1
|
Dhannura S, Shekh S, Dhurjad P, Dolle A, Kakkat S, Vishwajyothi, Vijayasarathy M, Sonti R, Gowd KH. Redox-Active Conopeptide Li520 Has Evolved to Catalyze Oxidative Folding of Conotoxins. ACS OMEGA 2024; 9:37596-37609. [PMID: 39281945 PMCID: PMC11391441 DOI: 10.1021/acsomega.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The evolution of miniature conopeptide Li520 (COWC*, *: C-terminal amidation) to exhibit the disulfide isomerase activity was probed using structure, function, disulfide conformation, and the precursor gene sequence. The peptides Li520, Li504, [O2A]Li520, [W3A]Li520, and Grx506, homologues active-site motif of glutaredoxin, were chemically synthesized and assessed for their disulfide reduction potential, intrinsic folding of disulfides, and disulfide isomerization activity on α-conotoxin ImI. The reduction potential of the disulfide of peptides varies from -189 to -344 mV, which is within the range observed for the redox family of proteins that modulates the folding of protein disulfides. The oxidative folding studies confirm the significance of the tryptophan residue in engaging Li520 in disulfide-exchange reactions and the role of proline hydroxylation in extending the lifetime of Li520 in a reduced free thiol state. Studies of quenching of tryptophan fluorescence by the disulfide in situ folding reaction in conjunction with the optimized structures by density functional theory (DFT) confirm the difference in conformation of disulfides between the native and mutant peptides. Interestingly, the native peptide Li520/Li504 shares a similar disulfide conformation of (-,-)AntiRHHook with the redox family of proteins known to modulate disulfides, particularly in lieu of the tetrapeptide of glutaredoxin, deviating from its disulfide conformation compared to its naive protein. Analysis of the precursor gene sequences of M-superfamily conotoxins revealed the presence of Li520 in different cone snail species with distinct food habits and possible modes of evolution through the diversification of cysteine motifs. The results of the report suggest that the short redox conopeptide Li520 has evolved to facilitate the oxidative folding of conotoxins and may be useful to develop as reagents for the synthesis of therapeutically important cysteine-rich peptides.
Collapse
Affiliation(s)
- Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Sreepriya Kakkat
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Vishwajyothi
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | | | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| |
Collapse
|
2
|
Germoush MO, Fouda M, Aly H, Saber I, Alrashdi BM, Massoud D, Alzwain S, Altyar AE, Abdel-Daim MM, Sarhan M. Proteomic analysis of the venom of Conus flavidus from Red Sea reveals potential pharmacological applications. J Genet Eng Biotechnol 2024; 22:100375. [PMID: 38797555 PMCID: PMC11066669 DOI: 10.1016/j.jgeb.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Venomous marine cone snails produce unique neurotoxins called conopeptides or conotoxins, which are valuable for research and drug discovery. Characterizing Conus venom is important, especially for poorly studied species, as these tiny and steady molecules have considerable potential as research tools for detecting new pharmacological applications. In this study, a worm-hunting cone snail, Conus flavidus inhabiting the Red Sea coast were collected, dissected and the venom gland extraction was subjected to proteomic analysis to define the venom composition, and confirm the functional structure of conopeptides. RESULTS Analysis of C. flavidus venom identified 117 peptide fragments and assorted them to conotoxin precursors and non-conotoxin proteins. In this procedure, 65 conotoxin precursors were classified and identified to 16 conotoxin precursors and hormone superfamilies. In the venom of C. flavidus, the four conotoxin superfamilies T, A, O2, and M were the most abundant peptides, accounting for 75.8% of the total conotoxin diversity. Additionally, 19 non-conotoxin proteins were specified in the venom, as well as several potentially biologically active peptides with putative applications. CONCLUSION Our research displayed that the structure of the C. flavidus-derived proteome is similar to other Conus species and includes toxins, ionic channel inhibitors, insulin-like peptides, and hyaluronidase. This study provides a foundation for discovering new conopeptides from C. flavidus venom for pharmaceutical use.
Collapse
Affiliation(s)
- Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia.
| | - Maged Fouda
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Hamdy Aly
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt
| | - Islam Saber
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt
| | - Barakat M Alrashdi
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Sarah Alzwain
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Moustafa Sarhan
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt; Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Saudi Arabia
| |
Collapse
|
3
|
Raffaelli T, Wilson DT, Dutertre S, Giribaldi J, Vetter I, Robinson SD, Thapa A, Widi A, Loukas A, Daly NL. Structural analysis of a U-superfamily conotoxin containing a mini-granulin fold: Insights into key features that distinguish between the ICK and granulin folds. J Biol Chem 2024; 300:107203. [PMID: 38508311 PMCID: PMC11035057 DOI: 10.1016/j.jbc.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
We are entering an exciting time in structural biology where artificial intelligence can be used to predict protein structures with greater accuracy than ever before. Extending this level of accuracy to the predictions of disulfide-rich peptide structures is likely to be more challenging, at least in the short term, given the tight packing of cysteine residues and the numerous ways that the disulfide bonds can potentially be linked. It has been previously shown in many cases that several disulfide bond connectivities can be accommodated by a single set of NMR-derived structural data without significant violations. Disulfide-rich peptides are prevalent throughout nature, and arguably the most well-known are those present in venoms from organisms such as cone snails. Here, we have determined the first three-dimensional structure and disulfide connectivity of a U-superfamily cone snail venom peptide, TxVIIB. TxVIIB has a VI/VII cysteine framework that is generally associated with an inhibitor cystine knot (ICK) fold; however, AlphaFold predicted that the peptide adopts a mini-granulin fold with a granulin disulfide connectivity. Our experimental studies using NMR spectroscopy and orthogonal protection of cysteine residues indicate that TxVIIB indeed adopts a mini-granulin fold but with the ICK disulfide connectivity. Our findings provide structural insight into the underlying features that govern formation of the mini-granulin fold rather than the ICK fold and will provide fundamental information for prediction algorithms, as the subtle complexity of disulfide isomers may be not adequately addressed by the current prediction algorithms.
Collapse
Affiliation(s)
- Tiziano Raffaelli
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - David T Wilson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | | | | | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia; School of Pharmacy, The University of Queensland, Queensland, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Ashvriya Thapa
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia; School of Pharmacy, The University of Queensland, Queensland, Australia
| | - Antin Widi
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
4
|
Hughey SB, Kotler JA, Ozaki Y, Itani Y, Fukuzawa F, Yanagimoto T, Takamatsu K, Koito S, Suzuki H, Nishihira Y, Hughey AC, Nagata T. Marine Envenomation in Okinawa: Overview and Treatment Concept. Wilderness Environ Med 2024; 35:57-66. [PMID: 38379485 DOI: 10.1177/10806032231220401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Okinawa prefecture is a popular tourist destination due to its beaches and reefs. The reefs host a large variety of animals, including a number of venomous species. Because of the popularity of the reefs and marine activities, people are frequently in close contact with dangerous venomous species and, thus, are exposed to potential envenomation. Commonly encountered venomous animals throughout Okinawa include the invertebrate cone snail, sea urchin, crown-of-thorns starfish, blue-ringed octopus, box jellyfish, and fire coral. The vertebrates include the stonefish, lionfish, sea snake, and moray eel. Treatment for marine envenomation can involve first aid, hot water immersion, antivenom, supportive care, regional anesthesia, and pharmaceutical administration. Information on venomous animals, their toxins, and treatment should be well understood by prehospital care providers and physicians practicing in the prefecture.
Collapse
Affiliation(s)
- Scott B Hughey
- Naval Hospital Okinawa, Okinawa, Japan
- Naval Biotechnology Group, Naval Medical Center Portsmouth, Portsmouth, VA
| | - Joshua A Kotler
- Naval Biotechnology Group, Naval Medical Center Portsmouth, Portsmouth, VA
- III Marine Expeditionary Force, Okinawa, Japan
| | | | | | | | | | | | - Shu Koito
- Naval Hospital Okinawa, Okinawa, Japan
| | | | | | | | - Takashi Nagata
- Department of Emergency Medicine, Japan Self-Defense Force Central Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Ratibou Z, Inguimbert N, Dutertre S. Predatory and Defensive Strategies in Cone Snails. Toxins (Basel) 2024; 16:94. [PMID: 38393171 PMCID: PMC10892987 DOI: 10.3390/toxins16020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Cone snails are carnivorous marine animals that prey on fish (piscivorous), worms (vermivorous), or other mollusks (molluscivorous). They produce a complex venom mostly made of disulfide-rich conotoxins and conopeptides in a compartmentalized venom gland. The pharmacology of cone snail venom has been increasingly investigated over more than half a century. The rising interest in cone snails was initiated by the surprising high human lethality rate caused by the defensive stings of some species. Although a vast amount of information has been uncovered on their venom composition, pharmacological targets, and mode of action of conotoxins, the venom-ecology relationships are still poorly understood for many lineages. This is especially important given the relatively recent discovery that some species can use different venoms to achieve rapid prey capture and efficient deterrence of aggressors. Indeed, via an unknown mechanism, only a selected subset of conotoxins is injected depending on the intended purpose. Some of these remarkable venom variations have been characterized, often using a combination of mass spectrometry and transcriptomic methods. In this review, we present the current knowledge on such specific predatory and defensive venoms gathered from sixteen different cone snail species that belong to eight subgenera: Pionoconus, Chelyconus, Gastridium, Cylinder, Conus, Stephanoconus, Rhizoconus, and Vituliconus. Further studies are needed to help close the gap in our understanding of the evolved ecological roles of many cone snail venom peptides.
Collapse
Affiliation(s)
- Zahrmina Ratibou
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, University of Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France;
| | - Nicolas Inguimbert
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, University of Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France;
| | | |
Collapse
|
6
|
Achimba F, Faezov B, Cohen B, Dunbrack R, Holford M. Targeting Dysregulated Ion Channels in Liver Tumors with Venom Peptides. Mol Cancer Ther 2024; 23:139-147. [PMID: 38015557 PMCID: PMC10831335 DOI: 10.1158/1535-7163.mct-23-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
The regulation of cellular processes by ion channels has become central to the study of cancer mechanisms. Designing molecules that can modify ion channels specific to tumor cells is a promising area of targeted drug delivery and therapy. Despite their potential in drug discovery, venom peptides-a group of natural products-have largely remained understudied and under-characterized. In general, venom peptides display high specificity and selectivity for their target ion channels. Therefore, they may represent an effective strategy for selectively targeting the dysregulation of ion channels in tumor cells. This review examines existing venom peptide therapies for different cancer types and focuses on the application of snail venom peptides in hepatocellular carcinoma (HCC), the most common form of primary liver cancer worldwide. We provide insights into the mode of action of venom peptides that have been shown to target tumors. We also explore the benefit of using new computational methods like de novo protein structure prediction to screen venom peptides and identify potential druggable candidates. Finally, we summarize the role of cell culture, animal, and organoid models in developing effective therapies against HCC and highlight the need for creating models that represent the most disproportionately affected ethnicities in HCC.
Collapse
Affiliation(s)
- Favour Achimba
- The PhD Program in Biochemistry, Graduate Center, City University of New York, New York, New York
- Hunter College, City University of New York, New York, New York
| | - Bulat Faezov
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Brandon Cohen
- Hunter College, City University of New York, New York, New York
| | - Roland Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center, City University of New York, New York, New York
- Hunter College, City University of New York, New York, New York
- The PhD Program in Chemistry, Graduate Center of the City University of New York, New York, New York
- The PhD Program in Biology, Graduate Center of the City University of New York, New York, New York
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York
- Department of Biochemistry, Weill Cornell Medicine, New York, New York
| |
Collapse
|
7
|
Fedosov A, Tucci CF, Kantor Y, Farhat S, Puillandre N. Collaborative Expression: Transcriptomics of Conus virgo Suggests Contribution of Multiple Secretory Glands to Venom Production. J Mol Evol 2023; 91:837-853. [PMID: 37962577 PMCID: PMC10730640 DOI: 10.1007/s00239-023-10139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Venomous marine gastropods of the family Conidae are among the most diversified predators in marine realm-in large due to their complex venoms. Besides being a valuable source of bioactive neuropeptides conotoxins, cone-snails venoms are an excellent model for molecular evolution studies, addressing origin of key innovations. However, these studies are handicapped by scarce current knowledge on the tissues involved in venom production, as it is generally assumed the sole prerogative of the venom gland (VG). The role of other secretory glands that are present in all Conus species (salivary gland, SG) or only in some species (accessory salivary gland, ASG) remains poorly understood. Here, for the first time, we carry out a detailed analysis of the VG, SG, and ASG transcriptomes in the vermivorous Conus virgo. We detect multiple transcripts clusters in both the SG and ASG, whose annotations imply venom-related functions. Despite the subsets of transcripts highly-expressed in the VG, SG, and ASG being very distinct, SG expresses an L-, and ASG-Cerm08-, and MEFRR- superfamily conotoxins, all previously considered specific for VG. We corroborate our results with the analysis of published SG and VG transcriptomes from unrelated fish-hunting C. geographus, and C. striatus, possibly fish-hunting C. rolani, and worm-hunting Conus quercinus. In spite of low expression levels of conotoxins, some other specific clusters of putative venom-related peptides are present and may be highly expressed in the SG of these species. Further functional studies are necessary to determine the role that these peptides play in envenomation. In the meantime, our results show importance of routine multi-tissue sampling both for accurate interpretation of tissue-specific venom composition in cone-snails, and for better understanding origin and evolution of venom peptides genes.
Collapse
Affiliation(s)
- Alexander Fedosov
- Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75005, Paris, France.
| | - Carmen Federica Tucci
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75005, Paris, France
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 35020, Legnaro, Italy
| | - Yuri Kantor
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75005, Paris, France
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninski Prospect, Moscow, 119071, Russian Federation
| | - Sarah Farhat
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75005, Paris, France
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75005, Paris, France
| |
Collapse
|
8
|
Zheng JW, Lu Y, Yang YF, Huang D, Li DW, Wang X, Gao Y, Yang WD, Guan Y, Li HY. Systematic dissection of genomic features determining the vast diversity of conotoxins. BMC Genomics 2023; 24:598. [PMID: 37814244 PMCID: PMC10561478 DOI: 10.1186/s12864-023-09689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Conus, a highly diverse species of venomous predators, has attracted significant attention in neuroscience and new drug development due to their rich collection of neuroactive peptides called conotoxins. Recent advancements in transcriptome, proteome, and genome analyses have facilitated the identification of conotoxins within Conus' venom glands, providing insights into the genetic features and evolutionary patterns of conotoxin genes. However, the underlying mechanism behind the extraordinary hypervariability of conotoxins remains largely unknown. RESULTS We analyzed the transcriptomes of 34 Conus species, examining various tissues such as the venom duct, venom bulb, and salivary gland, leading to the identification of conotoxin genes. Genetic variation analysis revealed that a subset of these genes (15.78% of the total) in Conus species underwent positive selection (Ka/Ks > 1, p < 0.01). Additionally, we reassembled and annotated the genome of C. betulinus, uncovering 221 conotoxin-encoding genes. These genes primarily consisted of three exons, with a significant portion showing high transcriptional activity in the venom ducts. Importantly, the flanking regions and adjacent introns of conotoxin genes exhibited a higher prevalence of transposon elements, suggesting their potential contribution to the extensive variability observed in conotoxins. Furthermore, we detected genome duplication in C. betulinus, which likely contributed to the expansion of conotoxin gene numbers. Interestingly, our study also provided evidence of introgression among Conus species, indicating that interspecies hybridization may have played a role in shaping the evolution of diverse conotoxin genes. CONCLUSIONS This study highlights the impact of adaptive evolution and introgressive hybridization on the genetic diversity of conotoxin genes and the evolution of Conus. We also propose a hypothesis suggesting that transposable elements might significantly contribute to the remarkable diversity observed in conotoxins. These findings not only enhance our understanding of peptide genetic diversity but also present a novel approach for peptide bioengineering.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- College of Food Science and Engineering, Foshan University of Science and Technology, Foshan, 528231, China
| | - Yang Lu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Feng Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Dan Huang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang Gao
- Gulou Hospital, Nanjing University, Nanjing, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Rogalski A, Himaya SWA, Lewis RJ. Coordinated adaptations define the ontogenetic shift from worm- to fish-hunting in a venomous cone snail. Nat Commun 2023; 14:3287. [PMID: 37311767 DOI: 10.1038/s41467-023-38924-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Marine cone snails have attracted researchers from all disciplines but early life stages have received limited attention due to difficulties accessing or rearing juvenile specimens. Here, we document the culture of Conus magus from eggs through metamorphosis to reveal dramatic shifts in predatory feeding behaviour between post-metamorphic juveniles and adult specimens. Adult C. magus capture fish using a set of paralytic venom peptides combined with a hooked radular tooth used to tether envenomed fish. In contrast, early juveniles feed exclusively on polychaete worms using a unique "sting-and-stalk" foraging behaviour facilitated by short, unbarbed radular teeth and a distinct venom repertoire that induces hypoactivity in prey. Our results demonstrate how coordinated morphological, behavioural and molecular changes facilitate the shift from worm- to fish-hunting in C. magus, and showcase juvenile cone snails as a rich and unexplored source of novel venom peptides for ecological, evolutionary and biodiscovery studies.
Collapse
Affiliation(s)
- Aymeric Rogalski
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - S W A Himaya
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
10
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
11
|
Vijayasarathy M, Kumar S, Venkatesha MA, Balaram P. Contryphan sequence diversity: Messy N-terminus processing, effects on chromatographic behaviour and mass spectrometric fragmentation. J Proteomics 2023; 274:104805. [PMID: 36587728 DOI: 10.1016/j.jprot.2022.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Contryphans, peptides containing a single disulfide bond, are found abundantly in cone snail venom. The analysis of a large dataset of available contryphan sequences permits a classification based on the occurrence of proline residues at positions 2 and 5 within the macrocyclic 23-membered disulfide loop. Further sequence diversity is generated by variable proteolytic processing of the contryphan precursor proteins. In the majority of contryphans, presence of Pro at position 2 and a D-residue at position 3 leads to a slow conformational dynamics, manifesting as anomalous chromatographic profiles during LC analysis. LC-MS analysis of diverse contryphans suggests that elution profiles may be used as a rapid diagnostic for the presence of the Pro2-DXxx3 motif. Natural sequences from C.inscriptus and C.frigidus together with synthetic analogs permit the delineation of the features necessary for abnormal chromatographic behaviour. A diagnostic for the presence of Pro at position 5 is obtained by the observation of non-canonical fragment ions, generated by N-Cα bond cleavage at the dehydroalanine residue formed by disulfide cleavage. Anomalous LC profiles supports Pro at position 2, while non-canonical mass spectral fragments established Pro at position 5, providing a rapid method for contryphan analysis from LC-ESI-MS/MS profiles of crude Conus venom. SIGNIFICANCE: Contryphans are peptides, widely distributed in cone snail venom, which display extensive sequence diversity. Heterogeneity of proteolytic processing of contryphan precursor proteins, together with post-translational modifications contributes to contryphan diversity. Contryphans, identified by a combination of mass spectrometry and transcriptomic analysis, are classified on the basis of sequence features, primarily the number of proline residues within the disulfide loop. Conformational diversity arises in contryphans by cis-trans isomerization of Cys-Pro bonds, resulting in characteristic chromatographic profiles, permitting identification even in crude venom mixtures. Rapid identification of contryphans in cone snail peptide libraries is also facilitated by diagnostic mass spectral fragments arising by non-canonical cleavage of the N-Cα bond at Cys(7).
Collapse
Affiliation(s)
- M Vijayasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sanjeev Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - M A Venkatesha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - P Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
12
|
Nguyen LTT, Craik DJ, Kaas Q. Bibliometric Review of the Literature on Cone Snail Peptide Toxins from 2000 to 2022. Mar Drugs 2023; 21:md21030154. [PMID: 36976203 PMCID: PMC10058278 DOI: 10.3390/md21030154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The venom of marine cone snails is mainly composed of peptide toxins called conopeptides, among which conotoxins represent those that are disulfide-rich. Publications on conopeptides frequently state that conopeptides attract considerable interest for their potent and selective activity, but there has been no analysis yet that formally quantifies the popularity of the field. We fill this gap here by providing a bibliometric analysis of the literature on cone snail toxins from 2000 to 2022. Our analysis of 3028 research articles and 393 reviews revealed that research in the conopeptide field is indeed prolific, with an average of 130 research articles per year. The data show that the research is typically carried out collaboratively and worldwide, and that discoveries are truly a community-based effort. An analysis of the keywords provided with each article revealed research trends, their evolution over the studied period, and important milestones. The most employed keywords are related to pharmacology and medicinal chemistry. In 2004, the trend in keywords changed, with the pivotal event of that year being the approval by the FDA of the first peptide toxin drug, ziconotide, a conopeptide, for the treatment of intractable pain. The corresponding research article is among the top ten most cited articles in the conopeptide literature. From the time of that article, medicinal chemistry aiming at engineering conopeptides to treat neuropathic pain ramped up, as seen by an increased focus on topological modifications (e.g., cyclization), electrophysiology, and structural biology.
Collapse
Affiliation(s)
- Linh T. T. Nguyen
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Quentin Kaas
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
13
|
Fiorotti HB, Figueiredo SG, Campos FV, Pimenta DC. Cone snail species off the Brazilian coast and their venoms: a review and update. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220052. [PMID: 36756364 PMCID: PMC9897318 DOI: 10.1590/1678-9199-jvatitd-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
The genus Conus includes over 900 species of marine invertebrates known as cone snails, whose venoms are among the most powerful described so far. This potency is mainly due to the concerted action of hundreds of small bioactive peptides named conopeptides, which target different ion channels and membrane receptors and thus interfere with crucial physiological processes. By swiftly harpooning and injecting their prey and predators with such deadly cocktails, the slow-moving cone snails guarantee their survival in the harsh, competitive marine environment. Each cone snail species produces a unique venom, as the mature sequences of conopeptides from the venoms of different species share very little identity. This biochemical diversity, added to the numerous species and conopeptides contained in their venoms, results in an immense biotechnological and therapeutic potential, still largely unexplored. That is especially true regarding the bioprospection of the venoms of cone snail species found off the Brazilian coast - a region widely known for its biodiversity. Of the 31 species described in this region so far, only four - Conus cancellatus, Conus regius, Conus villepinii, and Conus ermineus - have had their venoms partially characterized, and, although many bioactive molecules have been identified, only a few have been actually isolated and studied. In addition to providing an overview on all the cone snail species found off the Brazilian coast to date, this review compiles the information on the structural and pharmacological features of conopeptides and other molecules identified in the venoms of the four aforementioned species, paving the way for future studies.
Collapse
Affiliation(s)
- Helena B. Fiorotti
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Suely G. Figueiredo
- Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Fabiana V. Campos
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Daniel C. Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Correspondence:
| |
Collapse
|
14
|
Liang J, Tae HS, Zhao Z, Li X, Zhang J, Chen S, Jiang T, Adams DJ, Yu R. Mechanism of Action and Structure-Activity Relationship of α-Conotoxin Mr1.1 at the Human α9α10 Nicotinic Acetylcholine Receptor. J Med Chem 2022; 65:16204-16217. [PMID: 36137181 DOI: 10.1021/acs.jmedchem.2c00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
α-Conotoxins (α-CTxs) can selectively target nicotinic acetylcholine receptors (nAChRs) and are important drug leads for the treatment of cancer, chronic pain, and neuralgia. Here, we chemically synthesized a formerly defined rat α7 nAChR targeting α-CTx Mr1.1 and evaluated its activity at human nAChRs. Mr1.1 was most potent at the human (h) α9α10 nAChR with a half-maximal inhibitory concentration (IC50) of 92.0 nM. Molecular dynamic simulations suggested that Mr1.1 favorably binds at the α10(+)α9(-) and α9(+)α9(-) sites via hydrogen bonds and salt bridges, stabilizing the channel in a closed conformation. Although Mr1.1 and another antagonist, α-CTx Vc1.1 share high sequence similarity and disulfide-bond framework, Mr1.1 has distinct orientations at hα9α10. Based on the Mr1.1-hα9α10 model, analogues were generated, and the more potent Mr1.1[S4Dap], antagonized hα9α10 with an IC50 of 4.0 nM. Furthermore, Mr1.1[S4Dap] displayed analgesic activity in the rat chronic constriction injury (CCI) pain model and therefore presents a promising drug candidate.
Collapse
Affiliation(s)
- Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales2522, Australia
| | - Zitong Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| |
Collapse
|
15
|
Gao B, Huang Y, Peng C, Lin B, Liao Y, Bian C, Yang J, Shi Q. High-Throughput Prediction and Design of Novel Conopeptides for Biomedical Research and Development. BIODESIGN RESEARCH 2022; 2022:9895270. [PMID: 37850131 PMCID: PMC10521759 DOI: 10.34133/2022/9895270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/23/2022] [Indexed: 10/19/2023] Open
Abstract
Cone snail venoms have been considered a valuable treasure for international scientists and businessmen, mainly due to their pharmacological applications in development of marine drugs for treatment of various human diseases. To date, around 800 Conus species are recorded, and each of them produces over 1,000 venom peptides (termed as conopeptides or conotoxins). This reflects the high diversity and complexity of cone snails, although most of their venoms are still uncharacterized. Advanced multiomics (such as genomics, transcriptomics, and proteomics) approaches have been recently developed to mine diverse Conus venom samples, with the main aim to predict and identify potentially interesting conopeptides in an efficient way. Some bioinformatics techniques have been applied to predict and design novel conopeptide sequences, related targets, and their binding modes. This review provides an overview of current knowledge on the high diversity of conopeptides and multiomics advances in high-throughput prediction of novel conopeptide sequences, as well as molecular modeling and design of potential drugs based on the predicted or validated interactions between these toxins and their molecular targets.
Collapse
Affiliation(s)
- Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, Hainan 570102, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
- BGI-Marine Research Institute for Biomedical Technology, Shenzhen Huahong Marine Biomedicine Co. Ltd., Shenzhen, Guangdong 518119, China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan 570102, China
| | - Yanling Liao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, Hainan 570102, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
| | - Jiaan Yang
- Research and Development Department, Micro Pharmtech Ltd., Wuhan, Hubei 430075, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
- BGI-Marine Research Institute for Biomedical Technology, Shenzhen Huahong Marine Biomedicine Co. Ltd., Shenzhen, Guangdong 518119, China
| |
Collapse
|
16
|
Anti-Ovarian Cancer Conotoxins Identified from Conus Venom. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196609. [PMID: 36235146 PMCID: PMC9573077 DOI: 10.3390/molecules27196609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Conotoxins constitute a treasury of drug resources and have attracted widespread attention. In order to explore biological candidates from the marine cone snail, we isolated and identified three novel conopeptides named as Vi14b, Vi002, Vi003, three conotoxin variants named as Mr3d.1, Mr3e.1, Tx3a.1, and three known conotoxins (Vi15a, Mr3.8 and TCP) from crude venoms of Conus virgo, Conus marmoreus and Conus texile. Mr3.8 (I-V, II-VI, III-IV) and Tx3a.1 (I-III, II-VI, IV-V) both showed a novel pattern of disulfide connectivity, different from that previously established for the µ- and ψ-conotoxins. Concerning the effect on voltage-gated sodium channels, Mr3e.1, Mr3.8, Tx3a.1, TCP inhibited Nav1.4 or Nav1.8 by 21.51~24.32% of currents at semi-activated state (TP2) at 10 μmol/L. Certain anti-ovarian cancer effects on ID-8 cells were exhibited by Tx3a.1, Mr3e.1 and Vi14b with IC50 values of 24.29 µM, 54.97 µM and 111.6 µM, respectively. This work highlights the role of conotoxin libraries in subsequent drug discovery for ovarian cancer treatment.
Collapse
|
17
|
Jimenez EC. Peptide antagonists of NMDA receptors: Structure-activity relationships for potential therapeutics. Peptides 2022; 153:170796. [PMID: 35367253 DOI: 10.1016/j.peptides.2022.170796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/19/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptors are heteromeric cation channels involved in memory, learning, and synaptic plasticity. The dysfunction associated with NMDA receptors results in neurodegenerative conditions. The conantokins comprise a family of Conus venom peptides that induce sleep upon intracranial injection into young mice and are known to be NMDA receptor antagonists. This work comprehensibly documents the conantokins that have been characterized to date, focusing on the biochemistry, solution structures in the presence or absence of divalent cations, functions as selective NMDA receptor antagonists, and structure-activity relationships. Furthermore, the applications of conantokins as potential therapeutics for certain neurological conditions, including neuropathic pain, epilepsy, and ischaemia that are linked to NMDA receptor dysfunction are reviewed.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City 2600, Philippines.
| |
Collapse
|
18
|
|
19
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
20
|
Comparative Venomics of C. flavidus and C. frigidus and Closely Related Vermivorous Cone Snails. Mar Drugs 2022; 20:md20030209. [PMID: 35323508 PMCID: PMC8951504 DOI: 10.3390/md20030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cone snail venom biodiversity reflects dietary preference and predatory and defensive envenomation strategies across the ≈900 species of Conidae. To better understand the mechanisms of adaptive radiations in closely related species, we investigated the venom of two phylogenetically and spatially related species, C. flavidus and C. frigidus of the Virgiconus clade. Transcriptomic analysis revealed that the major superfamily profiles were conserved between the two species, including 68 shared conotoxin transcripts. These shared transcripts contributed 90% of the conotoxin expression in C. frigidus and only 49% in C. flavidus, which showed greater toxin diversification in the dominant O1, I2, A, O2, O3, and M superfamilies compared to C. frigidus. On the basis of morphology, two additional sub-groups closely resembling C. flavidus were also identified from One Tree Island Reef. Despite the morphological resemblance, the venom duct proteomes of these cryptic sub-groups were distinct from C. flavidus. We suggest rapid conotoxin sequence divergence may have facilitated adaptive radiation and the establishment of new species and the regulatory mechanisms facilitating species-specific venom evolution.
Collapse
|
21
|
Detection of αB-Conotoxin VxXXIVA (αB-CTX) by ic-ELISA Based on an Epitope-Specific Monoclonal Antibody. Toxins (Basel) 2022; 14:toxins14030166. [PMID: 35324663 PMCID: PMC8949368 DOI: 10.3390/toxins14030166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
In view of the toxicological hazard and important applications in analgesics and cancer chemotherapeutics of αB-CTX, it is urgent to develop an accurate, effective and feasible immunoassay for the determination and analysis of αB-CTX in real samples. In this study, MBP-αB-CTX4 tandem fusion protein was used as an immunogen to elicit a strong immune response, and a hybridoma cell 5E4 secreting IgG2b against αB-CTX was successfully screened by hybridoma technology. The affinity of the purified 5E4 monoclonal antibody (mAb) was 1.02 × 108 L/mol, which showed high affinity and specificity to αB-CTX. Epitope 1 of αB-CTX is the major binding region for 5E4 mAb recongnization, and two amino acid residues (14L and 15F) in αB-CTX were critical sites for the interaction between αB-CTX and 5E4 mAb. Indirect competitive ELISA (ic-ELISA) based on 5E4 mAb was developed to detect and analyze αB-CTX in real samples, and the linear range of ic-ELISA to αB-CTX was 117–3798 ng/mL, with a limit of detection (LOD) of 81 ng/mL. All the above results indicated that the developed ic-ELISA had high accuracy and repeatability, and it could be applied for αB-CTX detection and drug analysis in real samples.
Collapse
|
22
|
Zhao Y, Antunes A. Biomedical Potential of the Neglected Molluscivorous and Vermivorous Conus Species. Mar Drugs 2022; 20:md20020105. [PMID: 35200635 PMCID: PMC8878422 DOI: 10.3390/md20020105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 01/14/2023] Open
Abstract
Within the Conidae family, the piscivorous Conus species have been a hotspot target for drug discovery. Here, we assess the relevance of Conus and their other feeding habits, and thus under distinctive evolutionary constraints, to highlight the potential of neglected molluscivorous and vermivorous species in biomedical research and pharmaceutical industry. By singling out the areas with inadequate Conus disquisition, such as the Tamil Nadu Coast and the Andaman Islands, research resources can be expanded and better protected through awareness. In this study, 728 Conus species and 190 species from three other genera (1 from Californiconus, 159 from Conasprella and 30 from Profundiconus) in the Conidae family are assessed. The phylogenetic relationships of the Conidae species are determined and their known feeding habits superimposed. The worm-hunting species appeared first, and later the mollusc- and fish-hunting species were derived independently in the Neogene period (around 23 million years ago). Interestingly, many Conus species in the warm and shallow waters become polyphagous, allowing them to hunt both fish and worms, given the opportunities. Such newly gained trait is multi originated. This is controversial, given the traditional idea that most Conus species are specialized to hunt certain prey categories. However, it shows the functional complexity and great potential of conopeptides from some worm-eating species. Pharmaceutical attempts and relevant omics data have been differentially obtained. Indeed, data from the fish-hunting species receive strong preference over the worm-hunting ones. Expectedly, conopeptides from the fish-hunting species are believed to include the most potential candidates for biomedical research. Our work revisits major findings throughout the Conus evolution and emphasizes the importance of increasing omics surveys complemented with further behavior observation studies. Hence, we claim that Conus species and their feeding habits are equally important, highlighting many places left for Conus exploration worldwide. We also discuss the Conotoxin drug discovery potentials and the urgency of protecting the bioresources of Conus species. In particular, some vermivorous species have demonstrated great potential in malaria therapy, while other conotoxins from several worm- and mollusc-eating species exhibited explicit correlation with SARS-CoV-2. Reclaiming idle data with new perspectives could also promote interdisciplinary studies in both virological and toxicological fields.
Collapse
Affiliation(s)
- Yihe Zhao
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +353-22-340-1813
| |
Collapse
|
23
|
Fu Y, Zhang Y, Ju S, Ma B, Huang W, Luo S. Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210116. [PMID: 35677566 PMCID: PMC9136937 DOI: 10.1590/1678-9199-jvatitd-2021-0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Conopeptides from cone snail venom have aroused great interest related to the discovery of novel bioactive candidates, due to their excellent prospects for the treatment of various health problems such as pain, addiction, psychosis and epilepsy. In order to explore novel biopeptides, we investigated the structure and function of five novel conopeptides isolated from the venom of Conus marmoreus from South China Sea. Methods: C. marmoreus crude venom was prepared, fractionated and purified by HPLC system. The primary sequences of the five novel disulfide-poor conopeptides Mr-1 to Mr-5 were identified by comprehensive analysis of de novo MALDI-TOF tandem mass spectrometry and Edman degradation data. In order to investigate their function, these five conopeptides were synthesized by Fmoc-SPPS chemistry, and their biological effects at several heterologous rat nicotinic acetylcholine receptor (nAChR) subtypes (α1β1δε, α3β2, α3β4, α4β2) were determined by electrophysiological technique. Results: Five novel disulfide-poor conopeptides were identified and named as follows: Mr-1 (DWEYHAHPKPNSFWT), Mr-2 (YPTRAYPSNKFG), Mr-3 (NVIQAPAQSVAPP NTST), Mr-4 [KENVLNKLKSK(L/I)] and Mr-5 [NAVAAAN(L/I)PG(L/I)V]. None of them contains a disulfide bond. The sequences of conopeptides Mr-2 to Mr-5 do not belong to any category of the known disulfide-poor conopeptides. No significant activity against the above nAChR subtypes were observed for the five conopeptides at 100 µM. Conclusion: We purified and structurally characterized five novel disulfide-poor conopeptides from C. marmoreus crude venom and first investigated their nAChR inhibitory effects. This work expanded our knowledge on the structure and function of disulfide-poor conopeptides from this cone snail venom.
Collapse
Affiliation(s)
- Ying Fu
- Hainan University, China; Hainan University, China
| | | | | | - Bokai Ma
- Beijing Academy of Science and Technology, China
| | - Wenwen Huang
- Beijing Academy of Science and Technology, China
| | - Sulan Luo
- Hainan University, China; Guangxi University, China
| |
Collapse
|
24
|
Fouda MMA, Abdel-Wahab M, Mohammadien A, Germoush MO, Sarhan M. Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210023. [PMID: 34712278 PMCID: PMC8525892 DOI: 10.1590/1678-9199-jvatitd-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins
are produced by venomous marine cone snails. Currently, these small and
stable molecules are of great importance as research tools and platforms for
discovering new drugs and therapeutics. Therefore, the characterization of
Conus venom is of great significance, especially for
poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom
profile and emphasize the functional composition of conopeptides in
Conus taeniatus, a neglected worm-hunting cone snail.
Results: The proteomic analysis revealed that 84.0% of the venom proteins were between
500 and 4,000 Da, and 16.0% were > 4,000 Da. In C.
taeniatus venom, 234 peptide fragments were identified and
classified as conotoxin precursors or non-conotoxin proteins. In this
process, 153 conotoxin precursors were identified and matched to 23
conotoxin precursors and hormone superfamilies. Notably, the four conotoxin
superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most
abundant peptides in C. taeniatus venom, accounting for
63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin
proteins were identified in the venom of C. taeniatus.
Moreover, several possibly biologically active peptide matches were
identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C.
taeniatus-derived proteome is comparable to that of other
Conus species and contains an effective mix of toxins,
ionic channel inhibitors and antimicrobials. Additionally, it provides a
guidepost for identifying novel conopeptides from the venom of C.
taeniatus and discovering conopeptides of potential
pharmaceutical importance.
Collapse
Affiliation(s)
- Maged M A Fouda
- Department of Biology, College of Science, Jouf University, Saudi Arabia.,Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | | | - Amal Mohammadien
- Department of Biology, College of Science, Taeif University, Saudi Arabia.,Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mousa O Germoush
- Department of Biology, College of Science, Jouf University, Saudi Arabia
| | - Moustafa Sarhan
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
25
|
Abalde S, Dutertre S, Zardoya R. A Combined Transcriptomics and Proteomics Approach Reveals the Differences in the Predatory and Defensive Venoms of the Molluscivorous Cone Snail Cylinder ammiralis (Caenogastropoda: Conidae). Toxins (Basel) 2021; 13:toxins13090642. [PMID: 34564647 PMCID: PMC8472973 DOI: 10.3390/toxins13090642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venoms are complex mixtures of proteins that have evolved repeatedly in the animal kingdom. Cone snail venoms represent one of the best studied venom systems. In nature, this venom can be dynamically adjusted depending on its final purpose, whether to deter predators or hunt prey. Here, the transcriptome of the venom gland and the proteomes of the predation-evoked and defensive venoms of the molluscivorous cone snail Cylinder ammiralis were catalogued. A total of 242 venom-related transcripts were annotated. The conotoxin superfamilies presenting more different peptides were O1, O2, T, and M, which also showed high expression levels (except T). The three precursors of the J superfamily were also highly expressed. The predation-evoked and defensive venoms showed a markedly distinct profile. A total of 217 different peptides were identified, with half of them being unique to one venom. A total of 59 peptides ascribed to 23 different protein families were found to be exclusive to the predatory venom, including the cono-insulin, which was, for the first time, identified in an injected venom. A total of 43 peptides from 20 protein families were exclusive to the defensive venom. Finally, comparisons of the relative abundance (in terms of number of peptides) of the different conotoxin precursor superfamilies showed that most of them present similar abundance regardless of the diet.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Department of Zoology, Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
- Correspondence:
| | | | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| |
Collapse
|
26
|
Himaya SWA, Jin AH, Hamilton B, Rai SK, Alewood P, Lewis RJ. Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus. Sci Rep 2021; 11:13282. [PMID: 34168165 PMCID: PMC8225645 DOI: 10.1038/s41598-021-91919-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
The venom duct origins of predatory and defensive venoms has not been studied for hook-and-line fish hunting cone snails despite the pharmacological importance of their venoms. To better understand the biochemistry and evolution of injected predatory and defensive venoms, we compared distal, central and proximal venom duct sections across three specimens of C. striatus (Pionoconus) using proteomic and transcriptomic approaches. A total of 370 conotoxin precursors were identified from the whole venom duct transcriptome. Milked defensive venom was enriched with a potent cocktail of proximally expressed inhibitory α-, ω- and μ-conotoxins compared to milked predatory venom. In contrast, excitatory κA-conotoxins dominated both the predatory and defensive venoms despite their distal expression, suggesting this class of conotoxin can be selectively expressed from the same duct segment in response to either a predatory or defensive stimuli. Given the high abundance of κA-conotoxins in the Pionoconus clade, we hypothesise that the κA-conotoxins have evolved through adaptive evolution following their repurposing from ancestral inhibitory A superfamily conotoxins to facilitate the dietary shift to fish hunting and species radiation in this clade.
Collapse
Affiliation(s)
- S. W. A. Himaya
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Ai-Hua Jin
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Brett Hamilton
- grid.1003.20000 0000 9320 7537Centre for Microscopy and Microanalysis, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Subash K. Rai
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Present Address: Genome Innovation Hub, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Paul Alewood
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Richard J. Lewis
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia
| |
Collapse
|
27
|
Pardos-Blas JR, Irisarri I, Abalde S, Afonso CML, Tenorio MJ, Zardoya R. The genome of the venomous snail Lautoconus ventricosus sheds light on the origin of conotoxin diversity. Gigascience 2021; 10:giab037. [PMID: 34037232 PMCID: PMC8152183 DOI: 10.1093/gigascience/giab037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Venoms are deadly weapons to subdue prey or deter predators that have evolved independently in many animal lineages. The genomes of venomous animals are essential to understand the evolutionary mechanisms involved in the origin and diversification of venoms. RESULTS Here, we report the chromosome-level genome of the venomous Mediterranean cone snail, Lautoconus ventricosus (Caenogastropoda: Conidae). The total size of the assembly is 3.59 Gb; it has high contiguity (N50 = 93.53 Mb) and 86.6 Mb of the genome assembled into the 35 largest scaffolds or pseudochromosomes. On the basis of venom gland transcriptomes, we annotated 262 complete genes encoding conotoxin precursors, hormones, and other venom-related proteins. These genes were scattered in the different pseudochromosomes and located within repetitive regions. The genes encoding conotoxin precursors were normally structured into 3 exons, which did not necessarily coincide with the 3 structural domains of the corresponding proteins. Additionally, we found evidence in the L. ventricosus genome for a past whole-genome duplication event by means of conserved gene synteny with the Pomacea canaliculata genome, the only one available at the chromosome level within Caenogastropoda. The whole-genome duplication event was further confirmed by the presence of a duplicated hox gene cluster. Key genes for gastropod biology including those encoding proteins related to development, shell formation, and sex were located in the genome. CONCLUSIONS The new high-quality L. ventricosus genome should become a reference for assembling and analyzing new gastropod genomes and will contribute to future evolutionary genomic studies among venomous animals.
Collapse
Affiliation(s)
- José Ramón Pardos-Blas
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Iker Irisarri
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, D-37077 Goettingen, Germany
- Campus Institute Data Science (CIDAS), Goettingen, Wilhelmsplatz 1, D-37073, Germany
| | - Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Department of Zoology, Swedish Museum of Natural History, Frescativägen 40, 11418 Stockholm, Sweden
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005–139 Faro, Portugal
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
28
|
Davison A, Neiman M. Mobilizing molluscan models and genomes in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200163. [PMID: 33813892 PMCID: PMC8059959 DOI: 10.1098/rstb.2020.0163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Molluscs are among the most ancient, diverse, and important of all animal taxa. Even so, no individual mollusc species has emerged as a broadly applied model system in biology. We here make the case that both perceptual and methodological barriers have played a role in the relative neglect of molluscs as research organisms. We then summarize the current application and potential of molluscs and their genomes to address important questions in animal biology, and the state of the field when it comes to the availability of resources such as genome assemblies, cell lines, and other key elements necessary to mobilising the development of molluscan model systems. We conclude by contending that a cohesive research community that works together to elevate multiple molluscan systems to 'model' status will create new opportunities in addressing basic and applied biological problems, including general features of animal evolution. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Jimenez EC. Post-translationally modified conopeptides: Biological activities and pharmacological applications. Peptides 2021; 139:170525. [PMID: 33684482 DOI: 10.1016/j.peptides.2021.170525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 10/25/2022]
Abstract
Conus venoms comprise a large variety of biologically active peptides (conopeptides or conotoxins) that are employed for prey capture and other biological functions. Throughout the course of evolution of the cone snails, they have developed an envenomation scheme that necessitates a potent mixture of peptides, most of which are highly post-translationally modified, that can cause rapid paralysis of their prey. The great diversity of these peptides defines the ecological interactions and evolutionary strategy of cone snails. Such scheme has led to some pharmacological applications for pain, epilepsy, and myocardial infarction, that could be further explored to ultimately find unique peptide-based therapies. This review focuses on ∼ 60 representative post-translationally modified conopeptides that were isolated from Conus venoms. Various conopeptides reveal post-translational modifications of specific amino acids, such as hydroxylation of proline and lysine, gamma-carboxylation of glutamate, formation of N-terminal pyroglutamate, isomerization of l- to d-amino acid, bromination of tryptophan, O-glycosylation of threonine or serine, sulfation of tyrosine, and cysteinylation of cysteine, other than the more common disulfide crosslinking and C-terminal amidation. Many of the post-translationally modified peptides paved the way for the characterization, by alternative analytical methods, of other pharmacologically important peptides that are classified under 27 conopeptide families denoting pharmacological classes.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City, 2600, Philippines.
| |
Collapse
|
30
|
Ebou A, Koua D, Addablah A, Kakou-Ngazoa S, Dutertre S. Combined Proteotranscriptomic-Based Strategy to Discover Novel Antimicrobial Peptides from Cone Snails. Biomedicines 2021; 9:344. [PMID: 33805497 PMCID: PMC8066717 DOI: 10.3390/biomedicines9040344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Despite their impressive diversity and already broad therapeutic applications, cone snail venoms have received less attention as a natural source in the investigation of antimicrobial peptides than other venomous animals such as scorpions, spiders, or snakes. Cone snails are among the largest genera (Conus sp.) of marine invertebrates, with more than seven hundred species described to date. These predatory mollusks use their sophisticated venom apparatus to capture prey or defend themselves. In-depth studies of these venoms have unraveled many biologically active peptides with pharmacological properties of interest in the field of pain management, the treatment of epilepsy, neurodegenerative diseases, and cardiac ischemia. Considering sequencing efficiency and affordability, cone snail venom gland transcriptome analyses could allow the discovery of new, promising antimicrobial peptides. We first present here the need for novel compounds like antimicrobial peptides as a viable alternative to conventional antibiotics. Secondly, we review the current knowledge on cone snails as a source of antimicrobial peptides. Then, we present the current state of the art in analytical methods applied to crude or milked venom followed by how antibacterial activity assay can be implemented for fostering cone snail antimicrobial peptides studies. We also propose a new innovative profile Hidden Markov model-based approach to annotate full venom gland transcriptomes and speed up the discovery of potentially active peptides from cone snails.
Collapse
Affiliation(s)
- Anicet Ebou
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Dominique Koua
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Audrey Addablah
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Solange Kakou-Ngazoa
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
31
|
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021; 20:200-216. [PMID: 33510482 PMCID: PMC7841765 DOI: 10.1038/s41573-020-00114-z] [Citation(s) in RCA: 1938] [Impact Index Per Article: 646.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments - including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances - are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.
Collapse
Affiliation(s)
- Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche, Florence, Italy.
| |
Collapse
|
32
|
The first Conus genome assembly reveals a primary genetic central dogma of conopeptides in C. betulinus. Cell Discov 2021; 7:11. [PMID: 33619264 PMCID: PMC7900195 DOI: 10.1038/s41421-021-00244-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/29/2020] [Indexed: 01/28/2023] Open
Abstract
Although there are various Conus species with publicly available transcriptome and proteome data, no genome assembly has been reported yet. Here, using Chinese tubular cone snail (C. betulinus) as a representative, we sequenced and assembled the first Conus genome with original identification of 133 genome-widely distributed conopeptide genes. After integration of our genomics, transcriptomics, and peptidomics data in the same species, we established a primary genetic central dogma of diverse conopeptides, assuming a rough number ratio of ~1:1:1:10s for the total genes: transcripts: proteins: post-translationally modified peptides. This ratio may be special for this worm-hunting Conus species, due to the high diversity of various Conus genomes and the big number ranges of conopeptide genes, transcripts, and peptides in previous reports of diverse Conus species. Only a fraction (45.9%) of the identified conotopeptide genes from our achieved genome assembly are transcribed with transcriptomic evidence, and few genes individually correspond to multiple transcripts possibly due to intraspecies or mutation-based variances. Variable peptide processing at the proteomic level, generating a big diversity of venom conopeptides with alternative cleavage sites, post-translational modifications, and N-/C-terminal truncations, may explain how the 133 genes and ~123 transcripts can generate thousands of conopeptides in the venom of individual C. betulinus. We also predicted many conopeptides with high stereostructural similarities to the putative analgesic ω-MVIIA, addiction therapy AuIB and insecticide ImI, suggesting that our current genome assembly for C. betulinus is a valuable genetic resource for high-throughput prediction and development of potential pharmaceuticals.
Collapse
|
33
|
Identification of Conomarphin Variants in the Conus eburneus Venom and the Effect of Sequence and PTM Variations on Conomarphin Conformations. Mar Drugs 2020; 18:md18100503. [PMID: 33019526 PMCID: PMC7601563 DOI: 10.3390/md18100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Marine cone snails belonging to the Conidae family make use of neuroactive peptides in their venom to capture prey. Here we report the proteome profile of the venom duct of Conus eburneus, a cone snail belonging to the Tesseliconus clade. Through tandem mass spectrometry and database searching against the C. eburneus transcriptome and the ConoServer database, we identified 24 unique conopeptide sequences in the venom duct. The majority of these peptides belong to the T and M gene superfamilies and are disulfide-bonded, with cysteine frameworks V, XIV, VI/VII, and III being the most abundant. All seven of the Cys-free peptides are conomarphin variants belonging to the M superfamily that eluted out as dominant peaks in the chromatogram. These conomarphins vary not only in amino acid residues in select positions along the backbone but also have one or more post-translational modifications (PTMs) such as proline hydroxylation, C-term amidation, and γ-carboxylation of glutamic acid. Using molecular dynamics simulations, the conomarphin variants were predicted to predominantly have hairpin-like or elongated structures in acidic pH. These two structures were found to have significant differences in electrostatic properties and the inclusion of PTMs seems to complement this disparity. The presence of polar PTMs (hydroxyproline and γ-carboxyglutamic acid) also appear to stabilize hydrogen bond networks in these conformations. Furthermore, these predicted structures are pH sensitive, becoming more spherical and compact at higher pH. The subtle conformational variations observed here might play an important role in the selection and binding of the peptides to their molecular targets.
Collapse
|
34
|
Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics 2020; 20:e1900324. [PMID: 32820606 DOI: 10.1002/pmic.201900324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Indexed: 11/11/2022]
Abstract
Animal venoms are renowned for their toxicity, biochemical complexity, and as a source of compounds with potential applications in medicine, agriculture, and industry. Polypeptides underlie much of the pharmacology of animal venoms, and elucidating these arsenals of polypeptide toxins-known as the venom proteome or venome-is an important step in venom research. Proteomics is used for the identification of venom toxins, determination of their primary structure including post-translational modifications, as well as investigations into the physiology underlying their production and delivery. Advances in proteomics and adjacent technologies has led to a recent upsurge in publications reporting venom proteomes. Improved mass spectrometers, better proteomic workflows, and the integration of next-generation sequencing of venom-gland transcriptomes and venomous animal genomes allow quicker and more accurate profiling of venom proteomes with greatly reduced starting material. Technologies such as imaging mass spectrometry are revealing additional insights into the mechanism, location, and kinetics of venom toxin production. However, these numerous new developments may be overwhelming for researchers designing venom proteome studies. Here, the field of venom proteomics is reviewed and some practical solutions for simplifying mass spectrometry workflows to study animal venoms are offered.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Brett F Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, 7491, Norway.,Department of Bioscience, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
35
|
Li X, Chen W, Zhangsun D, Luo S. Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus. Mar Drugs 2020; 18:md18090464. [PMID: 32937857 PMCID: PMC7551347 DOI: 10.3390/md18090464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The venom of various Conus species is composed of a rich variety of unique bioactive peptides, commonly referred to as conotoxins (conopeptides). Most conopeptides have specific receptors or ion channels as physiologically relevant targets. In this paper, high-throughput transcriptome sequencing was performed to analyze putative conotoxin transcripts from the venom duct of a vermivorous cone snail species, Conus litteratus native to the South China Sea. A total of 128 putative conotoxins were identified, most of them belonging to 22 known superfamilies, with 43 conotoxins being regarded as belonging to new superfamilies. Notably, the M superfamily was the most abundant in conotoxins among the known superfamilies. A total of 15 known cysteine frameworks were also described. The largest proportion of cysteine frameworks were VI/VII (C-C-CC-C-C), IX (C-C-C-C-C-C) and XIV (C-C-C-C). In addition, five novel cysteine patterns were also discovered. Simple sequence repeat detection results showed that di-nucleotide was the major type of repetition, and the codon usage bias results indicated that the codon usage bias of the conotoxin genes was weak, but the M, O1, O2 superfamilies differed in codon preference. Gene cloning indicated that there was no intron in conotoxins of the B1- or J superfamily, one intron with 1273-1339 bp existed in a mature region of the F superfamily, which is different from the previously reported gene structure of conotoxins from other superfamilies. This study will enhance our understanding of conotoxin diversity, and the new conotoxins discovered in this paper will provide more potential candidates for the development of pharmacological probes and marine peptide drugs.
Collapse
|
36
|
Reynaud S, Ciolek J, Degueldre M, Saez NJ, Sequeira AF, Duhoo Y, Brás JLA, Meudal H, Cabo Díez M, Fernández Pedrosa V, Verdenaud M, Boeri J, Pereira Ramos O, Ducancel F, Vanden Driessche M, Fourmy R, Violette A, Upert G, Mourier G, Beck-Sickinger AG, Mörl K, Landon C, Fontes CMGA, Miñambres Herráiz R, Rodríguez de la Vega RC, Peigneur S, Tytgat J, Quinton L, De Pauw E, Vincentelli R, Servent D, Gilles N. A Venomics Approach Coupled to High-Throughput Toxin Production Strategies Identifies the First Venom-Derived Melanocortin Receptor Agonists. J Med Chem 2020; 63:8250-8264. [PMID: 32602722 DOI: 10.1021/acs.jmedchem.0c00485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal venoms are rich in hundreds of toxins with extraordinary biological activities. Their exploitation is difficult due to their complexity and the small quantities of venom available from most venomous species. We developed a Venomics approach combining transcriptomic and proteomic characterization of 191 species and identified 20,206 venom toxin sequences. Two complementary production strategies based on solid-phase synthesis and recombinant expression in Escherichia coli generated a physical bank of 3597 toxins. Screened on hMC4R, this bank gave an incredible hit rate of 8%. Here, we focus on two novel toxins: N-TRTX-Preg1a, exhibiting an inhibitory cystine knot (ICK) motif, and N-BUTX-Ptr1a, a short scorpion-CSαβ structure. Neither N-TRTX-Preg1a nor N-BUTX-Ptr1a affects ion channels, the known targets of their toxin scaffolds, but binds to four melanocortin receptors with low micromolar affinities and activates the hMC1R/Gs pathway. Phylogenetically, these two toxins form new groups within their respective families and represent novel hMC1R agonists, structurally unrelated to the natural agonists.
Collapse
Affiliation(s)
- Steve Reynaud
- Université Paris-Sud, 15 Rue Georges Clemenceau, Orsay 91405 France.,Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Justyna Ciolek
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Michel Degueldre
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium.,Department of Analytical Science Biologicals, UCB, Chemin du Foriest, Braine L'Alleud 1420 Belgium
| | - Natalie J Saez
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France.,Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Ana Filipa Sequeira
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Yoan Duhoo
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France.,Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Joana L A Brás
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Hervé Meudal
- Centre National de la Recherche Scientifique, Centre de Biophysique Moléculaire, rue Charles Sadron, Orléans 45071 France
| | - Miguel Cabo Díez
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | - Victoria Fernández Pedrosa
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | - Marion Verdenaud
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Julia Boeri
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Oscar Pereira Ramos
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Frédéric Ducancel
- Université Paris Saclay, CEA, Département IDMIT, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Margot Vanden Driessche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, Montroeul-au-bois 7911 Belgium
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, Montroeul-au-bois 7911 Belgium
| | - Grégory Upert
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Gilles Mourier
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | | | - Karin Mörl
- Institute of Biochemistry, Universitat Leipzig, Leipzig 04103 Germany
| | - Céline Landon
- Centre National de la Recherche Scientifique, Centre de Biophysique Moléculaire, rue Charles Sadron, Orléans 45071 France
| | - Carlos M G A Fontes
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Rebeca Miñambres Herráiz
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | | | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Herestraat 49, Leuven 3000 Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Herestraat 49, Leuven 3000 Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France
| | - Denis Servent
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Nicolas Gilles
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| |
Collapse
|
37
|
Liu ZL, Hu JH, Jiang F, Wu YD. CRiSP: accurate structure prediction of disulfide-rich peptides with cystine-specific sequence alignment and machine learning. Bioinformatics 2020; 36:3385-3392. [PMID: 32215567 DOI: 10.1093/bioinformatics/btaa193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/06/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION High-throughput sequencing discovers many naturally occurring disulfide-rich peptides or cystine-rich peptides (CRPs) with diversified bioactivities. However, their structure information, which is very important to peptide drug discovery, is still very limited. RESULTS We have developed a CRP-specific structure prediction method called Cystine-Rich peptide Structure Prediction (CRiSP), based on a customized template database with cystine-specific sequence alignment and three machine-learning predictors. The modeling accuracy is significantly better than several popular general-purpose structure modeling methods, and our CRiSP can provide useful model quality estimations. AVAILABILITY AND IMPLEMENTATION The CRiSP server is freely available on the website at http://wulab.com.cn/CRISP. CONTACT wuyd@pkusz.edu.cn or jiangfan@pku.edu.cn. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zi-Lin Liu
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jing-Hao Hu
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,NanoAI Biotech Co., Ltd, Shenzhen 518118, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
38
|
Bao N, Lecaer JP, Nghia ND, Vinh PTK. Isolation and structural identification of a new T1-conotoxin with unique disulfide connectivities derived from Conus bandanus. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190095. [PMID: 32425993 PMCID: PMC7216822 DOI: 10.1590/1678-9199-jvatitd-2019-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/15/2020] [Indexed: 08/30/2023] Open
Abstract
Background: Conopeptides are neuropharmacological peptides derived from the venomous
salivary glands of cone snails. Among 29 superfamilies based on conserved
signal sequences, T-superfamily conotoxins, which belong to the smallest
group, include four different frameworks that contain four cysteines
denominated I, V, X and XVI. In this work, the primary structure and the
cysteine connectivity of novel conotoxin of Conus bandanus
were determined by tandem mass spectrometry using collision-induced
dissociation. Methods: The venom glands of C. bandanus snails were dissected,
pooled, and extracted with 0.1% trifluoroacetic acid in three steps and
lyophilized. The venom was fractionated and purified in an HPLC system with
an analytical reversed-phase C18 column. The primary peptide
structure was analyzed by MALDI TOF MS/MS using collision-induced
dissociation and confirmed by Edman's degradation. The peptide’s cysteine
connectivity was determined by rapid partial reduction-alkylation
technique. Results: The novel conotoxin,
NGC1C2(I/L)VREC3C4, was
firstly derived from de novo sequencing by MS/MS. The
presence of isoleucine residues in this conotoxin was confirmed by the Edman
degradation method. The conotoxin, denominated Bn5a, belongs to the
T1-subfamily of conotoxins. However, the disulfide bonds
(C1-C4/C2-C3) of Bn5a were
not the same as found in other T1-subfamily conopeptides but shared common
connectivities with T2-subfamily conotoxins. The T1-conotoxin of C.
bandanus proved the complexity of the disulfide bond pattern of
conopeptides. The homological analysis revealed that the novel conotoxin
could serve as a valuable probe compound for the human-nervous-system
norepinephrine transporter. Conclusion: We identified the first T1-conotoxin, denominated Bn5a, isolated from
C. bandanus venom. However, Bn5a conotoxin exhibited
unique C1-C4/C2-C3 disulfide
connectivity, unlike other T1-conotoxins
(C1-C3/C2-C4). The
structural and homological analyses herein have evidenced novel conotoxin
Bn5a that may require further investigation.
Collapse
Affiliation(s)
- Nguyen Bao
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang, Khanh Hoa, Vietnam
| | - Jean-Pière Lecaer
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, FRC3115, UPR 2301, F-91198 Gif-sur-Yvette, France
| | - Ngo Dang Nghia
- Institute of Biotechnology and Environment, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang, Khanh Hoa, Vietnam
| | - Phan Thi Khanh Vinh
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang, Khanh Hoa, Vietnam
| |
Collapse
|
39
|
An Integrated Proteomic and Transcriptomic Analysis Reveals the Venom Complexity of the Bullet Ant Paraponera clavata. Toxins (Basel) 2020; 12:toxins12050324. [PMID: 32422990 PMCID: PMC7290781 DOI: 10.3390/toxins12050324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
A critical hurdle in ant venom proteomic investigations is the lack of databases to comprehensively and specifically identify the sequence and function of venom proteins and peptides. To resolve this, we used venom gland transcriptomics to generate a sequence database that was used to assign the tandem mass spectrometry (MS) fragmentation spectra of venom peptides and proteins to specific transcripts. This was performed alongside a shotgun liquid chromatography-mass spectrometry (LC-MS/MS) analysis of the venom to confirm that these assigned transcripts were expressed as proteins. Through the combined transcriptomic and proteomic investigation of Paraponera clavata venom, we identified four times the number of proteins previously identified using 2D-PAGE alone. In addition to this, by mining the transcriptomic data, we identified several novel peptide sequences for future pharmacological investigations, some of which conform with inhibitor cysteine knot motifs. These types of peptides have the potential to be developed into pharmaceutical or bioinsecticide peptides.
Collapse
|
40
|
Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc Natl Acad Sci U S A 2020; 117:11399-11408. [PMID: 32398368 DOI: 10.1073/pnas.1914536117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.
Collapse
|
41
|
Kumar S, Vijayasarathy M, Venkatesha M, Sunita P, Balaram P. Cone snail analogs of the pituitary hormones oxytocin/vasopressin and their carrier protein neurophysin. Proteomic and transcriptomic identification of conopressins and conophysins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140391. [DOI: 10.1016/j.bbapap.2020.140391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
|
42
|
Giribaldi J, Ragnarsson L, Pujante T, Enjalbal C, Wilson D, Daly NL, Lewis RJ, Dutertre S. Synthesis, Pharmacological and Structural Characterization of Novel Conopressins from Conus miliaris. Mar Drugs 2020; 18:E150. [PMID: 32155768 PMCID: PMC7143535 DOI: 10.3390/md18030150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cone snails produce a fast-acting and often paralyzing venom, largely dominated by disulfide-rich conotoxins targeting ion channels. Although disulfide-poor conopeptides are usually minor components of cone snail venoms, their ability to target key membrane receptors such as GPCRs make them highly valuable as drug lead compounds. From the venom gland transcriptome of Conus miliaris, we report here on the discovery and characterization of two conopressins, which are nonapeptide ligands of the vasopressin/oxytocin receptor family. These novel sequence variants show unusual features, including a charge inversion at the critical position 8, with an aspartate instead of a highly conserved lysine or arginine residue. Both the amidated and acid C-terminal analogues were synthesized, followed by pharmacological characterization on human and zebrafish receptors and structural investigation by NMR. Whereas conopressin-M1 showed weak and only partial agonist activity at hV1bR (amidated form only) and ZFV1a1R (both amidated and acid form), both conopressin-M2 analogues acted as full agonists at the ZFV2 receptor with low micromolar affinity. Together with the NMR structures of amidated conopressins-M1, -M2 and -G, this study provides novel structure-activity relationship information that may help in the design of more selective ligands.
Collapse
Affiliation(s)
- Julien Giribaldi
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34095 Montpellier, France; (J.G.); (T.P.); (C.E.)
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; (L.R.); (R.J.L.)
| | - Tom Pujante
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34095 Montpellier, France; (J.G.); (T.P.); (C.E.)
| | - Christine Enjalbal
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34095 Montpellier, France; (J.G.); (T.P.); (C.E.)
| | - David Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (D.W.); (N.L.D.)
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (D.W.); (N.L.D.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; (L.R.); (R.J.L.)
| | - Sebastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34095 Montpellier, France; (J.G.); (T.P.); (C.E.)
| |
Collapse
|
43
|
Himaya SWA, Rai SK, Pamfili G, Jin AH, Alewood PF, Lewis RJ. Venomic Interrogation Reveals the Complexity of Conus striolatus Venom. Aust J Chem 2020. [DOI: 10.1071/ch19588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Given the complexity of cone snail venoms, high throughput venomics approaches are required to fully investigate venom composition, envenomation strategies, and evolutionary trajectories. This study describes 158 conotoxins in the venom transcriptome of the little studied C. striolatus from the fish hunting clade Pionoconus. Despite similar gene superfamily distributions along the venom duct, only 18 common transcripts were identified between distal, central, and proximal venom duct transcriptomes. Proteomic analysis of the injected predatory venom collected from the same individual revealed an ~18-fold enhanced complexity at the proteomic level, consistent with complex post-translational modifications and variable venom peptide processing occurring in the venom duct. Overall, C. striolatus venom was dominated by M, O1, O2, and A gene superfamily conotoxins and conkunitzins, which are potential modulators of sodium, calcium, and potassium channels. Conkunitzins and gene superfamily A peptides dominated the proximal over the distal duct, the M and O1 gene superfamily peptides were distributed along the full length of the duct, while the O2 gene superfamily peptides dominated the distal duct. Interestingly, the predatory injected venom of C. striolatus was dominated by peptides from gene superfamilies M, O1, O2, A, and conkunitzins, suggesting the predatory venom of C. striolatus may arise at multiple sites along the venom duct.
Collapse
|
44
|
RgIA4 Accelerates Recovery from Paclitaxel-Induced Neuropathic Pain in Rats. Mar Drugs 2019; 18:md18010012. [PMID: 31877728 PMCID: PMC7024385 DOI: 10.3390/md18010012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic drugs are widely utilized in the treatment of human cancers. Painful chemotherapy-induced neuropathy is a common, debilitating, and dose-limiting side effect for which there is currently no effective treatment. Previous studies have demonstrated the potential utility of peptides from the marine snail from the genus Conus for the treatment of neuropathic pain. α-Conotoxin RgIA and a potent analog, RgIA4, have previously been shown to prevent the development of neuropathy resulting from the administration of oxaliplatin, a platinum-based antineoplastic drug. Here, we have examined its efficacy against paclitaxel, a chemotherapeutic drug that works by a mechanism of action distinct from that of oxaliplatin. Paclitaxel was administered at 2 mg/kg (intraperitoneally (IP)) every other day for a total of 8 mg/kg. Sprague Dawley rats that were co-administered RgIA4 at 80 µg/kg (subcutaneously (SC)) once daily, five times per week, for three weeks showed significant recovery from mechanical allodynia by day 31. Notably, the therapeutic effects reached significance 12 days after the last administration of RgIA4, which is suggestive of a rescue mechanism. These findings support the effects of RgIA4 in multiple chemotherapeutic models and the investigation of α9α10 nicotinic acetylcholine receptors (nAChRs) as a non-opioid target in the treatment of chronic pain.
Collapse
|
45
|
The α 1-adrenoceptor inhibitor ρ-TIA facilitates net hunting in piscivorous Conus tulipa. Sci Rep 2019; 9:17841. [PMID: 31780714 PMCID: PMC6882899 DOI: 10.1038/s41598-019-54186-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 11/08/2022] Open
Abstract
Cone snails use separately evolved venoms for prey capture and defence. While most use a harpoon for prey capture, the Gastridium clade that includes the well-studied Conus geographus and Conus tulipa, have developed a net hunting strategy to catch fish. This unique feeding behaviour requires secretion of "nirvana cabal" peptides to dampen the escape response of targeted fish allowing for their capture directly by mouth. However, the active components of the nirvana cabal remain poorly defined. In this study, we evaluated the behavioural effects of likely nirvana cabal peptides on the teleost model, Danio rerio (zebrafish). Surprisingly, the conantokins (NMDA receptor antagonists) and/or conopressins (vasopressin receptor agonists and antagonists) found in C. geographus and C. tulipa venom failed to produce a nirvana cabal-like effect in zebrafish. In contrast, low concentrations of the non-competitive adrenoceptor antagonist ρ-TIA found in C. tulipa venom (EC50 = 190 nM) dramatically reduced the escape response of zebrafish larvae when added directly to aquarium water. ρ-TIA inhibited the zebrafish α1-adrenoceptor, confirming ρ-TIA has the potential to reverse the known stimulating effects of norepinephrine on fish behaviour. ρ-TIA may act alone and not as part of a cabal, since it did not synergise with conopressins and/or conantokins. This study highlights the importance of using ecologically relevant animal behaviour models to decipher the complex neurobiology underlying the prey capture and defensive strategies of cone snails.
Collapse
|
46
|
Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: Chemistry and Biology. Chem Rev 2019; 119:11510-11549. [PMID: 31633928 DOI: 10.1021/acs.chemrev.9b00207] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia.,Institute of Biological Chemistry, Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria
| | - Sebastien Dutertre
- Département des Acides Amines, Peptides et Protéines, Unité Mixte de Recherche 5247, Université Montpellier 2-Centre Nationale de la Recherche Scientifique , Institut des Biomolécules Max Mousseron , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - S W A Himaya
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| |
Collapse
|
47
|
α-Conotoxin TxIB: A Uniquely Selective Ligand for α6/α3β2β3 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Conditioned Place Preference in Mice. Mar Drugs 2019; 17:md17090490. [PMID: 31443523 PMCID: PMC6780885 DOI: 10.3390/md17090490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
α-Conotoxin TxIB is a specific antagonist of α6/α3β2β3(α6β2*) nicotinic acetylcholine receptor (nAChR) with an IC50 of 28 nM. Previous studies have shown that α6β2* nAChRs are abundantly expressed in midbrain dopaminergic neurons and play an important role in mediating the mechanism of nicotine and other drugs reward effect. It provided important targets for the development of anti-addiction drugs. The present study evaluated the pharmacological activity of TxIB in vivo with conditioned place preference (CPP) model, which were induced by subcutaneous injection (s.c.) of nicotine (NIC, 0.5 mg/kg). α-Conotoxin TxIB inhibited the expression and reinstatement of CPP in mice dose-dependently, but had no significant effect on locomotor activity. The concentrations of dopamine (DA), γ-aminobutyric acid (GABA) and noradrenaline (NE) in different brain regions were measured by enzyme-linked immunosorbent assay (ELISA). We found that TxIB could inhibit the concentrations of DA, GABA and NE in different brain regions (such as nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC)) in NIC-induced mice. The concentrations of DA and NE were decreased in ventral tegmental area (VTA), while GABA had little change. The current work described the inhibition activity of TxIB in NIC-induced CPP, suggesting that α6β2* nAChR-targeted compound may be a promising drug for nicotine addiction treatment.
Collapse
|
48
|
Mendoza CB, Masacupan DJM, Batoctoy DCR, Yu ET, Lluisma AO, Salvador‐Reyes LA. Conomarphins cause paralysis in mollusk: Critical and tunable structural elements for bioactivity. J Pept Sci 2019; 25:e3179. [DOI: 10.1002/psc.3179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Charmaine B. Mendoza
- Marine Science InstituteUniversity of the Philippines, Diliman Quezon City Philippines
| | | | | | - Eizadora T. Yu
- Institute of ChemistryUniversity of the Philippines, Diliman Quezon City Philippines
- Philippine Genome CenterUniversity of the Philippines Diliman Quezon City Philippines
| | - Arturo O. Lluisma
- Marine Science InstituteUniversity of the Philippines, Diliman Quezon City Philippines
- Philippine Genome CenterUniversity of the Philippines Diliman Quezon City Philippines
| | - Lilibeth A. Salvador‐Reyes
- Marine Science InstituteUniversity of the Philippines, Diliman Quezon City Philippines
- Philippine Genome CenterUniversity of the Philippines Diliman Quezon City Philippines
| |
Collapse
|
49
|
Yao G, Peng C, Zhu Y, Fan C, Jiang H, Chen J, Cao Y, Shi Q. High-Throughput Identification and Analysis of Novel Conotoxins from Three Vermivorous Cone Snails by Transcriptome Sequencing. Mar Drugs 2019; 17:md17030193. [PMID: 30917600 PMCID: PMC6471451 DOI: 10.3390/md17030193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
The venom of each Conus species consists of a diverse array of neurophysiologically active peptides, which are mostly unique to the examined species. In this study, we performed high-throughput transcriptome sequencing to extract and analyze putative conotoxin transcripts from the venom ducts of 3 vermivorous cone snails (C. caracteristicus, C. generalis, and C. quercinus), which are resident in offshore waters of the South China Sea. In total, 118, 61, and 48 putative conotoxins (across 22 superfamilies) were identified from the 3 Conus species, respectively; most of them are novel, and some possess new cysteine patterns. Interestingly, a series of 45 unassigned conotoxins presented with a new framework of C-C-C-C-C-C, and their mature regions were sufficiently distinct from any other known conotoxins, most likely representing a new superfamily. O- and M-superfamily conotoxins were the most abundant in transcript number and transcription level, suggesting their critical roles in the venom functions of these vermivorous cone snails. In addition, we identified numerous functional proteins with potential involvement in the biosynthesis, modification, and delivery process of conotoxins, which may shed light on the fundamental mechanisms for the generation of these important conotoxins within the venom duct of cone snails.
Collapse
Affiliation(s)
- Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yabing Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Chongxu Fan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Ying Cao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
50
|
Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis. Mar Drugs 2019; 17:md17030177. [PMID: 30893765 PMCID: PMC6471084 DOI: 10.3390/md17030177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Individual variation in animal venom has been linked to geographical location, feeding habit, season, size, and gender. Uniquely, cone snails possess the remarkable ability to change venom composition in response to predatory or defensive stimuli. To date, correlations between the venom gland transcriptome and proteome within and between individual cone snails have not been reported. In this study, we use 454 pyrosequencing and mass spectrometry to decipher the transcriptomes and proteomes of the venom gland and corresponding predation-evoked venom of two specimens of Conus imperialis. Transcriptomic analyses revealed 17 conotoxin gene superfamilies common to both animals, including 5 novel superfamilies and two novel cysteine frameworks. While highly expressed transcripts were common to both specimens, variation of moderately and weakly expressed precursor sequences was surprisingly diverse, with one specimen expressing two unique gene superfamilies and consistently producing more paralogs within each conotoxin gene superfamily. Using a quantitative labelling method, conotoxin variability was compared quantitatively, with highly expressed peptides showing a strong correlation between transcription and translation, whereas peptides expressed at lower levels showed a poor correlation. These results suggest that major transcripts are subject to stabilizing selection, while minor transcripts are subject to diversifying selection.
Collapse
|