sucrose gradient, and electron microscopy. Histological analysis of heart and lung, echocardiography, and signaling were performed. CONCLUSIONS This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo, thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms.
Collapse
Affiliation(s)
- Jan R Kraehling
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Zhengrong Hao
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Monica Y Lee
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - David J Vinyard
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Heino Velazquez
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Xinran Liu
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Radu V Stan
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Gary W Brudvig
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| |
Collapse
|
16
|
Chettimada S, Yang J, Moon HG, Jin Y. Caveolae, caveolin-1 and cavin-1: Emerging roles in pulmonary hypertension. World J Respirol 2015; 5:126-134. [PMID: 28529892 PMCID: PMC5438095 DOI: 10.5320/wjr.v5.i2.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/25/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Caveolae are flask-shaped invaginations of cell membrane that play a significant structural and functional role. Caveolae harbor a variety of signaling molecules and serve to receive, concentrate and transmit extracellular signals across the membrane. Caveolins are the main structural proteins residing in the caveolae. Caveolins and another category of newly identified caveolae regulatory proteins, named cavins, are not only responsible for caveolae formation, but also interact with signaling complexes in the caveolae and regulate transmission of signals across the membrane. In the lung, two of the three caveolin isoforms, i.e., cav-1 and -2, are expressed ubiquitously. Cavin protein family is composed of four proteins, named cavin-1 (or PTRF for polymerase I and transcript release factor), cavin-2 (or SDPR for serum deprivation protein response), cavin-3 (or SRBC for sdr-related gene product that binds to-c-kinase) and cavin-4 (or MURC for muscle restricted coiled-coiled protein or cavin-4). All the caveolin and cavin proteins are essential regulators for caveolae dynamics. Recently, emerging evidence suggest that caveolae and its associated proteins play crucial roles in development and progression of pulmonary hypertension. The focus of this review is to outline and discuss the contrast in alteration of cav-1 (cav-1),-2 and cavin-1 (PTRF) expression and downstream signaling mechanisms between human and experimental models of pulmonary hypertension.
Collapse
|
17
|
Cavin-1: caveolae-dependent signalling and cardiovascular disease. Biochem Soc Trans 2015; 42:284-8. [PMID: 24646232 DOI: 10.1042/bst20130270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caveolae are curved lipid raft regions rich in cholesterol and sphingolipids found abundantly in vascular endothelial cells, adipocytes, smooth muscle cells and fibroblasts. They are multifunctional organelles with roles in clathrin-independent endocytosis, cholesterol transport, mechanosensing and signal transduction. Caveolae provide an environment where multiple receptor signalling components are sequestered, clustered and compartmentalized for efficient signal transduction. Many of these receptors, including cytokine signal transducer gp130 (glycoprotein 130), are mediators of chronic inflammation during atherogenesis. Subsequently, disruption of these organelles is associated with a broad range of disease states including cardiovascular disease and cancer. Cavin-1 is an essential peripheral component of caveolae that stabilizes caveolin-1, the main structural/integral membrane protein of caveolae. Caveolin-1 is an essential regulator of eNOS (endothelial nitric oxide synthase) and its disruption leads to endothelial dysfunction which initiates a range of cardiovascular and pulmonary disorders. Although dysfunctional cytokine signalling is also a hallmark of cardiovascular disease, knowledge of caveolae-dependent cytokine signalling is lacking as is the role of cavin-1 independent of caveolae. The present review introduces caveolae, their structural components, the caveolins and cavins, their regulation by cAMP, and their potential role in cardiovascular disease.
Collapse
|
18
|
Peres KC, Trinca V, Oliveira FP, Oliveira LJ, Bressan FF, Pimentel JR, Meirelles FV, Pereira FT. Caracterização das proteínas caveolinas -1 e -2 na placenta de conceptos bovinos clonados transgênicos. PESQUISA VETERINARIA BRASILEIRA 2015. [DOI: 10.1590/s0100-736x-2015000500016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RESUMO:A utilização da transgenia com a proteína fluorescente verde (GFP) como marcador de células de origem fetal nas placentas de clones bovinos servirá de modelo inédito para estudo morfofisiológico e imunológico da interação materno-fetal, visto que possibilitará o seu mapeamento, diferenciando as células fetais das maternas. Tal modelo terá aplicação direta, principalmente porque estes são animais que apresentam problemas em relação ao seu desenvolvimento. Com o auxílio deste modelo, pretende-se verificar o transporte de substâncias entre a mãe e o feto via endocitose, pela imunolocalização das proteínas chamadas de caveolinas. Para tanto foram utilizados 06 bovinos clonados e 30 bovinos de inseminação artificial (IA) com idade até 90 dias de gestação, os quais tiveram seu desenvolvimento interrompido mediante abate humanitário das receptoras e ovariosalpingohisterectomia, com posterior recuperação do útero gestante. Foram coletados os placentônios e o cório. Uma parte das amostras foi recortada e fixada, por imersão, em solução de parafolmaldeído a 4% ou formoldeído a 10% em tampão fosfato de sódio (PBS) a 0,1M pH 7.4, solução de Zamboni (4% de paraformoldeído, 15% de ácido pícrico, em tampão fosfato de sódio a 0,1M pH 7.4), metacarn (60% de metanol, 30% de clorofórmio, e 10% de ácido acético glacial), para verificação da morfologia e realização de imuno-histoquímica para as proteínas caveolinas -1 e -2 (CAV -1 e CAV-2). As caveolinas -1 foram localizadas nos vilos fetais e maternos, mas sua marcação mais forte foi observada no estroma endometrial. As caveolinas -2 tiveram marcação positiva no trofoblasto e membrana córioalantoide, e, especificamente em célula trofoblástica gigante binucleada. Sendo assim, os resultados mostram que a proteína CAV-1 teve uma maior expressão em relação à proteína CAV-2 e que as proteínas CAV-1 e -2 são parte da composição das cavéolas, sendo estruturas importantes e relacionadas com a transferência de moléculas para o feto, realizando a nutrição do mesmo mediante endocitose e pinocitose.
Collapse
|
19
|
|
20
|
The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolae-association. Biochem Biophys Res Commun 2014; 456:750-6. [PMID: 25514038 DOI: 10.1016/j.bbrc.2014.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/28/2023]
Abstract
PTRF/cavin-1 is a protein of two lives. Its reported functions in ribosomal RNA synthesis and in caveolae formation happen in two different cellular locations: nucleus vs. plasma membrane. Here, we identified that the N-terminal leucine-zipper motif in PTRF/cavin-1 was essential for the protein to be associated with caveolae in plasma membrane. It could counteract the effect of nuclear localization sequence in the molecule (AA 235-251). Deletion of this leucine-zipper motif from PTRF/cavin-1 caused the mutant to be exclusively localized in nuclei. The fusion of this leucine-zipper motif with histone 2A, which is a nuclear protein, could induce the fusion protein to be exported from nucleus. Cell migration was greatly inhibited in PTRF/cavin-1(-/-) mouse embryonic fibroblasts (MEFs). The inhibited cell motility could only be rescued by exogenous cavin-1 but not the leucine-zipper motif deleted cavin-1 mutant. Plasma membrane dynamics is an important factor in cell motility control. Our results suggested that the membrane dynamics in cell migration is affected by caveolae associated PTRF/cavin-1.
Collapse
|
21
|
Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. Hemoglobin α in the blood vessel wall. Free Radic Biol Med 2014; 73:136-42. [PMID: 24832680 PMCID: PMC4135531 DOI: 10.1016/j.freeradbiomed.2014.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022]
Abstract
Hemoglobin has been studied and well characterized in red blood cells for over 100 years. However, new work has indicated that the hemoglobin α subunit (Hbα) is also found within the blood vessel wall, where it appears to localize at the myoendothelial junction (MEJ) and plays a role in regulating nitric oxide (NO) signaling between endothelium and smooth muscle. This discovery has created a new paradigm for the control of endothelial nitric oxide synthase activity, nitric oxide diffusion, and, ultimately, vascular tone and blood pressure. This review discusses the current knowledge of hemoglobin׳s properties as a gas exchange molecule in the bloodstream and extrapolates the properties of Hbα biology to the MEJ signaling domain. Specifically, we propose that Hbα is present at the MEJ to regulate NO release and diffusion in a restricted physical space, which would have powerful implications for the regulation of blood flow in peripheral resistance arteries.
Collapse
Affiliation(s)
- Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler Johnson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jody Beers
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
22
|
Endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes its subendothelial retention in vascular wall. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:823071. [PMID: 24817993 PMCID: PMC4003761 DOI: 10.1155/2014/823071] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 11/24/2022]
Abstract
Oxidized low density of lipoprotein (oxLDL) is the major lipid found in atherosclerotic lesion and elevated plasma oxLDL is recognized to be a risk factor of atherosclerosis. Whether plasma oxLDL could be transported across endothelial cells and initiate atherosclerotic changes remains unknown. In an established in vitro cellular transcytosis model, the present study found that oxLDL could traffic across vascular endothelial cells and further that the regulation of endogenous ceramide production by ceramide metabolizing enzyme inhibitors significantly altered the transcytosis of oxLDL across endothelial cells. It was found that acid sphingomyelinase inhibitor, desipramine (DES), and de novo ceramide synthesis inhibitor, myriocin (MYR), both decreasing the endogenous ceramide production, significantly inhibited the transcytosis of oxLDL. Ceramidase inhibitor, N-oleoylethanolamine (NOE), and sphingomyelin synthase inhibitor, O-Tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt (D609), both increasing the endogenous ceramide production, significantly upregulated the transcytosis of oxLDL. In vivo, injection of fluorescence labeled oxLDL into mice body also predisposed to the subendothelial retention of these oxidized lipids. The observations provided in the present study demonstrate that endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes the initiating step of atherosclerosis—the subendothelial retention of lipids in vascular wall.
Collapse
|
23
|
Shaheed SU, Rustogi N, Scally A, Wilson J, Thygesen H, Loizidou MA, Hadjisavvas A, Hanby A, Speirs V, Loadman P, Linforth R, Kyriacou K, Sutton CW. Identification of stage-specific breast markers using quantitative proteomics. J Proteome Res 2013; 12:5696-708. [PMID: 24106833 DOI: 10.1021/pr400662k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matched healthy and diseased tissues from breast cancer patients were analyzed by quantitative proteomics. By comparing proteomic profiles of fibroadenoma (benign tumors, three patients), DCIS (noninvasive cancer, three patients), and invasive ductal carcinoma (four patients), we identified protein alterations that correlated with breast cancer progression. Three 8-plex iTRAQ experiments generated an average of 826 protein identifications, of which 402 were common. After excluding those originating from blood, 59 proteins were significantly changed in tumor compared with normal tissues, with the majority associated with invasive carcinomas. Bioinformatics analysis identified relationships between proteins in this subset including roles in redox regulation, lipid transport, protein folding, and proteasomal degradation, with a substantial number increased in expression due to Myc oncogene activation. Three target proteins, cofilin-1 and p23 (increased in invasive carcinoma) and membrane copper amine oxidase 3 (decreased in invasive carcinoma), were subjected to further validation. All three were observed in phenotype-specific breast cancer cell lines, normal (nontransformed) breast cell lines, and primary breast epithelial cells by Western blotting, but only cofilin-1 and p23 were detected by multiple reaction monitoring mass spectrometry analysis. All three proteins were detected by both analytical approaches in matched tissue biopsies emulating the response observed with proteomics analysis. Tissue microarray analysis (361 patients) indicated cofilin-1 staining positively correlating with tumor grade and p23 staining with ER positive status; both therefore merit further investigation as potential biomarkers.
Collapse
Affiliation(s)
- Sadr-ul Shaheed
- Institute of Cancer Therapeutics, University of Bradford , Tumbling Hill Street, Bradford BD7 1DP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 2013; 1:e00008. [PMID: 24303100 PMCID: PMC3831936 DOI: 10.1002/phy2.8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
Caveolae are invaginations in the plasma membrane that depend on caveolins and cavins for maturation. Here, we investigated the pulmonary phenotype in mice lacking cavin-1. Bright field and electron-microscopy showed that the cavin-1-deficient mice lacked caveolae in the lung, had an increased lung tissue density, and exhibited hypertrophic remodeling of pulmonary arteries. The right ventricle of the heart moreover had an increased mass and the right ventricular pressure was elevated. A microarray analysis revealed upregulation of Arg1 and downregulation of Ddah1, molecules whose altered expression has previously been associated with pulmonary arterial hypertension. Taken together, this work demonstrates vascular remodeling and increased pulmonary blood pressure in cavin-1 deficient mice and associates this phenotype with altered expression of Arg1 and Ddah1.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University BMC D12, SE-221 84, Lund, Sweden
| | | | | | | | | |
Collapse
|
25
|
Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 2013. [PMID: 24303100 PMCID: PMC3831936 DOI: 10.1002/phy2.8,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Caveolae are invaginations in the plasma membrane that depend on caveolins and cavins for maturation. Here, we investigated the pulmonary phenotype in mice lacking cavin-1. Bright field and electron-microscopy showed that the cavin-1-deficient mice lacked caveolae in the lung, had an increased lung tissue density, and exhibited hypertrophic remodeling of pulmonary arteries. The right ventricle of the heart moreover had an increased mass and the right ventricular pressure was elevated. A microarray analysis revealed upregulation of Arg1 and downregulation of Ddah1, molecules whose altered expression has previously been associated with pulmonary arterial hypertension. Taken together, this work demonstrates vascular remodeling and increased pulmonary blood pressure in cavin-1 deficient mice and associates this phenotype with altered expression of Arg1 and Ddah1.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University BMC D12, SE-221 84, Lund, Sweden
| | | | | | | | | |
Collapse
|
26
|
Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci 2013; 33:4295-307. [PMID: 23467346 DOI: 10.1523/jneurosci.5192-12.2013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D1-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.
Collapse
|
27
|
Cheadle L, Biederer T. The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. ACTA ACUST UNITED AC 2012; 199:985-1001. [PMID: 23209303 PMCID: PMC3518221 DOI: 10.1083/jcb.201205041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Synaptic adhesion organizes synapses, yet the signaling pathways that drive and integrate synapse development remain incompletely understood. We screened for regulators of these processes by proteomically analyzing synaptic membranes lacking the synaptogenic adhesion molecule SynCAM 1. This identified FERM, Rho/ArhGEF, and Pleckstrin domain protein 1 (Farp1) as strongly reduced in SynCAM 1 knockout mice. Farp1 regulates dendritic filopodial dynamics in immature neurons, indicating roles in synapse formation. Later in development, Farp1 is postsynaptic and its 4.1 protein/ezrin/radixin/moesin (FERM) domain binds SynCAM 1, assembling a synaptic complex. Farp1 increases synapse number and modulates spine morphology, and SynCAM 1 requires Farp1 for promoting spines. In turn, SynCAM 1 loss reduces the ability of Farp1 to elevate spine density. Mechanistically, Farp1 activates the GTPase Rac1 in spines downstream of SynCAM 1 clustering, and promotes F-actin assembly. Farp1 furthermore triggers a retrograde signal regulating active zone composition via SynCAM 1. These results reveal a postsynaptic signaling pathway that engages transsynaptic interactions to coordinate synapse development.
Collapse
Affiliation(s)
- Lucas Cheadle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
28
|
Abstract
Synucleins are a family of presynaptic membrane binding proteins. α-Synuclein, the principal member of this family, is mutated in familial Parkinson disease. To gain insight into the molecular functions of synucleins, we performed an unbiased proteomic screen and identified synaptic protein changes in αβγ-synuclein knock-out brains. We observed increases in the levels of select membrane curvature sensing/generating proteins. One of the most prominent changes was for the N-BAR protein endophilin A1. Here we demonstrate that the levels of synucleins and endophilin A1 are reciprocally regulated and that they are functionally related. We show that all synucleins can robustly generate membrane curvature similar to endophilins. However, only monomeric but not tetrameric α-synuclein can bend membranes. Further, A30P α-synuclein, a Parkinson disease mutant that disrupts protein folding, is also deficient in this activity. This suggests that synucleins generate membrane curvature through the asymmetric insertion of their N-terminal amphipathic helix. Based on our findings, we propose to include synucleins in the class of amphipathic helix-containing proteins that sense and generate membrane curvature. These results advance our understanding of the physiological function of synucleins.
Collapse
Affiliation(s)
- Christopher H Westphal
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
29
|
Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best AK, Columbus L, Gaston B, Isakson BE. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling. Nature 2012; 491:473-7. [PMID: 23123858 PMCID: PMC3531883 DOI: 10.1038/nature11626] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 09/27/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Adam C Straub
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang YQ, Henderson MX, Colangelo CM, Ginsberg SD, Bruce C, Wu T, Chandra SS. Identification of CSPα clients reveals a role in dynamin 1 regulation. Neuron 2012; 74:136-50. [PMID: 22500636 DOI: 10.1016/j.neuron.2012.01.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2012] [Indexed: 01/05/2023]
Abstract
Cysteine string protein α (CSPα), a presynaptic cochaperone for Hsc70, is required for synapse maintenance. Deletion of CSPα leads to neuronal dysfunction, synapse loss, and neurodegeneration. We utilized unbiased, systematic proteomics to identify putative CSPα protein clients. We found 22 such proteins whose levels are selectively decreased in CSPα knockout synapses. Of these putative CSPα protein clients, two directly bind to the CSPα chaperone complex and are bona fide clients. They are the t-SNARE SNAP-25 and the GTPase dynamin 1, which are necessary for synaptic vesicle fusion and fission, respectively. Using hippocampal cultures, we show that CSPα regulates the stability of client proteins and synaptic vesicle number. Our analysis of CSPα-dynamin 1 interactions reveals unexpectedly that CSPα regulates the polymerization of dynamin 1. CSPα, therefore, participates in synaptic vesicle endocytosis and may facilitate exo- and endocytic coupling. These findings advance the understanding of how synapses are functionally and structurally maintained.
Collapse
Affiliation(s)
- Yong-Quan Zhang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale University, New Haven, CT 06536, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Garcia-Garcia E, Grayfer L, Stafford JL, Belosevic M. Evidence for the presence of functional lipid rafts in immune cells of ectothermic organisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:257-269. [PMID: 22450166 DOI: 10.1016/j.dci.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The role of lipid rafts in non-mammalian leukocytes has been scarcely investigated. We performed biochemical and functional analysis of lipid rafts in fish leukocytes. Fish Flotillin-1 and a fish GM1-like molecule (fGM1-L) were found in low density detergent-resistant membranes (LD-DRM) in goldfish macrophages and catfish B lymphocytes, similarly to mammals. The presence of flotillin-1 and fGM1-L in LD-DRM was sensitive to increased detergent concentrations, and cholesterol extraction. Confocal microscopy analysis of flotillin-1 and fGM1-L in fish leukocytes showed a distinctive punctuated staining pattern, suggestive of pre-existing rafts. Confocal microscopy analysis of macrophages showed that the membrane of phagosomes containing serum-opsonized zymosan was enriched in fGM1-L, and zymosan phagocytosis was reduced after cholesterol extraction. The presence of flotillin-1 and fGM1-L in LD-DRM, the microscopic evidence of flotillin-1 and fGM1-L on fish macrophages and B-cells, and the sensitivity of phagocytosis to cholesterol extraction, indicate that lipid rafts are biochemically and functionally similar in leukocytes from fish and mammals.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Biological Sciences, University of Alberta, Edmonton, Canada AB T6G 2E9
| | | | | | | |
Collapse
|
32
|
Sowa G. Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2012; 2:120. [PMID: 22232608 PMCID: PMC3252561 DOI: 10.3389/fphys.2011.00120] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/19/2011] [Indexed: 12/29/2022] Open
Abstract
Caveolae are cholesterol and glycosphingolipid-rich flask-shaped invaginations of the plasma membrane which are particularly abundant in vascular endothelium and present in all other cell types of the cardiovascular system, including vascular smooth-muscle cells, macrophages, cardiac myocytes, and fibroblasts. Caveolins and the more recently discovered cavins are the major protein components of caveolae. When caveolae were discovered, their functional role was believed to be limited to transport across the endothelial cell barrier. Since then, however, a large body of evidence has accumulated, suggesting that these microdomains are very important in regulating many other important endothelial cell functions, mostly due to their ability to concentrate and compartmentalize various signaling molecules. Over the course of several years, multiple studies involving knockout mouse and small interfering RNA approaches have considerably enhanced our understanding of the role of caveolae and caveolin-1 in regulating many cardiovascular functions. New findings have been reported implicating other caveolar protein components in endothelial cell signaling and function, such as the understudied caveolin-2 and newly discovered cavin proteins. The aim of this review is to focus primarily on molecular and cellular aspects of the role of caveolae, caveolins, and cavins in endothelial cell signaling and function. In addition, where appropriate, the possible implications for the cardiovascular and pulmonary physiology and pathophysiology will be discussed.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, USA
| |
Collapse
|
33
|
Zheng YZ, Boscher C, Inder KL, Fairbank M, Loo D, Hill MM, Nabi IR, Foster LJ. Differential impact of caveolae and caveolin-1 scaffolds on the membrane raft proteome. Mol Cell Proteomics 2011; 10:M110.007146. [PMID: 21753190 PMCID: PMC3205860 DOI: 10.1074/mcp.m110.007146] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Caveolae, a class of cholesterol-rich lipid rafts, are smooth invaginations of the plasma membrane whose formation in nonmuscle cells requires caveolin-1 (Cav1). The recent demonstration that Cav1-associated cavin proteins, in particular PTRF/cavin-1, are also required for caveolae formation supports a functional role for Cav1 independently of caveolae. In tumor cells deficient for Golgi β-1,6N-acetylglucosaminyltransferase V (Mgat5), reduced Cav1 expression is associated not with caveolae but with oligomerized Cav1 domains, or scaffolds, that functionally regulate receptor signaling and raft-dependent endocytosis. Using subdiffraction-limit microscopy, we show that Cav1 scaffolds are homogenous subdiffraction-limit sized structures whose size distribution differs from that of Cav1 in caveolae expressing cells. These cell lines displaying differing Cav1/caveolae phenotypes are effective tools for probing the structure and composition of caveolae. Using stable isotope labeling by amino acids in cell culture, we are able to quantitatively distinguish the composition of caveolae from the background of detergent-resistant membrane proteins and show that the presence of caveolae enriches the protein composition of detergent-resistant membrane, including the recruitment of multiple heterotrimeric G-protein subunits. These data were further supported by analysis of immuno-isolated Cav1 domains and of methyl-β-cyclodextrin-disrupted detergent-resistant membrane. Our data show that loss of caveolae results in a dramatic change to the membrane raft proteome and that this change is independent of Cav1 expression. The proteomics data, in combination with subdiffraction-limit microscopy, indicates that noncaveolar Cav1 domains, or scaffolds are structurally and functionally distinct from caveolae and differentially impact on the molecular composition of lipid rafts.
Collapse
Affiliation(s)
- Yu Zi Zheng
- Centre for High-Throughput Biology and Department of Biochemistry and Molecular Biology, 2125 East Mall, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wilson KA, Colavito SA, Schulz V, Wakefield PH, Sessa W, Tuck D, Stern DF. NFBD1/MDC1 regulates Cav1 and Cav2 independently of DNA damage and p53. Mol Cancer Res 2011; 9:766-81. [PMID: 21551225 DOI: 10.1158/1541-7786.mcr-10-0317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NFBD1/MDC1 is involved in DNA damage checkpoint signaling and DNA repair. NFBD1 binds to the chromatin component γH2AX at sites of DNA damage, causing amplification of ataxia telangiectasia-mutated gene (ATM) pathway signaling and recruitment of DNA repair factors. Residues 508-995 of NFBD1 possess transactivation activity, suggesting a possible role of NFBD1 in transcription. Furthermore, NFBD1 influences p53-mediated transcription in response to adriamycin. We sought to determine the role of NFBD1 in ionizing radiation (IR)-responsive transcription and if NFBD1 influences transcription independently of p53. Using microarray analysis, we identified genes altered upon NFBD1 knockdown. Surprisingly, most NFBD1 regulated genes are regulated in both the absence and presence of IR, thus pointing toward a novel function for NFBD1 outside of the DNA damage response. Furthermore, NFBD1 knockdown regulated genes mostly independent of p53 knockdown. These genes are involved in pathways including focal adhesion signaling, carbohydrate metabolism, and insulin signaling. We found that CAV1 and CAV2 mRNA and protein levels are reduced by both NFBD1 knockdown and knockout independently of IR and p53. NFBD1-depleted cells exhibit some similar phenotypes to Cav1-depleted cells. Furthermore, like Cav1-depletion, NFBD1 shRNA increases Erk phosphorylation. Thus, Cav1 could act as a mediator of the DNA-damage independent effects of NFBD1 in mitogenic signaling.
Collapse
Affiliation(s)
- Kathleen A Wilson
- Yale University, 333 Cedar Street, P.O. Box 208023, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pilch PF, Meshulam T, Ding S, Liu L. Caveolae and lipid trafficking in adipocytes. ACTA ACUST UNITED AC 2011; 6:49-58. [PMID: 21625349 DOI: 10.2217/clp.10.80] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The abundance of caveolae in adipocytes suggests a possible cell-specific role for these structures, and because these cells take up and release fatty acids as their quantitatively most robust activity, modulation of fatty acid movement is one such role that is supported by substantial in vitro and in vivo data. In addition, caveolae are particularly rich in cholesterol and sphingolipids, and indeed, fat cells harbor more cholesterol than any other tissue. In this article, we review the role of adipocyte caveolae with regard to these important lipid classes.
Collapse
Affiliation(s)
- Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, 715 Albany St, Boston, MA 2118, USA
| | | | | | | |
Collapse
|
37
|
Salani B, Passalacqua M, Maffioli S, Briatore L, Hamoudane M, Contini P, Cordera R, Maggi D. IGF-IR internalizes with Caveolin-1 and PTRF/Cavin in HaCat cells. PLoS One 2010; 5:e14157. [PMID: 21152401 PMCID: PMC2994771 DOI: 10.1371/journal.pone.0014157] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 11/05/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Insulin-like growth factor-I receptor (IGF-IR) is a tyrosine kinase receptor (RTK) associated with caveolae, invaginations of the plasma membrane that regulate vesicular transport, endocytosis and intracellular signaling. IGF-IR internalization represents a key mechanism of down-modulation of receptors number on plasma membrane. IGF-IR interacts directly with Caveolin-1 (Cav-1), the most relevant protein of caveolae. Recently it has been demonstrated that the Polymerase I and Transcript Release Factor I (PTRF/Cavin) is required for caveolae biogenesis and function. The role of Cav-1 and PTRF/Cavin in IGF-IR internalization is still to be clarified. METHODOLOGY/PRINCIPAL FINDINGS We have investigated the interaction of IGF-IR with Cav-1 and PTRF/Cavin in the presence of IGF1in human Hacat cells. We show that IGF-IR internalization triggers Cav-1 and PTRF/Cavin translocation from plasma membrane to cytosol and increases IGF-IR interaction with these proteins. In fact, Cav-1 and PTRF/Cavin co-immunoprecipitate with IGF-IR during receptor internalization. We found a different time course of co-immunoprecipitation between IGF-IR and Cav-1 compared to IGF-IR and PTRF/Cavin. Cav-1 and PTRF/Cavin silencing by siRNA differently affect surface IGF-IR levels following IGF1 treatment: Cav-1 and PTRF/Cavin silencing significantly affect IGF-IR rate of internalization, while PTRF/Cavin silencing also decreases IGF-IR plasma membrane recovery. Since Cav-1 phosphorylation could have a role in IGF-IR internalization, the mutant Cav-1Y14F lacking Tyr14 was transfected. Cav-1Y14F transfected cells showed a reduced internalization of IGF-IR compared with cells expressing wild type Cav-1. Receptor internalization was not impaired by Clathrin silencing. These findings support a critical role of caveolae in IGF-IR intracellular traveling. CONCLUSIONS/SIGNIFICANCE These data indicate that Caveolae play a role in IGF-IR internalization. Based on these findings, Cav-1 and PTRF/Cavin could represent two relevant and distinct targets to modulate IGF-IR function.
Collapse
Affiliation(s)
- Barbara Salani
- Department of Endocrinology and Medicine (DiSEM), University of Genova, Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy
- Italian Institute of Biostructures and Biosystems (INBB), University of Genova, Genova, Italy
| | - Sara Maffioli
- Department of Endocrinology and Medicine (DiSEM), University of Genova, Genova, Italy
| | - Lucia Briatore
- Department of Endocrinology and Medicine (DiSEM), University of Genova, Genova, Italy
| | - Meriem Hamoudane
- Department of Endocrinology and Medicine (DiSEM), University of Genova, Genova, Italy
| | - Paola Contini
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
| | - Renzo Cordera
- Department of Endocrinology and Medicine (DiSEM), University of Genova, Genova, Italy
| | - Davide Maggi
- Department of Endocrinology and Medicine (DiSEM), University of Genova, Genova, Italy
- * E-mail:
| |
Collapse
|