1
|
Kalebina TS, Rekstina VV, Pogarskaia EE, Kulakovskaya T. Importance of Non-Covalent Interactions in Yeast Cell Wall Molecular Organization. Int J Mol Sci 2024; 25:2496. [PMID: 38473742 DOI: 10.3390/ijms25052496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This review covers a group of non-covalently associated molecules, particularly proteins (NCAp), incorporated in the yeast cell wall (CW) with neither disulfide bridges with proteins covalently attached to polysaccharides nor other covalent bonds. Most NCAp, particularly Bgl2, are polysaccharide-remodeling enzymes. Either directly contacting their substrate or appearing as CW lipid-associated molecules, such as in vesicles, they represent the most movable enzymes and may play a central role in CW biogenesis. The absence of the covalent anchoring of NCAp allows them to be there where and when it is necessary. Another group of non-covalently attached to CW molecules are polyphosphates (polyP), the universal regulators of the activity of many enzymes. These anionic polymers are able to form complexes with metal ions and increase the diversity of non-covalent interactions through charged functional groups with both proteins and polysaccharides. The mechanism of regulation of polysaccharide-remodeling enzyme activity in the CW is unknown. We hypothesize that polyP content in the CW is regulated by another NCAp of the CW-acid phosphatase-which, along with post-translational modifications, may thus affect the activity, conformation and compartmentalization of Bgl2 and, possibly, some other polysaccharide-remodeling enzymes.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta E Pogarskaia
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| |
Collapse
|
2
|
Rekstina VV, Sabirzyanova TA, Sabirzyanov FA, Adzhubei AA, Tkachev YV, Kudryashova IB, Snalina NE, Bykova AA, Alessenko AV, Ziganshin RH, Kuznetsov SA, Kalebina TS. The Post-Translational Modifications, Localization, and Mode of Attachment of Non-Covalently Bound Glucanosyltransglycosylases of Yeast Cell Wall as a Key to Understanding their Functioning. Int J Mol Sci 2020; 21:ijms21218304. [PMID: 33167499 PMCID: PMC7663962 DOI: 10.3390/ijms21218304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/27/2023] Open
Abstract
Glucan linked to proteins is a natural mega-glycoconjugate (mGC) playing the central role as a structural component of a yeast cell wall (CW). Regulation of functioning of non-covalently bound glucanosyltransglycosylases (ncGTGs) that have to remodel mGC to provide CW extension is poorly understood. We demonstrate that the main ncGTGs Bgl2 and Scw4 have phosphorylated and glutathionylated residues and are represented in CW as different pools of molecules having various firmness of attachment. Identified pools contain Bgl2 molecules with unmodified peptides, but differ from each other in the presence and combination of modified ones, as well as in the presence or absence of other CW proteins. Correlation of Bgl2 distribution among pools and its N-glycosylation was not found. Glutathione affects Bgl2 conformation, probably resulting in the mode of its attachment and enzymatic activity. Bgl2 from the pool of unmodified and monophosphorylated molecules demonstrates the ability to fibrillate after isolation from CW. Revealing of Bgl2 microcompartments and their mosaic arrangement summarized with the results obtained give the evidence that the functioning of ncGTGs in CW can be controlled by reversible post-translational modifications and facilitated due to their compact localization. The hypothetical scheme of distribution of Bgl2 inside CW is represented.
Collapse
Affiliation(s)
- Valentina V. Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Tatyana A. Sabirzyanova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Fanis A. Sabirzyanov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.A.A.); (Y.V.T.)
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.A.A.); (Y.V.T.)
| | - Irina B. Kudryashova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Natalia E. Snalina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia; (N.E.S.); (A.V.A.)
| | - Anastasia A. Bykova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Alice V. Alessenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia; (N.E.S.); (A.V.A.)
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Sergei A. Kuznetsov
- Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany;
| | - Tatyana S. Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
- Correspondence: ; Tel.: +7-(495)-939-50-75
| |
Collapse
|
3
|
Chen XL, Liu C, Tang B, Ren Z, Wang GL, Liu W. Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae. PLoS Pathog 2020; 16:e1008355. [PMID: 32092131 PMCID: PMC7058352 DOI: 10.1371/journal.ppat.1008355] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/05/2020] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
Genetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially increased in the appressorium and invasive hyphae. A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M. oryzae. A total of 559 N-glycosites from 355 proteins were identified and quantified at different developmental stages. Functional classification to the N-glycosylated proteins revealed N-glycosylation can coordinate different cellular processes for mycelial growth, conidium formation, and appressorium formation. N-glycosylation can also modify key components in N-glycosylation, O-glycosylation and GPI anchor pathways, indicating intimate crosstalk between these pathways. Interestingly, we found nearly all key components of the endoplasmic reticulum quality control (ERQC) system were highly N-glycosylated in conidium and appressorium. Phenotypic analyses to the gene deletion mutants revealed four ERQC components, Gls1, Gls2, GTB1 and Cnx1, are important for mycelial growth, conidiation, and invasive hyphal growth in host cells. Subsequently, we identified the Gls1 N-glycosite N497 was important for invasive hyphal growth and partially required for conidiation, but didn’t affect colony growth. Mutation of N497 resulted in reduction of Gls1 in protein level, and localization from ER into the vacuole, suggesting N497 is important for protein stability of Gls1. Our study showed a snapshot of the N-glycosylation landscape in plant pathogenic fungi, indicating functions of this modification in cellular processes, developments and pathogenesis. The fungal pathogen Magnaporthe oryzae can cause rice blast and wheat blast diseases, which threatens worldwide food production. During infection, M. oryzae follows a sequence of distinct developmental stages adapted to survival and invasion of the host environment. M. oryzae attaches onto the host by the conidium, and then develops an appressorium to breach the host cuticle. After penetrating, it forms invasive hyphae to quickly spread in the host cells. Numerous genetic studies have focused on the mechanisms underlying each step in the infection process, but systemic approaches are needed for a broader, integrated understanding of regulatory events during M. oryzae pathogenesis. Many infection-related signaling events are regulated through post-translational protein modifications within the pathogen. N-linked glycosylation, in which a glycan moiety is added to the amide group of an asparagine residue, is an abundant modification known to be essential for M. oryzae infection. In this study, we employed a quantitative proteomics analysis to unravel the overall regulatory mechanisms of N-glycosylation at different developmental stages of M. oryzae. We detected changes in N-glycosylation levels at 559 glycosylated residues (N-glycosites) in 355 proteins during different stages, and determined that the ER quality control system is elaborately regulated by N-glycosylation. The insights gained will help us to better understand the regulatory mechanisms of infection in pathogenic fungi. These findings may be also important for developing novel strategies for fungal disease control.
Collapse
Affiliation(s)
- Xiao-Lin Chen
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caiyun Liu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Zhiyong Ren
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019; 118:880-892. [PMID: 31579312 PMCID: PMC6774629 DOI: 10.1016/j.trac.2018.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019. [PMID: 31579312 DOI: 10.1016/jtrac.2018.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Xiao H, Wu R. Simultaneous Quantitation of Glycoprotein Degradation and Synthesis Rates by Integrating Isotope Labeling, Chemical Enrichment, and Multiplexed Proteomics. Anal Chem 2017; 89:10361-10367. [PMID: 28850217 PMCID: PMC5678942 DOI: 10.1021/acs.analchem.7b02241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein glycosylation is essential for cell survival and regulates many cellular events. Reversible glycosylation is also dynamic in biological systems. The functions of glycoproteins are regulated by their dynamics to adapt the ever-changing inter- and intracellular environments. Glycans on proteins not only mediate a variety of protein activities, but also creates a steric hindrance for protecting the glycoproteins from degradation by proteases. In this work, a novel strategy integrating isotopic labeling, chemical enrichment and multiplexed proteomics was developed to simultaneously quantify the degradation and synthesis rates of many glycoproteins in human cells. We quantified the synthesis rates of 847 N-glycoproteins and the degradation rates of 704 glycoproteins in biological triplicate experiments, including many important glycoproteins such as CD molecules. Through comparing the synthesis and degradation rates, we found that most proteins have higher synthesis rates since cells are still growing throughout the time course, while a small group of proteins with lower synthesis rates mainly participate in adhesion, locomotion, localization, and signaling. This method can be widely applied in biochemical and biomedical research and provide insights into elucidating glycoprotein functions and the molecular mechanism of many biological events.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
7
|
Gohlke S, Muthukrishnan S, Merzendorfer H. In Vitro and In Vivo Studies on the Structural Organization of Chs3 from Saccharomyces cerevisiae. Int J Mol Sci 2017; 18:E702. [PMID: 28346351 PMCID: PMC5412288 DOI: 10.3390/ijms18040702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Chitin biosynthesis in yeast is accomplished by three chitin synthases (Chs) termed Chs1, Chs2 and Chs3, of which the latter accounts for most of the chitin deposited within the cell wall. While the overall structures of Chs1 and Chs2 are similar to those of other chitin synthases from fungi and arthropods, Chs3 lacks some of the C-terminal transmembrane helices raising questions regarding its structure and topology. To fill this gap of knowledge, we performed bioinformatic analyses and protease protection assays that revealed significant information about the catalytic domain, the chitin-translocating channel and the interfacial helices in between. In particular, we identified an amphipathic, crescent-shaped α-helix attached to the inner side of the membrane that presumably controls the channel entrance and a finger helix pushing the polymer into the channel. Evidence has accumulated in the past years that chitin synthases form oligomeric complexes, which may be necessary for the formation of chitin nanofibrils. However, the functional significance for living yeast cells has remained elusive. To test Chs3 oligomerization in vivo, we used bimolecular fluorescence complementation. We detected oligomeric complexes at the bud neck, the lateral plasma membrane, and in membranes of Golgi vesicles, and analyzed their transport route using various trafficking mutants.
Collapse
Affiliation(s)
- Simon Gohlke
- Department of Biology and Chemistry, University of Osnabrück, 49068 Osnabrück, Germany.
- Institute of Biology, University of Siegen, 57068 Siegen, Germany.
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry & Molecular Biophysics, Kansas-State University, Manhattan 66506, KS, USA.
| | - Hans Merzendorfer
- Department of Biology and Chemistry, University of Osnabrück, 49068 Osnabrück, Germany.
- Institute of Biology, University of Siegen, 57068 Siegen, Germany.
| |
Collapse
|
8
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Maxson T, Tietz JI, Hudson GA, Guo XR, Tai HC, Mitchell DA. Targeting Reactive Carbonyls for Identifying Natural Products and Their Biosynthetic Origins. J Am Chem Soc 2016; 138:15157-15166. [PMID: 27797509 DOI: 10.1021/jacs.6b06848] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Natural products (NPs) serve important roles as drug candidates and as tools for chemical biology. However, traditional NP discovery, largely based on bioassay-guided approaches, is biased toward abundant compounds and rediscovery rates are high. Orthogonal methods to facilitate discovery of new NPs are thus needed, and herein we describe an isotope tag-based expansion of reactivity-based NP screening to address these shortcomings. Reactivity-based screening is a directed discovery approach in which a specific reactive handle on the NP is targeted by a chemoselective probe to enable its detection by mass spectrometry. In this study, we have developed an aminooxy-containing probe to guide the discovery of aldehyde- and ketone-containing NPs. To facilitate the detection of labeling events, the probe was dibrominated, imparting a unique isotopic signature to distinguish labeled metabolites from spectral noise. As a proof of concept, the probe was then utilized to screen a collection of bacterial extracts, leading to the identification of a new analogue of antipain, deimino-antipain. The bacterial producer of deimino-antipain was sequenced and the responsible biosynthetic gene cluster was identified by bioinformatic analysis and heterologous expression. These data reveal the previously undetermined genetic basis for a well-known family of aldehyde-containing, peptidic protease inhibitors, including antipain, chymostatin, leupeptin, elastatinal, and microbial alkaline protease inhibitor, which have been widely used for over 40 years.
Collapse
Affiliation(s)
- Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan I Tietz
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Graham A Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Xiao Rui Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Hua-Chia Tai
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Department of Microbiology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
N-linked glycosylation of N48 is required for equilibrative nucleoside transporter 1 (ENT1) function. Biosci Rep 2016; 36:BSR20160063. [PMID: 27480168 PMCID: PMC5006311 DOI: 10.1042/bsr20160063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022] Open
Abstract
Our study confirmed that Asn48 of hENT1 is the only N-glycosylated residue when expressed in HEK293 cells, and loss of the N-glycan resulted in less hENT1 at the plasma membrane, as well as a loss of function and protein–protein self-interaction. Human equilibrative nucleoside transporter 1 (hENT1) transports nucleosides and nucleoside analogue drugs across cellular membranes and is necessary for the uptake of many anti-cancer, anti-parasitic and anti-viral drugs. Previous work, and in silico prediction, suggest that hENT1 is glycosylated at Asn48 in the first extracellular loop of the protein and that glycosylation plays a role in correct localization and function of hENT1. Site-directed mutagenesis of wild-type (wt) hENT1 removed potential glycosylation sites. Constructs (wt 3xFLAG-hENT1, N48Q-3xFLAG-hENT1 or N288Q-3xFLAG-hENT2) were transiently transfected into HEK293 cells and cell lysates were treated with or without peptide–N-glycosidase F (PNGase-F), followed by immunoblotting analysis. Substitution of N48 prevents hENT1 glycosylation, confirming a single N-linked glycosylation site. N48Q-hENT1 protein is found at the plasma membrane in HEK293 cells but at lower levels compared with wt hENT1 based on S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding analysis (wt 3xFLAG-ENT1 Bmax, 41.5±2.9 pmol/mg protein; N48Q-3xFLAG-ENT1 Bmax, 13.5±0.45 pmol/mg protein) and immunofluorescence microscopy. Although present at the membrane, chloroadenosine transport assays suggest that N48Q-hENT1 is non-functional (wt 3xFLAG-ENT1, 170.80±44.01 pmol/mg protein; N48Q-3xFLAG-ENT1, 57.91±17.06 pmol/mg protein; mock-transfected 74.31±19.65 pmol/mg protein). Co-immunoprecipitation analyses suggest that N48Q ENT1 is unable to interact with self or with wt hENT1. Based on these data we propose that glycosylation at N48 is critical for the localization, function and oligomerization of hENT1.
Collapse
|
11
|
Gutmann M, Memmel E, Braun AC, Seibel J, Meinel L, Lühmann T. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells. Chembiochem 2016; 17:866-75. [PMID: 26818821 DOI: 10.1002/cbic.201500582] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/09/2022]
Abstract
Bio-orthogonal copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been widely used to modify azide- or alkyne-bearing monosaccharides on metabolic glyco-engineered mammalian cells. Here, we present a systematic study to elucidate the design space for the cytotoxic effects of the copper catalyst on NIH 3T3 fibroblasts and on HEK 293-F cells. Monitoring membrane integrity by flow cytometry and RT-PCR analysis with apoptotic and anti-apoptotic markers elucidated the general feasibility of CuAAC, with exposure time of the CuAAC reaction mixture having the major influence on biocompatibility. A high labeling efficiency of HEK 293-F cells with a fluorescent alkyne dye was rapidly achieved by CuAAC in comparison to copper free strain-promoted azide-alkyne cycloaddition (SPAAC). The study details effective and biocompatible conditions for CuAAC-based modification of glyco-engineered cells in comparison to its copper free alternative.
Collapse
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Elisabeth Memmel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra C Braun
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
12
|
Woo CM, Bertozzi CR. Isotope Targeted Glycoproteomics (IsoTaG) to Characterize Intact, Metabolically Labeled Glycopeptides from Complex Proteomes. ACTA ACUST UNITED AC 2016; 8:59-82. [PMID: 26995354 DOI: 10.1002/9780470559277.ch150185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein glycosylation plays many critical roles in biological function and creates the most diversity of all post-translational modifications (PTMs). Glycan structural diversity is directly correlated with difficulty in characterizing the intact glycoproteome by mass spectrometry (MS). In this protocol, we describe a novel mass-independent chemical glycoproteomics platform for characterizing intact, metabolically labeled glycopeptides from complex proteomes, termed Isotope Targeted Glycoproteomics (IsoTaG). To use IsoTaG, cell culture samples are metabolically labeled with an azido- or alkynyl-sugar. Metabolically labeled glycoproteins are then tagged using Click chemistry and enriched with an isotopic recoding biotin probe. Intact glycopeptides are recovered by cleavage of the probe, analyzed with directed MS, and assigned by targeted mass-independent data analysis. The outlined procedure is well defined in cell culture and has been executed with over 15 cell lines.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry, Stanford University, Stanford, California
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California.,Department of Chemical and Systems Biology, Stanford University, Stanford, California.,Howard Hughes Medical Institute, Stanford, California
| |
Collapse
|
13
|
Zacchi LF, Schulz BL. N-glycoprotein macroheterogeneity: biological implications and proteomic characterization. Glycoconj J 2015; 33:359-76. [DOI: 10.1007/s10719-015-9641-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/04/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
14
|
Woo CM, Iavarone AT, Spiciarich DR, Palaniappan KK, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Methods 2015; 12:561-7. [PMID: 25894945 DOI: 10.1038/nmeth.3366] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022]
Abstract
Protein glycosylation is a heterogeneous post-translational modification (PTM) that plays an essential role in biological regulation. However, the diversity found in glycoproteins has undermined efforts to describe the intact glycoproteome via mass spectrometry (MS). We present IsoTaG, a mass-independent chemical glycoproteomics platform for characterization of intact, metabolically labeled glycopeptides at the whole-proteome scale. In IsoTaG, metabolic labeling of the glycoproteome is combined with (i) chemical enrichment and isotopic recoding of glycopeptides to select peptides for targeted glycoproteomics using directed MS and (ii) mass-independent assignment of intact glycopeptides. We structurally assigned 32 N-glycopeptides and over 500 intact and fully elaborated O-glycopeptides from 250 proteins across three human cancer cell lines and also discovered unexpected peptide sequence polymorphisms (pSPs). The IsoTaG platform is broadly applicable to the discovery of PTM sites that are amenable to chemical labeling, as well as previously unknown protein isoforms including pSPs.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California, USA
| | - David R Spiciarich
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | - Carolyn R Bertozzi
- 1] Department of Chemistry, University of California, Berkeley, California, USA. [2] Department of Molecular and Cell Biology, University of California, Berkeley, California, USA. [3] Howard Hughes Medical Institute, Berkeley, California, USA
| |
Collapse
|
15
|
Surlow BA, Cooley BM, Needham PG, Brodsky JL, Patton-Vogt J. Loss of Ypk1, the yeast homolog to the human serum- and glucocorticoid-induced protein kinase, accelerates phospholipase B1-mediated phosphatidylcholine deacylation. J Biol Chem 2014; 289:31591-604. [PMID: 25258318 DOI: 10.1074/jbc.m114.581157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ypk1, the yeast homolog of the human serum- and glucocorticoid-induced kinase (Sgk1), affects diverse cellular activities, including sphingolipid homeostasis. We now report that Ypk1 also impacts the turnover of the major phospholipid, phosphatidylcholine (PC). Pulse-chase radiolabeling reveals that a ypk1Δ mutant exhibits increased PC deacylation and glycerophosphocholine production compared with wild type yeast. Deletion of PLB1, a gene encoding a B-type phospholipase that hydrolyzes PC, in a ypk1Δ mutant curtails the increased PC deacylation. In contrast to previous data, we find that Plb1 resides in the ER and in the medium. Consistent with a link between Ypk1 and Plb1, the levels of both Plb1 protein and PLB1 message are elevated in a ypk1Δ strain compared with wild type yeast. Furthermore, deletion of PLB1 in a ypk1Δ mutant exacerbates phenotypes associated with loss of YPK1, including slowed growth and sensitivity to cell wall perturbation, suggesting that increased Plb1 activity buffers against the loss of Ypk1. Because Plb1 lacks a consensus phosphorylation site for Ypk1, we probed other processes under the control of Ypk1 that might be linked to PC turnover. Inhibition of sphingolipid biosynthesis by the drug myriocin or through utilization of a lcb1-100 mutant results in increased PLB1 expression. Furthermore, we discovered that the increase in PLB1 expression observed upon inhibition of sphingolipid synthesis or loss of Ypk1 is under the control of the Crz1 transcription factor. Taken together, these results suggest a functional interaction between Ypk1 and Plb1 in which altered sphingolipid metabolism up-regulates PLB1 expression via Crz1.
Collapse
Affiliation(s)
- Beth A Surlow
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| | - Benjamin M Cooley
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| | - Patrick G Needham
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jana Patton-Vogt
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| |
Collapse
|
16
|
Chen W, Smeekens JM, Wu R. A universal chemical enrichment method for mapping the yeast N-glycoproteome by mass spectrometry (MS). Mol Cell Proteomics 2014; 13:1563-72. [PMID: 24692641 DOI: 10.1074/mcp.m113.036251] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylation is one of the most common and important protein modifications in biological systems. Many glycoproteins naturally occur at low abundances, which makes comprehensive analysis extremely difficult. Additionally, glycans are highly heterogeneous, which further complicates analysis in complex samples. Lectin enrichment has been commonly used, but each lectin is inherently specific to one or several carbohydrates, and thus no single or collection of lectin(s) can bind to all glycans. Here we have employed a boronic acid-based chemical method to universally enrich glycopeptides. The reaction between boronic acids and sugars has been extensively investigated, and it is well known that the interaction between boronic acid and diols is one of the strongest reversible covalent bond interactions in an aqueous environment. This strong covalent interaction provides a great opportunity to catch glycopeptides and glycoproteins by boronic acid, whereas the reversible property allows their release without side effects. More importantly, the boronic acid-diol recognition is universal, which provides great capability and potential for comprehensively mapping glycosylation sites in complex biological samples. By combining boronic acid enrichment with PNGase F treatment in heavy-oxygen water and MS, we have identified 816 N-glycosylation sites in 332 yeast proteins, among which 675 sites were well-localized with greater than 99% confidence. The results demonstrated that the boronic acid-based chemical method can effectively enrich glycopeptides for comprehensive analysis of protein glycosylation. A general trend seen within the large data set was that there were fewer glycosylation sites toward the C termini of proteins. Of the 332 glycoproteins identified in yeast, 194 were membrane proteins. Many proteins get glycosylated in the high-mannose N-glycan biosynthetic and GPI anchor biosynthetic pathways. Compared with lectin enrichment, the current method is more cost-efficient, generic, and effective. This method can be extensively applied to different complex samples for the comprehensive analysis of protein glycosylation.
Collapse
Affiliation(s)
- Weixuan Chen
- From the ‡School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Johanna M Smeekens
- From the ‡School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- From the ‡School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
17
|
Cao L, Yu L, Guo Z, Shen A, Guo Y, Liang X. N-Glycosylation Site Analysis of Proteins from Saccharomyces cerevisiae by Using Hydrophilic Interaction Liquid Chromatography-Based Enrichment, Parallel Deglycosylation, and Mass Spectrometry. J Proteome Res 2014; 13:1485-93. [DOI: 10.1021/pr401049e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liwei Cao
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Long Yu
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aijin Shen
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunü Guo
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinmiao Liang
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
18
|
Chen W, Smeekens JM, Wu R. Comprehensive Analysis of Protein N-Glycosylation Sites by Combining Chemical Deglycosylation with LC–MS. J Proteome Res 2014; 13:1466-73. [DOI: 10.1021/pr401000c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weixuan Chen
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Johanna M. Smeekens
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Ruiz-May E, Hucko S, Howe KJ, Zhang S, Sherwood RW, Thannhauser TW, Rose JKC. A comparative study of lectin affinity based plant N-glycoproteome profiling using tomato fruit as a model. Mol Cell Proteomics 2014; 13:566-79. [PMID: 24198434 PMCID: PMC3916654 DOI: 10.1074/mcp.m113.028969] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 10/20/2013] [Indexed: 12/22/2022] Open
Abstract
Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with different affinities can be particularly effective. A multi-lectin approach has also been reported to provide a significant benefit for the analysis of plant N-glycoproteins; however, it has yet to be determined whether certain lectins, or combinations of lectins are optimal for plant N-glycoproteome profiling; or whether specific lectins show preferential association with particular N-glycosylation sites or N-glycan structures. We describe here a comparative study of three mannose-binding lectins, concanavalin A, snowdrop lectin, and lentil lectin, to profile the N-glycoproteome of mature green stage tomato (Solanum lycopersicum) fruit pericarp. Through coupling lectin affinity chromatography with a shotgun proteomics strategy, we identified 448 putative N-glycoproteins, whereas a parallel lectin affinity chromatography plus hydrophilic interaction chromatography analysis revealed 318 putative N-glycosylation sites on 230 N-glycoproteins, of which 100 overlapped with the shotgun analysis, as well as 17 N-glycan structures. The use of multiple lectins substantially increased N-glycoproteome coverage and although there were no discernible differences in the structures of N-glycans, or the charge, isoelectric point (pI) or hydrophobicity of the glycopeptides that differentially bound to each lectin, differences were observed in the amino acid frequency at the -1 and +1 subsites of the N-glycosylation sites. We also demonstrated an alternative and complementary in planta recombinant expression strategy, followed by affinity MS analysis, to identify the putative N-glycan structures of glycoproteins whose abundance is too low to be readily determined by a shotgun approach, and/or combined with deglycosylation for predicted deamidated sites, using a xyloglucan-specific endoglucanase inhibitor protein as an example.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- From the ‡Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Simon Hucko
- §USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Kevin J. Howe
- §USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Sheng Zhang
- ¶Proteomics and Mass Spectrometry Facility, Institute of Biotechnology, Ithaca, New York 14853
| | - Robert W. Sherwood
- ¶Proteomics and Mass Spectrometry Facility, Institute of Biotechnology, Ithaca, New York 14853
| | | | - Jocelyn K. C. Rose
- From the ‡Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
20
|
Sacristan C, Manzano-Lopez J, Reyes A, Spang A, Muñiz M, Roncero C. Oligomerization of the chitin synthase Chs3 is monitored at the Golgi and affects its endocytic recycling. Mol Microbiol 2013; 90:252-66. [DOI: 10.1111/mmi.12360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos Sacristan
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética; CSIC/Universidad de Salamanca; Salamanca; Spain
| | | | - Abigail Reyes
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética; CSIC/Universidad de Salamanca; Salamanca; Spain
| | - Anne Spang
- Biozentrum, Growth & Development; University of Basel; Basel; Switzerland
| | - Manuel Muñiz
- Departamento de Biología Celular; Universidad de Sevilla; Sevilla; Spain
| | - Cesar Roncero
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética; CSIC/Universidad de Salamanca; Salamanca; Spain
| |
Collapse
|
21
|
Cecioni S, Vocadlo DJ. Tools for probing and perturbing O-GlcNAc in cells and in vivo. Curr Opin Chem Biol 2013; 17:719-28. [PMID: 23906602 DOI: 10.1016/j.cbpa.2013.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023]
Abstract
Intracellular glycosylation of nuclear and cytoplasmic proteins involves the addition of N-acetylglucosamine (O-GlcNAc) to serine and threonine residues. This dynamic modification occurs on hundreds of proteins and is involved in various essential biological processes. Because O-GlcNAc is substoichiometric and labile, identifying proteins and sites of modification has been challenging and generally requires proteome enrichment. Here we review recent advances on the implementation of chemical tools to perturb, to detect, and to map O-GlcNAc in living systems. Metabolic and chemoenzymatic labels along with bioorthogonal reactions and quantitative proteomics are enabling investigation of the role of O-GlcNAc in various processes including transcriptional regulation, neurodegeneration, and cell signaling.
Collapse
Affiliation(s)
- Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
22
|
Deciphering the bacterial glycocode: recent advances in bacterial glycoproteomics. Curr Opin Chem Biol 2012; 17:41-8. [PMID: 23276734 DOI: 10.1016/j.cbpa.2012.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/02/2012] [Indexed: 01/27/2023]
Abstract
Bacterial glycoproteins represent an attractive target for new antibacterial treatments, as they are frequently linked to pathogenesis and contain distinctive glycans that are absent in humans. Despite their potential therapeutic importance, many bacterial glycoproteins remain uncharacterized. This review focuses on recent advances in deciphering the bacterial glycocode, including metabolic glycan labeling to discover and characterize bacterial glycoproteins, lectin-based microarrays to monitor bacterial glycoprotein dynamics, crosslinking sugars to assess the roles of bacterial glycoproteins, and harnessing bacterial glycosylation systems for the efficient production of industrially important glycoproteins.
Collapse
|
23
|
Rouhanifard SH, Nordstrøm LU, Zheng T, Wu P. Chemical probing of glycans in cells and organisms. Chem Soc Rev 2012; 42:4284-96. [PMID: 23257905 DOI: 10.1039/c2cs35416k] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Among the four major building blocks of life, glycans play essential roles in numerous physiological and pathological processes. Due to their non-templated biosynthesis, advances towards elucidating the molecular details of glycan functions are relatively slow compared with the pace of protein and nucleic acid research. Over the past 30 years, chemical tools have emerged as powerful allies to genetics and molecular biology in the study of glycans in their native environment. This tutorial review will provide an overview of the recent technological developments in the field, as well as the progress in the application of these techniques to probe glycans in cells and organisms.
Collapse
Affiliation(s)
- Sara H Rouhanifard
- Department of Biochemistry, Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
24
|
Bailey UM, Jamaluddin MF, Schulz BL. Analysis of Congenital Disorder of Glycosylation-Id in a Yeast Model System Shows Diverse Site-Specific Under-glycosylation of Glycoproteins. J Proteome Res 2012; 11:5376-83. [DOI: 10.1021/pr300599f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ulla-Maja Bailey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Muhammad Fairuz Jamaluddin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|