1
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
2
|
Ham S, Kim SS, Park S, Kwon HC, Ha SG, Bae Y, Lee G, Lee SV. Combinatorial transcriptomic and genetic dissection of insulin/IGF-1 signaling-regulated longevity in Caenorhabditis elegans. Aging Cell 2024; 23:e14151. [PMID: 38529797 PMCID: PMC11258480 DOI: 10.1111/acel.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Classical genetic analysis is invaluable for understanding the genetic interactions underlying specific phenotypes, but requires laborious and subjective experiments to characterize polygenic and quantitative traits. Contrarily, transcriptomic analysis enables the simultaneous and objective identification of multiple genes whose expression changes are associated with specific phenotypes. Here, we conducted transcriptomic analysis of genes crucial for longevity using datasets with daf-2/insulin/IGF-1 receptor mutant Caenorhabditis elegans. Our analysis unraveled multiple epistatic relationships at the transcriptomic level, in addition to verifying genetically established interactions. Our combinatorial analysis also revealed transcriptomic changes associated with longevity conferred by daf-2 mutations. In particular, we demonstrated that the extent of lifespan changes caused by various mutant alleles of the longevity transcription factor daf-16/FOXO matched their effects on transcriptomic changes in daf-2 mutants. We identified specific aging-regulating signaling pathways and subsets of structural and functional RNA elements altered by different genes in daf-2 mutants. Lastly, we elucidated the functional cooperation between several longevity regulators, based on the combination of transcriptomic and molecular genetic analysis. These data suggest that different biological processes coordinately exert their effects on longevity in biological networks. Together our work demonstrates the utility of transcriptomic dissection analysis for identifying important genetic interactions for physiological processes, including aging and longevity.
Collapse
Affiliation(s)
- Seokjin Ham
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Sieun S. Kim
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Sangsoon Park
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Hyunwoo C. Kwon
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Seokjun G. Ha
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Yunkyu Bae
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Gee‐Yoon Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Seung‐Jae V. Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| |
Collapse
|
3
|
Jamerson LE, Bradshaw PC. Slowing reproductive ageing by preserving BCAT-1. Nat Metab 2024; 6:610-612. [PMID: 38418584 DOI: 10.1038/s42255-024-01009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Affiliation(s)
- Leah E Jamerson
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Patrick C Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
4
|
Tumbapo S, Strudwick A, Stastna JJ, Harvey SC, Bloemink MJ. Moderate dietary restriction delays the onset of age-associated sarcopenia in Caenorhabditis elegans due to reduced myosin UNC-54 degradation. Mech Ageing Dev 2024; 217:111900. [PMID: 38163472 DOI: 10.1016/j.mad.2023.111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Sarcopenia, a gradual decrease in skeletal muscle mass and strength, is a major component of frailty in the elderly, with age, (lack of) exercise and diet found to be the major risk factors. The nematode Caenorhabditis elegans is an important model of sarcopenia. Although many studies describe loss of muscle function in ageing C. elegans, surprisingly few report on the loss of muscle mass. Here, in order to quantify loss of muscle mass under various dietary restriction (DR) conditions, we used an internal GFP standard to determine levels of the major body wall muscle myosin (UNC-54) in transgenic unc-54::gfp worms over their lifespan. Myosin density linearly increased during the first week of adulthood and there was no significant effect of DR. In contrast, an exponential decrease in myosin density was seen during the second week of adulthood, with reduced rates of myosin loss for mild and medium DR compared to control. UNC-54 turnover rates, previously determined using pulse-labelling methods, correspond well with the t1/2 value found here for UNC-54-GFP using fluorescence (control t1/2 = 12.0 days), independently validating our approach. These data indicate that sarcopenia is delayed in worms under mild and medium DR due to a reduced rate of myosin UNC-54 degradation, thereby maintaining protein homeostasis.
Collapse
Affiliation(s)
- Sobha Tumbapo
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Adam Strudwick
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Jana J Stastna
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Simon C Harvey
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom; Faculty of Engineering and Science, University of Greenwich, United Kingdom
| | - Marieke J Bloemink
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom.
| |
Collapse
|
5
|
Teuscher AC, Statzer C, Goyala A, Domenig SA, Schoen I, Hess M, Hofer AM, Fossati A, Vogel V, Goksel O, Aebersold R, Ewald CY. Longevity interventions modulate mechanotransduction and extracellular matrix homeostasis in C. elegans. Nat Commun 2024; 15:276. [PMID: 38177158 PMCID: PMC10766642 DOI: 10.1038/s41467-023-44409-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Dysfunctional extracellular matrices (ECM) contribute to aging and disease. Repairing dysfunctional ECM could potentially prevent age-related pathologies. Interventions promoting longevity also impact ECM gene expression. However, the role of ECM composition changes in healthy aging remains unclear. Here we perform proteomics and in-vivo monitoring to systematically investigate ECM composition (matreotype) during aging in C. elegans revealing three distinct collagen dynamics. Longevity interventions slow age-related collagen stiffening and prolong the expression of collagens that are turned over. These prolonged collagen dynamics are mediated by a mechanical feedback loop of hemidesmosome-containing structures that span from the exoskeletal ECM through the hypodermis, basement membrane ECM, to the muscles, coupling mechanical forces to adjust ECM gene expression and longevity via the transcriptional co-activator YAP-1 across tissues. Our results provide in-vivo evidence that coordinated ECM remodeling through mechanotransduction is required and sufficient to promote longevity, offering potential avenues for interventions targeting ECM dynamics.
Collapse
Affiliation(s)
- Alina C Teuscher
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Seraina A Domenig
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Max Hess
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Alexander M Hofer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Andrea Fossati
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Orcun Goksel
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland.
| |
Collapse
|
6
|
Kim HS, Pickering AM. Protein translation paradox: Implications in translational regulation of aging. Front Cell Dev Biol 2023; 11:1129281. [PMID: 36711035 PMCID: PMC9880214 DOI: 10.3389/fcell.2023.1129281] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Protein translation is an essential cellular process playing key roles in growth and development. Protein translation declines over the course of age in multiple animal species, including nematodes, fruit flies, mice, rats, and even humans. In all these species, protein translation transiently peaks in early adulthood with a subsequent drop over the course of age. Conversely, lifelong reductions in protein translation have been found to extend lifespan and healthspan in multiple animal models. These findings raise the protein synthesis paradox: age-related declines in protein synthesis should be detrimental, but life-long reductions in protein translation paradoxically slow down aging and prolong lifespan. This article discusses the nature of this paradox and complies an extensive body of work demonstrating protein translation as a modulator of lifespan and healthspan.
Collapse
Affiliation(s)
- Harper S. Kim
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew M. Pickering
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
8
|
Cai H, Wu P, Vandemeulebroucke L, Dhondt I, Rasulova M, Vierstraete A, Braeckman BP. Axenic Culture of Caenorhabditis elegans Alters Lysosomal/Proteasomal Balance and Increases Neuropeptide Expression. Int J Mol Sci 2022; 23:11517. [PMID: 36232823 PMCID: PMC9570027 DOI: 10.3390/ijms231911517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Axenically cultured C. elegans show many characteristic traits of worms subjected to dietary restriction, such as slowed development, reduced fertility, and increased stress resistance. Hence, the term axenic dietary restriction (ADR) is often applied. ADR dramatically extends the worm lifespan compared to other DR regimens such as bacterial dilution. However, the underlying molecular mechanisms still remain unclear. The primary goal of this study is to comprehensively investigate transcriptional alterations that occur when worms are subjected to ADR and to estimate the molecular and physiological changes that may underlie ADR-induced longevity. One of the most enriched clusters of up-regulated genes under ADR conditions is linked to lysosomal activity, while proteasomal genes are significantly down-regulated. The up-regulation of genes specifically involved in amino acid metabolism is likely a response to the high peptide levels found in axenic culture medium. Genes related to the integrity and function of muscles and the extracellular matrix are also up-regulated. Consistent down-regulation of genes involved in DNA replication and repair may reflect the reduced fertility phenotype of ADR worms. Neuropeptide genes are found to be largely up-regulated, suggesting a possible involvement of neuroendocrinal signaling in ADR-induced longevity. In conclusion, axenically cultured worms seem to rely on increased amino acid catabolism, relocate protein breakdown from the cytosol to the lysosomes, and do not invest in DNA maintenance but rather retain muscle integrity and the extracellular matrix. All these changes may be coordinated by peptidergic signaling.
Collapse
Affiliation(s)
- Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
- Overseas Pharmaceuticals, Ltd., Room 201, Building C1, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou 510530, China
| | - Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Madina Rasulova
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Andy Vierstraete
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
10
|
Dhondt I, Verschuuren C, Zečić A, Loier T, Braeckman BP, De Vos WH. Prediction of biological age by morphological staging of sarcopenia in Caenorhabditis elegans. Dis Model Mech 2021; 14:272684. [PMID: 34723324 PMCID: PMC8649172 DOI: 10.1242/dmm.049169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Sarcopenia encompasses a progressive decline in muscle quantity and quality. Given its close association with ageing, it may represent a valuable healthspan marker. The commonalities with human muscle structure and facile visualization possibilities make Caenorhabditis elegans an attractive model for studying the relationship between sarcopenia and healthspan. However, classical visual assessment of muscle architecture is subjective and has low throughput. To resolve this, we have developed an image analysis pipeline for the quantification of muscle integrity in confocal microscopy images from a cohort of ageing myosin::GFP reporter worms. We extracted a variety of morphological descriptors and found a subset to scale linearly with age. This allowed establishing a linear model that predicts biological age from a morphological muscle signature. To validate the model, we evaluated muscle architecture in long-lived worms that are known to experience delayed sarcopenia by targeted knockdown of the daf-2 gene. We conclude that quantitative microscopy allows for staging sarcopenia in C. elegans and may foster the development of image-based screens in this model organism to identify modulators that mitigate age-related muscle frailty and thus improve healthspan. Summary: A tool for quantitative image analysis of muscle deterioration that allows predicting healthspan in the nematode model Caenorhabditis elegans and may lead to the first C. elegans-based high-throughput sarcopenia screening platform.
Collapse
Affiliation(s)
- Ineke Dhondt
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Clara Verschuuren
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Aleksandra Zečić
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Tim Loier
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bart P Braeckman
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
11
|
Li WJ, Wang CW, Tao L, Yan YH, Zhang MJ, Liu ZX, Li YX, Zhao HQ, Li XM, He XD, Xue Y, Dong MQ. Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nat Commun 2021; 12:4568. [PMID: 34315882 PMCID: PMC8316574 DOI: 10.1038/s41467-021-24816-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
Insulin/IGF-1 Signaling (IIS) is known to constrain longevity by inhibiting the transcription factor FOXO. How phosphorylation mediated by IIS kinases regulates lifespan beyond FOXO remains unclear. Here, we profile IIS-dependent phosphorylation changes in a large-scale quantitative phosphoproteomic analysis of wild-type and three IIS mutant Caenorhabditis elegans strains. We quantify more than 15,000 phosphosites and find that 476 of these are differentially phosphorylated in the long-lived daf-2/insulin receptor mutant. We develop a machine learning-based method to prioritize 25 potential lifespan-related phosphosites. We perform validations to show that AKT-1 pT492 inhibits DAF-16/FOXO and compensates the loss of daf-2 function, that EIF-2α pS49 potently inhibits protein synthesis and daf-2 longevity, and that reduced phosphorylation of multiple germline proteins apparently transmits reduced DAF-2 signaling to the soma. In addition, an analysis of kinases with enriched substrates detects that casein kinase 2 (CK2) subunits negatively regulate lifespan. Our study reveals detailed functional insights into longevity.
Collapse
Affiliation(s)
- Wen-Jun Li
- School of Life Sciences, Peking University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Chen-Wei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, Jiangsu, China
| | - Li Tao
- National Institute of Biological Sciences, Beijing, China
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing, China
| | - Mei-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
- Annoroad Gene Tech. Co., Ltd., Beijing, China
| | - Ze-Xian Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Xin Li
- National Institute of Biological Sciences, Beijing, China
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Han-Qing Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Mei Li
- School of Life Sciences, Peking University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Xian-Dong He
- National Institute of Biological Sciences, Beijing, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, Jiangsu, China.
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Saikumar J, Bonini NM. Synergistic effects of brain injury and aging: common mechanisms of proteostatic dysfunction. Trends Neurosci 2021; 44:728-740. [PMID: 34301397 DOI: 10.1016/j.tins.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
The aftermath of TBI is associated with an acute stress response and the accumulation of insoluble protein aggregates. Even after the symptoms of TBI are resolved, insidious molecular processes continue to develop, which often ultimately result in the development of age-associated neurodegenerative disorders. The precise molecular cascades that drive unhealthy brain aging are still largely unknown. In this review, we discuss proteostatic dysfunction as a converging mechanism contributing to accelerated brain aging after TBI. We examine evidence from human tissue and in vivo animal models, spanning both the aging and injury contexts. We conclude that TBI has a sustained debilitating effect on the proteostatic machinery, which may contribute to the accelerated pathological and cognitive hallmarks of aging that are observed following injury.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Lim HJ, Han YT, Ahn JH, Jeon YD, Jeon H, Cha DS. Longevity effects of hispidol in Caenorhabditis elegans. Biofactors 2020; 46:1041-1048. [PMID: 33179346 DOI: 10.1002/biof.1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 11/07/2022]
Abstract
In this study, we investigated the longevity effects of hispidol, a 6,4'-dihydroxyaurone, using the Caenorhabditis elegans model system. Our lifespan assay data revealed that hispidol could prolong the lifespan of wild-type worms under normal culture condition. Moreover, hispidol increased the survival rate of the worms against a heat stress condition through up-regulated expressions of HSP-16.2. Similarly, hispidol protected worms from paraquat-induced oxidative stress. We also found that the hispidol elevated the activities of antioxidant enzymes, thereby attenuating the generation of intracellular reactive oxygen species. These results suggest that the enhancement of lifespan and stress resistance by the hispidol treatment might be attributed to its strong in vivo antioxidant capacity and regulation of stress proteins. Further tests on the aging-related factors revealed that hispidol could regulate the speed of pharyngeal pumping, indicating the association of dietary restriction with the hispidol-mediated longevity. However, there were no significant alterations in the body length of the worms between the groups. We then investigated the effects of hispidol on body movement and lipofuscin accumulation in aged worms. Interestingly, these healthspan parameters were strongly improved by the hispidol treatment. Our genetic studies showed no significant change in the lifespan of the daf-16 null mutants by hispidol supplementation. In addition, enhanced nuclear translocation of DAF-16 was observed in the hispidol-fed DAF-16::GFP fused transgenic mutants, suggesting the requirement of DAF-16/FOXO activation for the longevity effect of hispidol.
Collapse
Affiliation(s)
- Hyun Joo Lim
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Ji-Hye Ahn
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Yong-Deok Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| |
Collapse
|
14
|
Christian CJ, Benian GM. Animal models of sarcopenia. Aging Cell 2020; 19:e13223. [PMID: 32857472 PMCID: PMC7576270 DOI: 10.1111/acel.13223] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is the age-related decline in muscle mass and function without any underlying disease. The exact molecular mechanisms responsible for this pathology remain unknown. The use of model organisms, such as mice, rats, flies, and worms, has advanced the field of sarcopenia research by identifying therapeutic strategies and genetic mutations that result in improved muscle mass and function of elderly animals. This review discusses molecular and therapeutic discoveries made using these model organisms and how these animals can be further utilized to better understand sarcopenia pathogenesis. In rodents, flies, and worms, dietary restriction improves muscle performance in old animals. In rodents and worms, exercise and a number of naturally occurring compounds alleviate sarcopenia. Reduction in the insulin/IGF1 receptor pathway, well known to promote longevity, improves sarcopenia in worms and flies. Mitochondrial dysfunction may contribute to the pathogenesis of sarcopenia: In rodents, there is age-dependent reduction in mitochondrial mass and a change in morphology; in nematodes, there is age-dependent fragmentation of mitochondria that precedes sarcomeric disorganization. In Drosophila and rats, components of the 26S proteasome are elevated in aged muscle. An advantage of the worm and fly models is that these organisms lack muscle stem cells, and thus processes that promote the maintenance of already assembled muscle, can be identified without the confounding influence of muscle regeneration. Zebrafish are an up and coming model of sarcopenia for future consideration. A better understanding of the molecular changes behind sarcopenia will help researchers develop better therapies to improve the muscle health of elderly individuals.
Collapse
Affiliation(s)
| | - Guy M. Benian
- Department of Pathology Emory University Atlanta Georgia USA
| |
Collapse
|
15
|
Lan J, Rollins JA, Zang X, Wu D, Zou L, Wang Z, Ye C, Wu Z, Kapahi P, Rogers AN, Chen D. Translational Regulation of Non-autonomous Mitochondrial Stress Response Promotes Longevity. Cell Rep 2020; 28:1050-1062.e6. [PMID: 31340143 PMCID: PMC6684276 DOI: 10.1016/j.celrep.2019.06.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 01/12/2023] Open
Abstract
Reduced mRNA translation delays aging, but the underlying mechanisms remain underexplored. Mutations in both DAF-2 (IGF-1 receptor) and RSKS-1 (ribosomal S6 kinase/S6K) cause synergistic lifespan extension in C. elegans. To understand the roles of translational regulation in this process, we performed polysomal profiling and identified translationally regulated ribosomal and cytochrome c (CYC-2.1) genes as key mediators of longevity. cyc-2.1 knockdown significantly extends lifespan by activating the intestinal mitochondrial unfolded protein response (UPRmt), mitochondrial fission, and AMP-activated kinase (AMPK). The germline serves as the key tissue for cyc-2.1 to regulate lifespan, and germline-specific cyc-2.1 knockdown non-autonomously activates intestinal UPRmt and AMPK. Furthermore, the RNA-binding protein GLD-1-mediated translational repression of cyc-2.1 in the germline is important for the non-autonomous activation of UPRmt and synergistic longevity of the daf-2 rsks-1 mutant. Altogether, these results illustrate a translationally regulated non-autonomous mitochondrial stress response mechanism in the modulation of lifespan by insulin-like signaling and S6K. To understand how reduced translation delays aging, Lan et al. perform translational profiling in C. elegans and propose that, in the significantly long-lived daf-2 rsks-1 mutant, serial translational regulation leads to reduced cytochrome c in the germline, which non-autonomously activates UPRmt and AMPK in the metabolic tissue to ensure longevity.
Collapse
Affiliation(s)
- Jianfeng Lan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Jarod A Rollins
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA
| | - Xiao Zang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Di Wu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Lina Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Zi Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Zixing Wu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Aric N Rogers
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA.
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| |
Collapse
|
16
|
Sornda T, Ezcurra M, Kern C, Galimov ER, Au C, de la Guardia Y, Gems D. Production of YP170 Vitellogenins Promotes Intestinal Senescence in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2020; 74:1180-1188. [PMID: 30854561 PMCID: PMC6625598 DOI: 10.1093/gerona/glz067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
During aging, etiologies of senescence cause multiple pathologies, leading to morbidity and death. To understand aging requires identification of these etiologies. For example, Caenorhabditis elegans hermaphrodites consume their own intestinal biomass to support yolk production, which in later life drives intestinal atrophy and ectopic yolk deposition. Yolk proteins (YPs; vitellogenins) exist as three abundant species: YP170, derived from vit-1–vit-5; and YP115 and YP88, derived from vit-6. Here, we show that inhibiting YP170 synthesis leads to a reciprocal increase in YP115/YP88 levels and vice versa, an effect involving posttranscriptional mechanisms. Inhibiting YP170 production alone, despite increasing YP115/YP88 synthesis, reduces intestinal atrophy as much as inhibition of all YP synthesis, which increases life span. By contrast, inhibiting YP115/YP88 production alone accelerates intestinal atrophy and reduces life span, an effect that is dependent on increased YP170 production. Thus, despite copious abundance of both YP170 and YP115/YP88, only YP170 production is coupled to intestinal atrophy and shortened life span. In addition, increasing levels of YP115/YP88 but not of YP170 increases resistance to oxidative stress; thus, longevity resulting from reduced vitellogenin synthesis is not attributable to oxidative stress resistance.
Collapse
Affiliation(s)
- Thanet Sornda
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Marina Ezcurra
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,School of Biosciences, University of Kent, Canterbury, UK
| | - Carina Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Evgeniy R Galimov
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Catherine Au
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Yila de la Guardia
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panama
| | - David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| |
Collapse
|
17
|
Tang J, Ma R, Zhu N, Guo K, Guo Y, Bai L, Yu H, Hu J, Zhang X. Bxy-fuca encoding α-L-fucosidase plays crucial roles in development and reproduction of the pathogenic pinewood nematode, Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2020; 76:205-214. [PMID: 31140718 DOI: 10.1002/ps.5497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/04/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The pine wood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD). This disease is a serious threat to pine forests globally. The fuca gene encodes α-L-fucosidase, which plays crucial roles in numerous biological and pathological processes in bacteria, fungi, plants and animals. To find promising control strategies against PWD, we investigated the expression and functions of Bxy-fuca in B. xylophilus. RESULTS Bxy-fuca encoding α-L-fucosidase is highly conserved within the deduced functional domains and key residues. It is expressed continuously across all developmental stages of B. xylophilus. mRNA in situ hybridization demonstrated that Bxy-fuca was mainly localized in the body wall muscles and intestine. RNA interference indicated that the zygotic expression of Bxy-fuca was indispensable for embryogenesis. The rate of B. xylophilus egg hatch was significantly decreased after Bxy-fuca was interfered. Postembryonic silence of Bxy-fuca resulted in a dramatic decrease in the longevity of and the total number of eggs produced by B. xylophilus. In addition, the motility of the nematode was greatly hampered with a significant drop in head thrashing frequency. CONCLUSION Bxy-fuca plays crucial roles in development, lifespan and reproduction of B. xylophilus. Our results provide promising hints for control of PWD by blocking embryogenesis and ontogenesis, decreasing nematode fecundity, and disrupting the connection between B. xylophilus and its vector beetle by preventing nematode movement into the tracheal system. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Tang
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Ruoqing Ma
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Najie Zhu
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Kai Guo
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Yiqing Guo
- Division of Nephrology Department Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Liqun Bai
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Hongshi Yu
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Jiafu Hu
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Xingyao Zhang
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
18
|
Brandhorst S, Longo VD. Protein Quantity and Source, Fasting-Mimicking Diets, and Longevity. Adv Nutr 2019; 10:S340-S350. [PMID: 31728501 PMCID: PMC6855936 DOI: 10.1093/advances/nmz079] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/21/2019] [Accepted: 03/28/2019] [Indexed: 11/12/2022] Open
Abstract
Dietary modifications, including caloric restriction, dietary restriction, various intervals of fasting, and even limiting the time when food is consumed can have a pronounced impact on longevity. In addition, dietary modifications are powerful interventions to delay, prevent, or treat many aging-related diseases such as cancer and diabetes. Restricting amino acid and protein intake generally decreases aging-related comorbidities and thereby increases health and longevity. However, chronic dietary interventions are likely not feasible for most people due to low adherence to dietary protocols or resistance to drastic changes to lifestyle, and might even cause detrimental effects, possibly by negatively affecting the immune system and wound healing. The periodic use of low-protein, low-calorie fasting-mimicking diets (FMDs) has the potential to promote health benefits, while minimizing the burden of chronic restriction. Protein restriction and FMDs together have the potential to play an important complementary role in medicine by promoting disease prevention and treatment, and by delaying the aging process at least in part by stimulating stem cell-based regeneration in periods of normal food intake after periodic FMD cycles. The aim of this narrative review is to summarize research on the impact of protein restriction on health and longevity in model organisms and to discuss the implementation of an FMD in mice and in human clinical trials and its effects on biomarkers of healthy aging. Taking into account the importance of sex on aging and diet, we include this information in all discussed studies. Whereas for some model organisms of aging, such as rodents, many studies are available, results are more limited for primates and/or humans.
Collapse
Affiliation(s)
- Sebastian Brandhorst
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA,FIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy,Address correspondence to VDL (e-mail: )
| |
Collapse
|
19
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
20
|
Page MM, Schuster EF, Mudaliar M, Herzyk P, Withers DJ, Selman C. Common and unique transcriptional responses to dietary restriction and loss of insulin receptor substrate 1 (IRS1) in mice. Aging (Albany NY) 2019; 10:1027-1052. [PMID: 29779018 PMCID: PMC5990393 DOI: 10.18632/aging.101446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
Abstract
Dietary restriction (DR) is the most widely studied non-genetic intervention capable of extending lifespan across multiple taxa. Modulation of genes, primarily within the insulin/insulin-like growth factor signalling (IIS) and the mechanistic target of rapamycin (mTOR) signalling pathways also act to extend lifespan in model organisms. For example, mice lacking insulin receptor substrate-1 (IRS1) are long-lived and protected against several age-associated pathologies. However, it remains unclear how these particular interventions act mechanistically to produce their beneficial effects. Here, we investigated transcriptional responses in wild-type and IRS1 null mice fed an ad libitum diet (WTAL and KOAL) or fed a 30% DR diet (WTDR or KODR). Using an RNAseq approach we noted a high correlation coefficient of differentially expressed genes existed within the same tissue across WTDR and KOAL mice and many metabolic features were shared between these mice. Overall, we report that significant overlap exists in the tissue-specific transcriptional response between long-lived DR mice and IRS1 null mice. However, there was evidence of disconnect between transcriptional signatures and certain phenotypic measures between KOAL and KODR, in that additive effects on body mass were observed but at the transcriptional level DR induced a unique set of genes in these already long-lived mice.
Collapse
Affiliation(s)
- Melissa M Page
- Institute des Sciences de la Vie, Faculty of Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eugene F Schuster
- The Breast Cancer Now Toby Robins Research Centre The Institute of Cancer Research, London, UK
| | - Manikhandan Mudaliar
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Glasgow Molecular Pathology Node, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Cerevance, Cambridge Science Park, Cambridge, UK
| | - Pawel Herzyk
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Campus, Bearsden, UK.,Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Komljenovic A, Li H, Sorrentino V, Kutalik Z, Auwerx J, Robinson-Rechavi M. Cross-species functional modules link proteostasis to human normal aging. PLoS Comput Biol 2019; 15:e1007162. [PMID: 31269015 PMCID: PMC6634426 DOI: 10.1371/journal.pcbi.1007162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/16/2019] [Accepted: 06/07/2019] [Indexed: 11/23/2022] Open
Abstract
The evolutionarily conserved nature of the few well-known anti-aging interventions that affect lifespan, such as caloric restriction, suggests that aging-related research in model organisms is directly relevant to human aging. Since human lifespan is a complex trait, a systems-level approach will contribute to a more comprehensive understanding of the underlying aging landscape. Here, we integrate evolutionary and functional information of normal aging across human and model organisms at three levels: gene-level, process-level, and network-level. We identify evolutionarily conserved modules of normal aging across diverse taxa, and notably show proteostasis to be conserved in normal aging. Additionally, we find that mechanisms related to protein quality control network are enriched for genes harboring genetic variants associated with 22 age-related human traits and associated to caloric restriction. These results demonstrate that a systems-level approach, combined with evolutionary conservation, allows the detection of candidate aging genes and pathways relevant to human normal aging.
Collapse
Affiliation(s)
- Andrea Komljenovic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, EPFL, Lausanne, Switzerland
| | | | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, EPFL, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
22
|
Zečić A, Dhondt I, Braeckman BP. The nutritional requirements of Caenorhabditis elegans. GENES AND NUTRITION 2019; 14:15. [PMID: 31080524 PMCID: PMC6501307 DOI: 10.1186/s12263-019-0637-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Animals require sufficient intake of a variety of nutrients to support their development, somatic maintenance and reproduction. An adequate diet provides cell building blocks, chemical energy to drive cellular processes and essential nutrients that cannot be synthesised by the animal, or at least not in the required amounts. Dietary requirements of nematodes, including Caenorhabditis elegans have been extensively studied with the major aim to develop a chemically defined axenic medium that would support their growth and reproduction. At the same time, these studies helped elucidating important aspects of nutrition-related biochemistry and metabolism as well as the establishment of C. elegans as a powerful model in studying evolutionarily conserved pathways, and the influence of the diet on health.
Collapse
Affiliation(s)
- Aleksandra Zečić
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| | - Ineke Dhondt
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| | - Bart P Braeckman
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Witting M, Hastings J, Rodriguez N, Joshi CJ, Hattwell JPN, Ebert PR, van Weeghel M, Gao AW, Wakelam MJO, Houtkooper RH, Mains A, Le Novère N, Sadykoff S, Schroeder F, Lewis NE, Schirra HJ, Kaleta C, Casanueva O. Modeling Meets Metabolomics-The WormJam Consensus Model as Basis for Metabolic Studies in the Model Organism Caenorhabditis elegans. Front Mol Biosci 2018; 5:96. [PMID: 30488036 PMCID: PMC6246695 DOI: 10.3389/fmolb.2018.00096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023] Open
Abstract
Metabolism is one of the attributes of life and supplies energy and building blocks to organisms. Therefore, understanding metabolism is crucial for the understanding of complex biological phenomena. Despite having been in the focus of research for centuries, our picture of metabolism is still incomplete. Metabolomics, the systematic analysis of all small molecules in a biological system, aims to close this gap. In order to facilitate such investigations a blueprint of the metabolic network is required. Recently, several metabolic network reconstructions for the model organism Caenorhabditis elegans have been published, each having unique features. We have established the WormJam Community to merge and reconcile these (and other unpublished models) into a single consensus metabolic reconstruction. In a series of workshops and annotation seminars this model was refined with manual correction of incorrect assignments, metabolite structure and identifier curation as well as addition of new pathways. The WormJam consensus metabolic reconstruction represents a rich data source not only for in silico network-based approaches like flux balance analysis, but also for metabolomics, as it includes a database of metabolites present in C. elegans, which can be used for annotation. Here we present the process of model merging, correction and curation and give a detailed overview of the model. In the future it is intended to expand the model toward different tissues and put special emphasizes on lipid metabolism and secondary metabolism including ascaroside metabolism in accordance to their central role in C. elegans physiology.
Collapse
Affiliation(s)
- Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universtität München, Freising, Germany
| | - Janna Hastings
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Nicolas Rodriguez
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Chintan J. Joshi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jake P. N. Hattwell
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R. Ebert
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Arwen W. Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | | | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Abraham Mains
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Nicolas Le Novère
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Sean Sadykoff
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | | | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Novo Nordisk Foundation Center for Biosustainability at University of California, San Diego, La Jolla, CA, United States
| | | | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Olivia Casanueva
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
24
|
Molenaars M, Janssens GE, Santermans T, Lezzerini M, Jelier R, MacInnes AW, Houtkooper RH. Mitochondrial ubiquinone-mediated longevity is marked by reduced cytoplasmic mRNA translation. Life Sci Alliance 2018; 1. [PMID: 30198021 PMCID: PMC6126614 DOI: 10.26508/lsa.201800082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study uses polysomal RNA sequencing to show that the translational efficiency of specific mRNA changes in long-lived Caenorhabditis elegans with reduced ubiquinone synthesis. Mutations in the clk-1 gene impair mitochondrial ubiquinone biosynthesis and extend the lifespan in Caenorhabditis elegans. We demonstrate here that this life extension is linked to the repression of cytoplasmic mRNA translation, independent of the alleged nuclear form of CLK-1. Clk-1 mutations inhibit polyribosome formation similarly to daf-2 mutations that dampen insulin signaling. Comparisons of total versus polysomal RNAs in clk-1(qm30) mutants reveal a reduction in the translational efficiencies of mRNAs coding for elements of the translation machinery and an increase in those coding for the oxidative phosphorylation and autophagy pathways. Knocking down the transcription initiation factor TATA-binding protein-associated factor 4, a protein that becomes sequestered in the cytoplasm during early embryogenesis to induce transcriptional silencing, ameliorates the clk-1 inhibition of polyribosome formation. These results underscore a prominent role for the repression of cytoplasmic protein synthesis in eukaryotic lifespan extension and suggest that mutations impairing mitochondrial function are able to exploit this repression similarly to reductions of insulin signaling. Moreover, this report reveals an unexpected role for TATA-binding protein-associated factor 4 as a repressor of polyribosome formation when ubiquinone biosynthesis is compromised.
Collapse
Affiliation(s)
- Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Toon Santermans
- CMPG - Predictive Genetics and Multicellular Systems, University of Leuven, B-3001 Leuven, Belgium
| | - Marco Lezzerini
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rob Jelier
- CMPG - Predictive Genetics and Multicellular Systems, University of Leuven, B-3001 Leuven, Belgium
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Denzel MS, Lapierre LR, Mack HID. Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 2018; 177:4-21. [PMID: 30134144 PMCID: PMC6696993 DOI: 10.1016/j.mad.2018.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Key discoveries in aging research have been made possible with the use of model organisms. Caenorhabditis elegans is a short-lived nematode that has become a well-established system to study aging. The practicality and powerful genetic manipulations associated with this metazoan have revolutionized our ability to understand how organisms age. 25 years after the publication of the discovery of the daf-2 gene as a genetic modifier of lifespan, C. elegans remains as relevant as ever in the quest to understand the process of aging. Nematode aging research has proven useful in identifying transcriptional regulators, small molecule signals, cellular mechanisms, epigenetic modifications associated with stress resistance and longevity, and lifespan-extending compounds. Here, we review recent discoveries and selected topics that have emerged in aging research using this incredible little worm.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | | |
Collapse
|
26
|
C. elegans Eats Its Own Intestine to Make Yolk Leading to Multiple Senescent Pathologies. Curr Biol 2018; 28:2544-2556.e5. [PMID: 30100339 PMCID: PMC6108400 DOI: 10.1016/j.cub.2018.06.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/08/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Aging (senescence) is characterized by the development of numerous pathologies, some of which limit lifespan. Key to understanding aging is discovery of the mechanisms (etiologies) that cause senescent pathology. In C. elegans, a major senescent pathology of unknown etiology is atrophy of its principal metabolic organ, the intestine. Here we identify a cause of not only this pathology but also of yolky lipid accumulation and redistribution (a form of senescent obesity): autophagy-mediated conversion of intestinal biomass into yolk. Inhibiting intestinal autophagy or vitellogenesis rescues both visceral pathologies and can also extend lifespan. This defines a disease syndrome leading to multimorbidity and contributing to late-life mortality. Activation of gut-to-yolk biomass conversion by insulin/IGF-1 signaling (IIS) promotes reproduction and senescence. This illustrates how major, IIS-promoted senescent pathologies in C. elegans can originate not from damage accumulation but from direct effects of futile, continued action of a wild-type biological program (vitellogenesis). C. elegans consume their own intestine to synthesize yolk and promote reproduction This causes diseases of aging, including atrophy of the intestine and yolk steatosis Intestinal senescence in C. elegans is promoted by autophagy Here destructive run-on of wild-type biological programs causes senescent pathologies
Collapse
|
27
|
Kim YS, Han YT, Jeon H, Cha DS. Antiageing properties of Damaurone D in Caenorhabditis elegans. J Pharm Pharmacol 2018; 70:1423-1429. [DOI: 10.1111/jphp.12979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/15/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
This study was conducted to evaluate the longevity potential of damaurone D (DaD), a component of the damask rose, in the animal model Caenorhabditis elegans.
Methods
To investigate the effect of DaD on the longevity, lifespan assay was carried out. Fluorescence intensity of transgenic mutants was quantified to test the expression levels of stress proteins. A genetic study using single gene knockout mutants was designed to determine the target genes of DaD.
Key findings
DaD prolonged the mean lifespan of wild-type nematodes by 16.7% under normal conditions and also improved their stress endurance under thermal, osmotic, and oxidative stress conditions. This longevity-promoting effect could be attributed to in vivo antioxidant capacity and its up-regulating effects on the expressions of stress-response proteins such as SOD-3 and HSP-16.2. In addition, DaD treatment attenuated food intake, body length, lipofuscin accumulation and age-dependent decline of motor ability. Gene-specific mutant studies showed the involvement of genes such as daf-2, age-1, and daf-16.
Conclusions
These results suggest that DaD has beneficial effects on the longevity, and thus it can be a valuable plant origin lead compound for the development of nutraceutical preparations targeting ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Yong Seong Kim
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| |
Collapse
|
28
|
Mergoud dit Lamarche A, Molin L, Pierson L, Mariol M, Bessereau J, Gieseler K, Solari F. UNC-120/SRF independently controls muscle aging and lifespan in Caenorhabditis elegans. Aging Cell 2018; 17:e12713. [PMID: 29314608 PMCID: PMC5847867 DOI: 10.1111/acel.12713] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is commonly defined as the loss of global homeostasis, which results from progressive alteration of all organs function. This model is currently challenged by recent data showing that interventions that extend lifespan do not always increase the overall fitness of the organism. These data suggest the existence of tissue-specific factors that regulate the pace of aging in a cell-autonomous manner. Here, we investigated aging of Caenorhabditis elegans striated muscles at the subcellular and the physiological level. Our data show that muscle aging is characterized by a dramatic decrease in the expression of genes encoding proteins required for muscle contraction, followed by a change in mitochondria morphology, and an increase in autophagosome number. Myofilaments, however, remain unaffected during aging. We demonstrated that the conserved transcription factor UNC-120/SRF regulates muscle aging biomarkers. Interestingly, the role of UNC-120/SRF in the control of muscle aging can be dissociated from its broader effect on lifespan. In daf-2/insulin/IGF1 receptor mutants, which exhibit a delayed appearance of muscle aging biomarkers and are long-lived, disruption of unc-120 accelerates muscle aging but does not suppress the lifespan phenotype of daf-2 mutant. Conversely, unc-120 overexpression delays muscle aging but does not increase lifespan. Overall, we demonstrate that UNC-120/SRF controls the pace of muscle aging in a cell-autonomous manner downstream of the insulin/IGF1 receptor.
Collapse
Affiliation(s)
- Adeline Mergoud dit Lamarche
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laurent Molin
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laura Pierson
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Marie‐Christine Mariol
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Jean‐Louis Bessereau
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
- Hospices Civils de LyonFaculté de Médecine Lyon EstLyonFrance
| | - Kathrin Gieseler
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Florence Solari
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| |
Collapse
|
29
|
Visscher M, De Henau S, Wildschut MHE, van Es RM, Dhondt I, Michels H, Kemmeren P, Nollen EA, Braeckman BP, Burgering BMT, Vos HR, Dansen TB. Proteome-wide Changes in Protein Turnover Rates in C. elegans Models of Longevity and Age-Related Disease. Cell Rep 2017; 16:3041-3051. [PMID: 27626671 DOI: 10.1016/j.celrep.2016.08.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/10/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022] Open
Abstract
The balance between protein synthesis and protein breakdown is a major determinant of protein homeostasis, and loss of protein homeostasis is one of the hallmarks of aging. Here we describe pulsed SILAC-based experiments to estimate proteome-wide turnover rates of individual proteins. We applied this method to determine protein turnover rates in Caenorhabditis elegans models of longevity and Parkinson's disease, using both developing and adult animals. Whereas protein turnover in developing, long-lived daf-2(e1370) worms is about 30% slower than in controls, the opposite was observed in day 5 adult worms, in which protein turnover in the daf-2(e1370) mutant is twice as fast as in controls. In the Parkinson's model, protein turnover is reduced proportionally over the entire proteome, suggesting that the protein homeostasis network has a strong ability to adapt. The findings shed light on the relationship between protein turnover and healthy aging.
Collapse
Affiliation(s)
- Marieke Visscher
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Mattheus H E Wildschut
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ineke Dhondt
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium
| | - Helen Michels
- European Research Institute for the Biology of Aging, University Medical Centre Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Patrick Kemmeren
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ellen A Nollen
- European Research Institute for the Biology of Aging, University Medical Centre Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
30
|
Tullet JM, Green JW, Au C, Benedetto A, Thompson MA, Clark E, Gilliat AF, Young A, Schmeisser K, Gems D. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell 2017; 16:1191-1194. [PMID: 28612944 PMCID: PMC5595692 DOI: 10.1111/acel.12627] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2017] [Indexed: 11/29/2022] Open
Abstract
In C. elegans, the skn‐1 gene encodes a transcription factor that resembles mammalian Nrf2 and activates a detoxification response. skn‐1 promotes resistance to oxidative stress (Oxr) and also increases lifespan, and it has been suggested that the former causes the latter, consistent with the theory that oxidative damage causes aging. Here, we report that effects of SKN‐1 on Oxr and longevity can be dissociated. We also establish that skn‐1 expression can be activated by the DAF‐16/FoxO transcription factor, another central regulator of growth, metabolism, and aging. Notably, skn‐1 is required for Oxr but not increased lifespan resulting from over‐expression of DAF‐16; concomitantly, DAF‐16 over‐expression rescues the short lifespan of skn‐1 mutants but not their hypersensitivity to oxidative stress. These results suggest that SKN‐1 promotes longevity by a mechanism other than protection against oxidative damage.
Collapse
Affiliation(s)
- Jennifer M.A. Tullet
- School of Biosciences; University of Kent; Canterbury Kent CT2 7NZ UK
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - James W. Green
- School of Biosciences; University of Kent; Canterbury Kent CT2 7NZ UK
| | - Catherine Au
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | | | | | - Emily Clark
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Ann F. Gilliat
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Adelaide Young
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Kathrin Schmeisser
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - David Gems
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| |
Collapse
|
31
|
Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. Nat Commun 2017; 8:306. [PMID: 28824175 PMCID: PMC5563511 DOI: 10.1038/s41467-017-00370-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) coupled to nonsense-mediated decay (AS-NMD) is a conserved mechanism for post-transcriptional gene regulation. Here we show that, during dietary restriction (DR), AS is enhanced in Caenorhabditis elegans and mice. A splicing mediator hrpu-1 regulates a significant part of these AS events in C. elegans; knocking it down suppresses DR-mediated longevity. Concurrently, due to increased AS, NMD pathway genes are upregulated and knocking down UPF1 homologue smg-2 suppresses DR lifespan. Knockdown of NMD during DR significantly increases the inclusion of PTC-containing introns and the lengths of the 3′UTRs. Finally, we demonstrate that PHA-4/FOXA transcriptionally regulates the AS-NMD genes. Our study suggests that DR uses AS to amplify the proteome, supporting physiological remodelling required for enhanced longevity. This increases the dependence on NMD, but also helps fine-tune the expression of metabolic and splicing mediators. AS-NMD may thus provide an energetically favourable level of dynamic gene expression control during dietary restriction. Alternative splicing coupled to nonsense-mediated decay (AS-NMD) is a conserved mechanism for post-transcriptional gene regulation. Here, the authors provide evidence that AS-NMD is enhanced during dietary restriction (DR) and is required for DR-mediated longevity assurance in C. elegans.
Collapse
|
32
|
Harvald EB, Sprenger RR, Dall KB, Ejsing CS, Nielsen R, Mandrup S, Murillo AB, Larance M, Gartner A, Lamond AI, Færgeman NJ. Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C. elegans. Cell Syst 2017; 5:38-52.e4. [PMID: 28734827 DOI: 10.1016/j.cels.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/03/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Starvation causes comprehensive metabolic changes, which are still not fully understood. Here, we used quantitative proteomics and RNA sequencing to examine the temporal starvation responses in wild-type Caenorhabditis elegans and animals lacking the transcription factor HLH-30. Our findings show that starvation alters the abundance of hundreds of proteins and mRNAs in a temporal manner, many of which are involved in central metabolic pathways, including lipoprotein metabolism. We demonstrate that premature death of hlh-30 animals under starvation can be prevented by knockdown of either vit-1 or vit-5, encoding two different lipoproteins. We further show that the size and number of intestinal lipid droplets under starvation are altered in hlh-30 animals, which can be rescued by knockdown of vit-1. Taken together, this indicates that survival of hlh-30 animals under starvation is closely linked to regulation of intestinal lipid stores. We provide the most detailed poly-omic analysis of starvation responses to date, which serves as a resource for further mechanistic studies of starvation.
Collapse
Affiliation(s)
- Eva Bang Harvald
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Kathrine Brændgaard Dall
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Alejandro Brenes Murillo
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Mark Larance
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
33
|
Dhondt I, Petyuk VA, Bauer S, Brewer HM, Smith RD, Depuydt G, Braeckman BP. Changes of Protein Turnover in Aging Caenorhabditis elegans. Mol Cell Proteomics 2017; 16:1621-1633. [PMID: 28679685 DOI: 10.1074/mcp.ra117.000049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
Protein turnover rates severely decline in aging organisms, including C. elegans However, limited information is available on turnover dynamics at the individual protein level during aging. We followed changes in protein turnover at one-day resolution using a multiple-pulse 15N-labeling and accurate mass spectrometry approach. Forty percent of the proteome shows gradual slowdown in turnover with age, whereas only few proteins show increased turnover. Decrease in protein turnover was consistent for only a minority of functionally related protein subsets, including tubulins and vitellogenins, whereas randomly diverging turnover patterns with age were the norm. Our data suggests increased heterogeneity of protein turnover of the translation machinery, whereas protein turnover of ubiquitin-proteasome and antioxidant systems are well-preserved over time. Hence, we presume that maintenance of quality control mechanisms is a protective strategy in aging worms, although the ultimate proteome collapse is inescapable.
Collapse
Affiliation(s)
- Ineke Dhondt
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium
| | - Vladislav A Petyuk
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sophie Bauer
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium
| | - Heather M Brewer
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Geert Depuydt
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium.,¶Laboratory for Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Bart P Braeckman
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium;
| |
Collapse
|
34
|
Gillet FX, Bournaud C, Antonino de Souza Júnior JD, Grossi-de-Sa MF. Plant-parasitic nematodes: towards understanding molecular players in stress responses. ANNALS OF BOTANY 2017; 119:775-789. [PMID: 28087659 PMCID: PMC5378187 DOI: 10.1093/aob/mcw260] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. SCOPE Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. CONCLUSION DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.
Collapse
Affiliation(s)
- François-Xavier Gillet
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | - Caroline Bournaud
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
- Catholic University of Brasilia, Brasília-DF, Brazil
| |
Collapse
|
35
|
Pu YZ, Wan QL, Ding AJ, Luo HR, Wu GS. Quantitative proteomics analysis of Caenorhabditis elegans upon germ cell loss. J Proteomics 2017; 156:85-93. [DOI: 10.1016/j.jprot.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
36
|
Abstract
There has been a recent surge of interest in computer-aided rapid data acquisition to increase the potential throughput and reduce the labour costs of large scale Caenorhabditis elegans studies. We present Automated WormScan, a low-cost, high-throughput automated system using commercial photo scanners, which is extremely easy to implement and use, capable of scoring tens of thousands of organisms per hour with minimal operator input, and is scalable. The method does not rely on software training for image recognition, but uses the generation of difference images from sequential scans to identify moving objects. This approach results in robust identification of worms with little computational demand. We demonstrate the utility of the system by conducting toxicity, growth and fecundity assays, which demonstrate the consistency of our automated system, the quality of the data relative to manual scoring methods and congruity with previously published results.
Collapse
Affiliation(s)
- Timothy Puckering
- School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia.,Plant Biosecurity Cooperative Research Centre, Canberra, ACT, 2617, Australia
| | - Jake Thompson
- School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sushruth Sathyamurthy
- School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sinduja Sukumar
- School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tirosh Shapira
- School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul Ebert
- School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia.,Plant Biosecurity Cooperative Research Centre, Canberra, ACT, 2617, Australia
| |
Collapse
|
37
|
Lobanov AV, Heaphy SM, Turanov AA, Gerashchenko MV, Pucciarelli S, Devaraj RR, Xie F, Petyuk VA, Smith RD, Klobutcher LA, Atkins JF, Miceli C, Hatfield DL, Baranov PV, Gladyshev VN. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat Struct Mol Biol 2017; 24:61-68. [PMID: 27870834 PMCID: PMC5295771 DOI: 10.1038/nsmb.3330] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/31/2016] [Indexed: 11/09/2022]
Abstract
The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3' mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a 'stop codon' is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.
Collapse
Affiliation(s)
- Alexei V. Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusets, USA
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Anton A. Turanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusets, USA
| | - Maxim V. Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusets, USA
| | - Sandra Pucciarelli
- School of Biosciences and Biotechnology, University of Camerino, Camerino, Italy
| | - Raghul R. Devaraj
- School of Biosciences and Biotechnology, University of Camerino, Camerino, Italy
| | - Fang Xie
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Richard D. Smith
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lawrence A. Klobutcher
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Cristina Miceli
- School of Biosciences and Biotechnology, University of Camerino, Camerino, Italy
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusets, USA
| |
Collapse
|
38
|
Braeckman BP, Dhondt I. Lifespan extension in Caenorhabditis elegans insulin/IGF-1 signalling mutants is supported by non-vertebrate physiological traits. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insulin/IGF-1 signalling (IIS) pathway connects nutrient levels to metabolism, growth and lifespan in eukaryotes ranging from yeasts to humans, including nematodes such as the genetic model organismCaenorhabditis elegans. The link between ageing and the IIS pathway has been thoroughly studied inC. elegans; upon reduced IIS signalling, a genetic survival program is activated resulting in a drastic lifespan extension. One of the components of this program is the upregulation of antioxidant activity but experiments failed to show a clear causal relation to longevity. However, oxidative damage, such as protein carbonyls, accumulates at a slower pace in long-livedC. elegansmutants with reduced IIS. This is probably not achieved by increased macroautophagy, a process that sequesters cellular components to be eliminated as protein turnover rates are slowed down in IIS mutants. The IIS mutantdaf-2, bearing a mutation in the insulin/IGF-1 receptor, recapitulates the dauer survival program, including accumulation of fat and glycogen. Fat can be converted into glucose and glycogenviathe glyoxylate shunt, a pathway absent in vertebrates. These carbohydrates can be used as substrates for trehalose synthesis, also absent in mammals. Trehalose, a non-reducing homodimer of glucose, stabilises intracellular components and is responsible for almost half of the lifespan extension in IIS mutants. Hence, the molecular mechanisms by which lifespan is extended under reduced IIS may differ substantially between phyla that have an active glyoxylate cycle and trehalose synthesis, such as ecdysozoans and fungi, and vertebrate species such as mammals.
Collapse
Affiliation(s)
- Bart P. Braeckman
- Biology Department, Ghent University, Proeftuinstraat 86 N1, Ghent, Belgium
| | - Ineke Dhondt
- Biology Department, Ghent University, Proeftuinstraat 86 N1, Ghent, Belgium
| |
Collapse
|
39
|
Leiser SF, Jafari G, Primitivo M, Sutphin GL, Dong J, Leonard A, Fletcher M, Kaeberlein M. Age-associated vulval integrity is an important marker of nematode healthspan. AGE (DORDRECHT, NETHERLANDS) 2016; 38:419-431. [PMID: 27566309 PMCID: PMC5266215 DOI: 10.1007/s11357-016-9936-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Improving healthspan, defined as the period where organisms live without frailty and/or disease, is a major goal of biomedical research. While healthspan measures in people are relatively easy to identify, developing robust markers of healthspan in model organisms has proven challenging. Studies using the nematode Caenorhabditis elegans have provided vital information on the basic mechanisms of aging; however, worm health is difficult to define, and the impact of interventions that increase lifespan on worm healthspan has been controversial. Here, we describe a marker of population healthspan in C. elegans that we term age-associated vulval integrity defects, or Avid, frequently described elsewhere as rupture or exploding. We connect the presence of this phenotype with temperature, reproduction, diet, and longevity. Our results show that Avid occurs in post-reproductive worms under common laboratory conditions at a frequency that correlates negatively with temperature; Avid is rare in worms kept at 25 °C and more frequent in worms kept at 15 °C. We describe the kinetics of Avid, link the phenotype to oocyte production, and describe how Avid involves the ejection of worm proteins and/or internal organ(s) from the vulva. Finally, we find that Avid is preventable by removing worms from food, suggesting that Avid results from the intake, digestion, and/or absorption of food. Our results show that Avid is a significant cause of death in worm populations maintained under laboratory conditions and that its prevention often correlates with worm longevity. We propose that Avid is a powerful marker of worm healthspan whose underlying molecular mechanisms may be conserved.
Collapse
Affiliation(s)
- Scott F Leiser
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.
| | - Gholamali Jafari
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Primitivo
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - George L Sutphin
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jingyi Dong
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alison Leonard
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Marissa Fletcher
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
40
|
Howard AC, Rollins J, Snow S, Castor S, Rogers AN. Reducing translation through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock factor HSF-1 in Caenorhabditis elegans. Aging Cell 2016; 15:1027-1038. [PMID: 27538368 PMCID: PMC5114698 DOI: 10.1111/acel.12516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Although certain methods of lowering and/or altering mRNA translation are associated with increased lifespan, the mechanisms underlying this effect remain largely unknown. We previously showed that the increased lifespan conferred by reducing expression of eukaryotic translation initiation factor 4G (eIF4G/IFG‐1) enhances survival under starvation conditions while shifting protein expression toward factors involved with maintaining ER‐dependent protein and lipid balance. In this study, we investigated changes in ER homeostasis and found that lower eIF4G/IFG‐1 increased survival under conditions of ER stress. Enhanced survival required the ER stress sensor gene ire‐1 and the ER calcium ATPase gene sca‐1 and corresponded with increased translation of chaperones that mediate the ER unfolded protein response (UPRER). Surprisingly, the heat‐shock transcription factor gene hsf‐1 was also required for enhanced survival, despite having little or no influence on the ability of wild‐type animals to survive ER stress. The requirement for hsf‐1 led us to re‐evaluate the role of eIF4G/IFG‐1 on thermotolerance. Results show that lowering expression of this translation factor enhanced thermotolerance, but only after prolonged attenuation, the timing of which corresponded to increased transcription of heat‐shock factor transcriptional targets. Results indicate that restricting overall translation through eIF4G/IFG‐1 enhances ER and cytoplasmic proteostasis through a mechanism that relies heavily on hsf‐1.
Collapse
Affiliation(s)
- Amber C. Howard
- MDI Biological Laboratory Davis Center for Regenerative Biology and Medicine 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| | - Jarod Rollins
- MDI Biological Laboratory Davis Center for Regenerative Biology and Medicine 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| | - Santina Snow
- MDI Biological Laboratory Davis Center for Regenerative Biology and Medicine 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| | - Sarah Castor
- The Jackson Laboratory 600 Main Street Bar Harbor ME 04609 USA
| | - Aric N. Rogers
- MDI Biological Laboratory Davis Center for Regenerative Biology and Medicine 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| |
Collapse
|
41
|
Dhondt I, Petyuk VA, Cai H, Vandemeulebroucke L, Vierstraete A, Smith RD, Depuydt G, Braeckman BP. FOXO/DAF-16 Activation Slows Down Turnover of the Majority of Proteins in C. elegans. Cell Rep 2016; 16:3028-3040. [PMID: 27626670 PMCID: PMC5434875 DOI: 10.1016/j.celrep.2016.07.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/08/2016] [Accepted: 07/01/2016] [Indexed: 02/03/2023] Open
Abstract
Most aging hypotheses assume the accumulation of damage, resulting in gradual physiological decline and, ultimately, death. Avoiding protein damage accumulation by enhanced turnover should slow down the aging process and extend the lifespan. However, lowering translational efficiency extends rather than shortens the lifespan in C. elegans. We studied turnover of individual proteins in the long-lived daf-2 mutant by combining SILeNCe (stable isotope labeling by nitrogen in Caenorhabditiselegans) and mass spectrometry. Intriguingly, the majority of proteins displayed prolonged half-lives in daf-2, whereas others remained unchanged, signifying that longevity is not supported by high protein turnover. This slowdown was most prominent for translation-related and mitochondrial proteins. In contrast, the high turnover of lysosomal hydrolases and very low turnover of cytoskeletal proteins remained largely unchanged. The slowdown of protein dynamics and decreased abundance of the translational machinery may point to the importance of anabolic attenuation in lifespan extension, as suggested by the hyperfunction theory.
Collapse
Affiliation(s)
- Ineke Dhondt
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Huaihan Cai
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium
| | - Andy Vierstraete
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Geert Depuydt
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium; Laboratory for Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium.
| |
Collapse
|
42
|
Bar DZ, Charar C, Dorfman J, Yadid T, Tafforeau L, Lafontaine DLJ, Gruenbaum Y. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor. Proc Natl Acad Sci U S A 2016; 113:E4620-9. [PMID: 27457958 PMCID: PMC4987808 DOI: 10.1073/pnas.1512156113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dietary restriction (DR) is a metabolic intervention that extends the lifespan of multiple species, including yeast, flies, nematodes, rodents, and, arguably, rhesus monkeys and humans. Hallmarks of lifelong DR are reductions in body size, fecundity, and fat accumulation, as well as slower development. We have identified atx-2, the Caenorhabditis elegans homolog of the human ATXN2L and ATXN2 genes, as the regulator of these multiple DR phenotypes. Down-regulation of atx-2 increases the body size, cell size, and fat content of dietary-restricted animals and speeds animal development, whereas overexpression of atx-2 is sufficient to reduce the body size and brood size of wild-type animals. atx-2 regulates the mechanistic target of rapamycin (mTOR) pathway, downstream of AMP-activated protein kinase (AMPK) and upstream of ribosomal protein S6 kinase and mTOR complex 1 (TORC1), by its direct association with Rab GDP dissociation inhibitor β, which likely regulates RHEB shuttling between GDP-bound and GTP-bound forms. Taken together, this work identifies a previously unknown mechanism regulating multiple aspects of DR, as well as unknown regulators of the mTOR pathway. They also extend our understanding of diet-dependent growth retardation, and offers a potential mechanism to treat obesity.
Collapse
Affiliation(s)
- Daniel Z Bar
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Chayki Charar
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Jehudith Dorfman
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Tam Yadid
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Lionel Tafforeau
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies B-6041, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies B-6041, Belgium
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
43
|
Martell J, Seo Y, Bak DW, Kingsley SF, Tissenbaum HA, Weerapana E. Global Cysteine-Reactivity Profiling during Impaired Insulin/IGF-1 Signaling in C. elegans Identifies Uncharacterized Mediators of Longevity. Cell Chem Biol 2016; 23:955-66. [PMID: 27499530 DOI: 10.1016/j.chembiol.2016.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
In the nematode Caenorhabditis elegans, inactivating mutations in the insulin/IGF-1 receptor, DAF-2, result in a 2-fold increase in lifespan mediated by DAF-16, a FOXO-family transcription factor. Downstream protein activities that directly regulate longevity during impaired insulin/IGF-1 signaling (IIS) are poorly characterized. Here, we use global cysteine-reactivity profiling to identify protein activity changes during impaired IIS. Upon confirming that cysteine reactivity is a good predictor of functionality in C. elegans, we profiled cysteine-reactivity changes between daf-2 and daf-16;daf-2 mutants, and identified 40 proteins that display a >2-fold change. Subsequent RNAi-mediated knockdown studies revealed that lbp-3 and K02D7.1 knockdown caused significant increases in lifespan and dauer formation. The proteins encoded by these two genes, LBP-3 and K02D7.1, are implicated in intracellular fatty acid transport and purine metabolism, respectively. These studies demonstrate that cysteine-reactivity profiling can be complementary to abundance-based transcriptomic and proteomic studies, serving to identify uncharacterized mediators of C. elegans longevity.
Collapse
Affiliation(s)
- Julianne Martell
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Yonghak Seo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Samuel F Kingsley
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
44
|
Deep Proteome Analysis Identifies Age-Related Processes in C. elegans. Cell Syst 2016; 3:144-159. [PMID: 27453442 PMCID: PMC5003814 DOI: 10.1016/j.cels.2016.06.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022]
Abstract
Effective network analysis of protein data requires high-quality proteomic datasets. Here, we report a near doubling in coverage of the C. elegans adult proteome, identifying >11,000 proteins in total with ∼9,400 proteins reproducibly detected in three biological replicates. Using quantitative mass spectrometry, we identify proteins whose abundances vary with age, revealing a concerted downregulation of proteins involved in specific metabolic pathways and upregulation of cellular stress responses with advancing age. Among these are ∼30 peroxisomal proteins, including the PRX-5/PEX5 import protein. Functional experiments confirm that protein import into the peroxisome is compromised in vivo in old animals. We also studied the behavior of the set of age-variant proteins in chronologically age-matched, long-lived daf-2 insulin/IGF-1-pathway mutants. Unexpectedly, the levels of many of these age-variant proteins did not scale with extended lifespan. This indicates that, despite their youthful appearance and extended lifespans, not all aspects of aging are reset in these long-lived mutants. Near doubling in C. elegans proteome coverage with age-dependent protein measurements Putative sub-cellular localization assignments for >6,000 nematode proteins Peroxisome protein import impaired during aging Most age-variant proteins do not scale with biological age in insulin/IGF-1 mutants
Collapse
|
45
|
Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med 2016; 21:1406-15. [PMID: 26646497 DOI: 10.1038/nm.4001] [Citation(s) in RCA: 558] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Accumulation of intracellular damage is an almost universal hallmark of aging. An improved understanding of the systems that contribute to cellular protein quality control has shed light on the reasons for the increased vulnerability of the proteome to stress in aging cells. Maintenance of protein homeostasis, or proteostasis, is attained through precisely coordinated systems that rapidly correct unwanted proteomic changes. Here we focus on recent developments that highlight the multidimensional nature of the proteostasis networks, which allow for coordinated protein homeostasis intracellularly, in between cells and even across organs, as well as on how they affect common age-associated diseases when they malfunction in aging.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, New York, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
46
|
Depuydt G, Shanmugam N, Rasulova M, Dhondt I, Braeckman BP. Increased Protein Stability and Decreased Protein Turnover in the Caenorhabditis elegans Ins/IGF-1 daf-2 Mutant. J Gerontol A Biol Sci Med Sci 2016; 71:1553-1559. [PMID: 26865495 PMCID: PMC5106850 DOI: 10.1093/gerona/glv221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023] Open
Abstract
In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. However, such a mechanism would exert a substantial energy cost. By using classical 35S pulse-chase labeling, we observed that protein synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates and instead stabilize their proteome by trehalose.
Collapse
Affiliation(s)
- Geert Depuydt
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium.,Laboratory for Functional Genomics and Proteomics, Department of Biology, KU Leuven, Belgium
| | - Nilesh Shanmugam
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium
| | - Madina Rasulova
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium
| | - Ineke Dhondt
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium.
| |
Collapse
|
47
|
DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans. PLoS Genet 2016; 12:e1005788. [PMID: 26862916 PMCID: PMC4749232 DOI: 10.1371/journal.pgen.1005788] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. The balance between production and breakdown of fats is critical for health, especially during reproduction-related changes such as onset of puberty or menopause. However, little is known about how animals retain a balanced metabolism when undergoing major life events. Here, we have used a C. elegans mutant that successfully adapts to loss of reproductive cells to address this question. Our data suggest that the conserved proteins DAF-16/FOXO3A and TCER-1/TCERG1 mediate a coordinated increase in fat synthesis and degradation when the reproductive cells are lost. This coupling likely helps the animal to manage the lipids that would have been deposited in eggs as yolk, thus preventing metabolic disarray. These proteins also inhibit processes that would have normally supported reproduction. Together the activities of these transcription regulators allow the mutant to convert a debilitating loss of fertility into improved health and longevity. We also report that TCER-1 promotes reproductive health in normal adults, whereas when procreation is impeded, it switches roles to repress fertility and enhance lipid equilibrium. These observations offer insights into how complex organisms coordinate their metabolism to suit their reproductive needs.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Dietary interventions are effective strategies for preventing disease and promoting health span. Many of the effects of dietary restriction are linked to amino acid and protein levels and their regulation of nutrient-signaling pathways. Thus, protein restriction is a promising therapeutic strategy for preventing aging-related diseases and extending life span. RECENT FINDINGS Studies in yeast and flies have shown that amino acid restriction promotes longevity and protection. In rodents, protein restriction extends life span and alleviates detrimental aging phenotypes. Finally, clinical trials in middle-aged adults have demonstrated the role of a protein-restricted diet in promoting health span. Interestingly, the population over the age of 65 may not benefit from severe protein restriction potentially because of the increased physiological decline that leads to decreased amino acid absorption and altered protein synthesis. SUMMARY Protein restriction can have profound effects on health and longevity, but excessive restriction is detrimental, particularly in the very old. The investigation of the mechanisms that modulate nutrient-sensing pathways is important to understand how regulation of protein intake can optimize health span and longevity.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Rachel Raynes
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D. Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy
- Correspondence:
| |
Collapse
|
49
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
50
|
Husson SJ, Moyson S, Valkenborg D, Baggerman G, Mertens I. Proteomics applications in Caenorhabditis elegans research. Biochem Biophys Res Commun 2015; 468:519-24. [DOI: 10.1016/j.bbrc.2015.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
|