1
|
Quintana-Hayashi MP, Thomsson Hulthe KA, Lindén SK. In vitro fish mucosal surfaces producing mucin as a model for studying host-pathogen interactions. PLoS One 2024; 19:e0308609. [PMID: 39121037 PMCID: PMC11315345 DOI: 10.1371/journal.pone.0308609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/27/2024] [Indexed: 08/11/2024] Open
Abstract
Current prophylactic and disease control measures in aquaculture highlight the need of alternative strategies to prevent disease and reduce antibiotic use. Mucus covered mucosal surfaces are the first barriers pathogens encounter. Mucus, which is mainly composed of highly glycosylated mucins, has the potential to contribute to disease prevention if we can strengthen this barrier. Therefore, aim of this study was to develop and characterize fish in vitro mucosal surface models based on commercially available cell lines that are functionally relevant for studies on mucin regulation and host-pathogen interactions. The rainbow trout (Oncorhynchus mykiss) gill epithelial cell line RTgill-W1 and the embryonic cell line from Chinook salmon (Oncorhynchus tshawytscha) CHSE-214 were grown on polycarbonate membrane inserts and chemically treated to differentiate the cells into mucus producing cells. RTGill-W1 and CHSE-214 formed an adherent layer at two weeks post-confluence, which further responded to treatment with the γ-secretase inhibitor DAPT and prolonged culture by increasing the mucin production. Mucins were metabolically labelled with N-azidoacetylgalactosamine 6 h post addition to the in vitro membranes. The level of incorporated label was relatively similar between membranes based on RTgill-W1, while larger interindividual variation was observed among the CHSE in vitro membranes. Furthermore, O-glycomics of RTgill-W1 cell lysates identified three sialylated O-glycans, namely Galβ1-3(NeuAcα2-6)GalNAcol, NeuAcα-Galβ1-3GalNAcol and NeuAcα-Galβ1-3(NeuAcα2-6)GalNAcol, resembling the glycosylation present in rainbow trout gill mucin. These glycans were also present in CHSE-214. Additionally, we demonstrated binding of the fish pathogen A. salmonicida to RTgill-W1 and CHSE-214 cell lysates. Thus, these models have similarities to in vivo mucosal surfaces and can be used to investigate the effect of pathogens and modulatory components on mucin production.
Collapse
Affiliation(s)
- Macarena P. Quintana-Hayashi
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A. Thomsson Hulthe
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Ai J, Li J, Chang AK, Pei Y, Li H, Liu K, Li R, Xu L, Wang N, Liu Y, Su W, Liu W, Wang T, Jiang Z, Chen L, Liang X. Toxicokinetics and bioavailability of indoxacarb enantiomers and their new metabolites in rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106024. [PMID: 39084783 DOI: 10.1016/j.pestbp.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Indoxacarb is a chiral insecticide that consists of two enantiomers, S-(+)-indoxacarb and R-(-)-indoxacarb, of which only S-(+)-indoxacarb has insecticidal activity. Previous enantioselective toxicology studies of indoxacarb focused mostly on simple environmental model organisms. The lack of a toxicology evaluation of indoxacarb conducted in a mammalian system could mean that the extent of the potential health risk posed by the insecticide to humans is not adequately known. In this study, we reported on a new pair of enantiomers, S-IN-RM294 and R-IN-RM294, derived from the metabolic breakdown of S-(+)-indoxacarb and R-(-)-indoxacarb, respectively, in rats. The toxicokinetics of S-(+)-indoxacarb, R-(-)-indoxacarb, S-IN-RM294, and R-IN-RM294 in rats were evaluated to provide a more comprehensive risk assessment of these molecules. The bioavailability and excretion rates of both S-(+)-indoxacarb and R-(-)-indoxacarb were relatively low, which may be due to their faster metabolism and accumulation in the tissues. In addition, there were significant differences in the metabolism and distribution between the two indoxacarb enantiomers and their metabolites in vivo. S-(+)-Indoxacarb was found to be more easily metabolized in the blood compared with R-(-)-indoxacarb, as shown by the differences in pharmacokinetic parameters between oral and intravenous administration. Analysis of their tissue distribution showed that S-(+)-indoxacarb was less likely to accumulate in most tissues. The results obtained for the two metabolites were consistent with those of the two parent compounds. S-IN-RM294 was more readily cleared from the blood and less likely to accumulate in the tissues compared with R-IN-RM294. Therefore, whether from the perspective of insecticidal activity or from the perspective of mammalian and environmental friendliness, the application of optically pure S-(+)-indoxacarb in agriculture may be a more efficient and safer strategy.
Collapse
Affiliation(s)
- Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Nan Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Yuhui Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Weiping Su
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning Province, PR China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
3
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Sun L, Konstantinidi A, Ye Z, Nason R, Zhang Y, Büll C, Kahl-Knutson B, Hansen L, Leffler H, Vakhrushev SY, Yang Z, Clausen H, Narimatsu Y. Installation of O-glycan sulfation capacities in human HEK293 cells for display of sulfated mucins. J Biol Chem 2021; 298:101382. [PMID: 34954141 PMCID: PMC8789585 DOI: 10.1016/j.jbc.2021.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as selectins, galectins, and sialic acid–binding immunoglobulin-like lectins are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human embryonic kidney 293 (HEK293) cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knockin of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galβ1–3GalNAcα1–O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3-O-sulfotransferase 2 in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3-O-sulfotransferase 4 resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step toward expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.
Collapse
Affiliation(s)
- Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Medical College of Yan'an University, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yuecheng Zhang
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Jan Waldenströms gata 25, 205 06 Malmö, Sweden
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Barbro Kahl-Knutson
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
5
|
Thomsson KA, Vitiazeva V, Mateoiu C, Jin C, Liu J, Holgersson J, Weijdegård B, Sundfeldt K, Karlsson NG. Sulfation of O-glycans on Mucin-type Proteins From Serous Ovarian Epithelial Tumors. Mol Cell Proteomics 2021; 20:100150. [PMID: 34555499 PMCID: PMC8527052 DOI: 10.1016/j.mcpro.2021.100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
Despite sulfated O-linked glycans being abundant on ovarian cancer (OC) glycoproteins, their regulation during cancer development and involvement in cancer pathogenesis remain unexplored. We characterized O-glycans carrying sulfation on galactose residues and compared their expression with defined sulfotransferases regulated during OC development. Desialylated sulfated oligosaccharides were released from acidic glycoproteins in the cyst fluid from one patient with a benign serous cyst and one patient with serous OC. Oligosaccharides characterized by LC-MSn were identified as core 1 and core 2 O-glycans up to the size of decamers and with 1 to 4 sulfates linked to GlcNAc residues and to C-3 and/or C-6 of Gal. To study the specificity of the potential ovarian sulfotransferases involved, Gal3ST2 (Gal-3S)-, Gal3ST4 (Gal-3S)-, and CHST1 (Gal-6S)-encoding expression plasmids were transfected individually into CHO cells also expressing the P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b (PSGL-1/mIg G2b) fusion protein and the human core 2 transferase (GCNT1). Characterization of the PSGL-1/mIg G2b O-glycans showed that Gal3ST2 preferentially sulfated Gal on the C-6 branch of core 2 structures and Gal3ST4 preferred Gal on the C-3 branch independently if core-1 or -2. CHST1 sulfated Gal residues on both the C-3 (core 1/2) and C-6 branches of core 2 structures. Using serous ovarian tissue micro array, Gal3ST2 was found to be decreased in tissue classified as malignant compared with tissues classified as benign or borderline, with the lowest expression in poorly differentiated malignant tissue. Neither Gal3ST4 nor CHST1 was differentially expressed in benign, borderline, or malignant tissue, and there was no correlation between expression level and differentiation stage. The data displays a complex sulfation pattern of O-glycans on OC glycoproteins and that aggressiveness of the cancer is associated with a decreased expression of the Gal3ST2 transferase. Ovarian cancer tissue contains highly sulfated O-glycoproteins. Sulfation occurs on GlcNAc (6-position) and Gal (3- and 6-position). Sulfation of Gal can be mimicked recombinantly with selected sulfotransferase. The Gal3ST2 sulfotransferase level is lower in malignant cancer compared with benign.
Collapse
Affiliation(s)
- Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Varvara Vitiazeva
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Constantina Mateoiu
- Department of Clinical Pathology, Sahlgrenska University Hostpital, Gotenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jining Liu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Holgersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Weijdegård
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
6
|
Li Y, Li Y, Xia J, Yang Q, Chen Y, Sun H. 3'-Sulfo-TF Antigen Determined by GAL3ST2/ST3GAL1 Is Essential for Antitumor Activity of Fungal Galectin AAL/AAGL. ACS OMEGA 2021; 6:17379-17390. [PMID: 34278124 PMCID: PMC8280635 DOI: 10.1021/acsomega.1c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Many lectins have been reported to have antitumor activities; identifying the glycan ligands in tumor cells of lectins is crucial for lectin clinical application. An edible mushroom galectin, Agrocybe aegerita lectin (AAL/AAGL), that has a high antitumor activity has been reported. In this paper, based on the glycan array data, it is showed that the Thomsen-Friedenreich antigen (TF antigen)-related O-glycans were found to be highly correlated with the antitumor activity of AAL/AAGL. Further glycosyltransferase quantification suggested that the ratio between GAL3ST2 and ST3GAL1 (GAL3ST2/ST3GAL1), which determined the 3'-sulfo-TF expression level, was highly correlated with the antitumor activity of AAL/AAGL. Overexpressing the enzyme of GAL3ST2 in HL60 and HeLa cell lines could increase the growth inhibition ratio of AAL/AAGL from 22.7 to 43.9% and 27.8 to 39.1%, respectively. However, ST3GAL1 in Jurkat cells could decrease the growth inhibition ratio from 44.7 to 35.6%. All the data suggested that the 3'-sulfo-TF antigen is one of the main glycan ligands that AAL/AAGL recognizes in tumor cells. AAL/AAGL may potentially serve as a reagent for cancer diagnosis and a targeted therapy for the 3'-sulfo-TF antigen.
Collapse
Affiliation(s)
- Yang Li
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Yan Li
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Jing Xia
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Qing Yang
- College
of Food Science and Engineering, Wuhan Polytechnic
University, Wuhan, Hubei Province 430023, P. R. China
| | - Yijie Chen
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Hui Sun
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
- Hubei
Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei Province 430072, P. R. China
| |
Collapse
|
7
|
Flowers SA, Thomsson KA, Ali L, Huang S, Mthembu Y, Regmi SC, Holgersson J, Schmidt TA, Rolfson O, Björkman LI, Sundqvist M, Karlsson-Bengtsson A, Jay GD, Eisler T, Krawetz R, Karlsson NG. Decrease of core 2 O-glycans on synovial lubricin in osteoarthritis reduces galectin-3 mediated crosslinking. J Biol Chem 2020; 295:16023-16036. [PMID: 32928962 DOI: 10.1074/jbc.ra120.012882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
The synovial fluid glycoprotein lubricin (also known as proteoglycan 4) is a mucin-type O-linked glycosylated biological lubricant implicated to be involved in osteoarthritis (OA) development. Lubricin's ability to reduce friction is related to its glycosylation consisting of sialylated and unsialylated Tn-antigens and core 1 and core 2 structures. The glycans on lubricin have also been suggested to be involved in crosslinking and stabilization of the lubricating superficial layer of cartilage by mediating interaction between lubricin and galectin-3. However, with the spectrum of glycans being found on lubricin, the glycan candidates involved in this interaction were unknown. Here, we confirm that the core 2 O-linked glycans mediate this lubricin-galectin-3 interaction, shown by surface plasmon resonance data indicating that recombinant lubricin (rhPRG4) devoid of core 2 structures did not bind to recombinant galectin-3. Conversely, transfection of Chinese hamster ovary cells with the core 2 GlcNAc transferase acting on a mucin-type O-glycoprotein displayed increased galectin-3 binding. Both the level of galectin-3 and the galectin-3 interactions with synovial lubricin were found to be decreased in late-stage OA patients, coinciding with an increase in unsialylated core 1 O-glycans (T-antigens) and Tn-antigens. These data suggest a defect in crosslinking of surface-active molecules in OA and provide novel insights into OA molecular pathology.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Liaqat Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shan Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yolanda Mthembu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suresh C Regmi
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jan Holgersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena I Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Chalmers University of Technology, Gothenburg, Sweden
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School and Division of Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Thomas Eisler
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Lane CS, McManus K, Widdowson P, Flowers SA, Powell G, Anderson I, Campbell JL. Separation of Sialylated Glycan Isomers by Differential Mobility Spectrometry. Anal Chem 2019; 91:9916-9924. [PMID: 31283185 PMCID: PMC6686149 DOI: 10.1021/acs.analchem.9b01595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/18/2019] [Indexed: 12/28/2022]
Abstract
Mass spectrometry has proven itself to be an important technology for characterizing intact glycoproteins, glycopeptides, and released glycans. However, these molecules often present significant challenges during analysis. For example, glycans of identical molecular weights can be present in many isomeric forms, with one form having dramatically more biological activity than the others. Discriminating among these isomeric forms using mass spectrometry alone can be daunting, which is why orthogonal techniques, such as ion mobility spectrometry, have been explored. Here, we demonstrate the use of differential mobility spectrometry (DMS) to separate isomeric glycans differing only in the linkages of sialic acid groups (e.g., α 2,3 versus α 2,6). This ability extends from a small trisaccharide species to larger biantennary systems and is driven, in part, by the role of intramolecular solvation of the charge site(s) on these ions within the DMS environment.
Collapse
Affiliation(s)
- Catherine S. Lane
- SCIEX, Phoenix House, Centre Park, Warrington WA1 1RX, United Kingdom
| | - Kirsty McManus
- Allergan
Biologics Limited, 12 Estuary Banks, Speke, Liverpool L24 8RB, United Kingdom
| | - Philip Widdowson
- Allergan
Biologics Limited, 12 Estuary Banks, Speke, Liverpool L24 8RB, United Kingdom
| | | | - Gerard Powell
- Allergan
Biologics Limited, 12 Estuary Banks, Speke, Liverpool L24 8RB, United Kingdom
| | - Ian Anderson
- Allergan
Biologics Limited, 12 Estuary Banks, Speke, Liverpool L24 8RB, United Kingdom
| | | |
Collapse
|
9
|
Flowers SA, Lane CS, Karlsson NG. Deciphering Isomers with a Multiple Reaction Monitoring Method for the Complete Detectable O-Glycan Repertoire of the Candidate Therapeutic, Lubricin. Anal Chem 2019; 91:9819-9827. [PMID: 31246420 DOI: 10.1021/acs.analchem.9b01485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylation is a fundamental post-translational modification, occurring on half of all proteins. Despite its significance, our understanding is limited, in part due to the inherent difficulty in studying these branched, multi-isomer structures. Accessible, detailed, and quantifiable methods for studying glycans, particularly O-glycans, are needed. Here we take a multiple reaction monitoring (MRM) approach to differentiate and relatively quantify all detectable glycans, including isomers, on the heavily O-glycosylated protein lubricin. Lubricin (proteoglycan 4) is essential for lubrication of the joint and eye. Given the therapeutic potential of lubricin, it is essential to understand its O-glycan repertoire in biological and recombinantly produced samples. O-Glycans were released by reductive β-elimination and defined, showing a range of 26 neutral, sulfated, sialylated, and both sulfated and sialylated core 1 (Galβ1-3GalNAcα1-) and core 2 (Galβ1-3(GlcNAcβ1-6)GalNAcα1-) structures. Isomer-specific MRM transitions allowed effective differentiation of neutral glycan isomers as well as sulfated isomeric structures, where the sulfate was retained on the fragment ions. This strategy was not as effective with labile sialylated structures; instead, it was observed that the optimal collision energy for the m/z 290.1 sialic acid B-fragment differed consistently between sialic acid isomers, allowing differentiation between isomers when fragmentation spectra were insufficient. This approach was also effective for purchased Neu5Acα2-3Galβ1-4Glc and Neu5Acα2-6Galβ1-4Glc and for Neu5Acα2-3Galβ1-4GlcNAc and Neu5Acα2-6Galβ1-4GlcNAc linkage isomers with the Neu5Acα2-6 consistently requiring more energy for optimal generation of the m/z 290.1 fragment. Overall, this method provides an effective and easily accessible approach for the quantification and annotation of complex released O-glycan samples.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Medicinaregatan 9A , 40530 Gothenburg , Sweden.,Department of Neuroscience , Georgetown University , 3970 Reservoir Road NW, New Research Building EP20 , Washington, D.C. , United States
| | - Catherine S Lane
- SCIEX , Phoenix House, Lakeside Drive, Centre Park , Warrington WA1 1RX , United Kingdom
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Medicinaregatan 9A , 40530 Gothenburg , Sweden
| |
Collapse
|
10
|
Issa SMA, Vitiazeva V, Hayes CA, Karlsson NG. Higher Energy Collisional Dissociation Mass Spectrometry of Sulfated O-Linked Oligosaccharides. J Proteome Res 2018; 17:3259-3267. [DOI: 10.1021/acs.jproteome.8b00376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samah M. A. Issa
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Varvara Vitiazeva
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Catherine A. Hayes
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| |
Collapse
|
11
|
Ma R, Peng X, Xu Y, Duan DY. [Advances in salivary protein glycosylation and its relationship with systemic and oral diseases]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:336-341. [PMID: 29984939 DOI: 10.7518/hxkq.2018.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein glycosylation is one of the most important protein post-translational modifications that can affect life activities by endowing the protein with various structural and functional features. Saliva is an easy-to-obtain, noninvasive body fluid that contains components originating from serum, gingival crevicular fluid, and oropharyngeal mucosae. In recent years, understanding of saliva has been constantly updated with the developments in related research. Studies have shown that salivary proteins can be used as diagnostic markers for certain diseases, and changes of protein glycosylation in saliva are generally considered to be related to many diseases. In this review, salivary protein glycosylation and its relationship with systemic and oral diseases were discussed.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding-Yu Duan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Isomeric Separation and Characterisation of Glycoconjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:77-99. [DOI: 10.1007/978-981-13-2158-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Lourido L, Blanco FJ, Ruiz-Romero C. Defining the proteomic landscape of rheumatoid arthritis: progress and prospective clinical applications. Expert Rev Proteomics 2017; 14:431-444. [PMID: 28425787 DOI: 10.1080/14789450.2017.1321481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The heterogeneity of Rheumatoid Arthritis (RA) and the absence of clinical tests accurate enough to identify the early stages of this disease have hampered its management. Therefore, proteomics research is increasingly focused on the discovery of novel biological markers, which would not only be able make an early diagnosis, but also to gain insight into the different pathological mechanisms underlying the heterogeneity of RA and also to stratify patients, which is critical to enabling effective treatments. Areas covered: The proteomic approaches that have been utilised to provide knowledge about RA pathogenesis, and to identify biomarkers for RA diagnosis, prognosis, disease monitoring and prediction of response to therapy, are summarized. Expert commentary: Although each proteomic study is unique in its design, all of them have contributed to the understanding of RA pathogenesis and the discovery of promising biomarkers for patient stratification, which would improve clinical care of RA patients. Still, efforts need to be made to validate these findings and translate them into clinical practice.
Collapse
Affiliation(s)
- Lucía Lourido
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,b RIER-RED de Inflamación y Enfermedades Reumáticas , INIBIC-CHUAC , A Coruña , Spain
| | - Francisco J Blanco
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,b RIER-RED de Inflamación y Enfermedades Reumáticas , INIBIC-CHUAC , A Coruña , Spain
| | - Cristina Ruiz-Romero
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,c CIBER-BBN Instituto de Salud Carlos III , INIBIC-CHUAC , A Coruña , Spain
| |
Collapse
|
14
|
Karlsson NG, Jin C, Rojas-Macias MA, Adamczyk B. Next Generation O-Linked Glycomics. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1602.1e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | - Miguel A. Rojas-Macias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | - Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| |
Collapse
|
15
|
Csősz É, Kalló G, Márkus B, Deák E, Csutak A, Tőzsér J. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness. J Proteomics 2016; 153:30-43. [PMID: 27542507 DOI: 10.1016/j.jprot.2016.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 01/07/2023]
Abstract
Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. SIGNIFICANCE Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases.
Collapse
Affiliation(s)
- Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Bernadett Márkus
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Eszter Deák
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary; Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary.
| |
Collapse
|
16
|
Manconi B, Cabras T, Sanna M, Piras V, Liori B, Pisano E, Iavarone F, Vincenzoni F, Cordaro M, Faa G, Castagnola M, Messana I. N- and O-linked glycosylation site profiling of the human basic salivary proline-rich protein 3M. J Sep Sci 2016; 39:1987-97. [DOI: 10.1002/jssc.201501306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Monica Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Valentina Piras
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Barbara Liori
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Elisabetta Pisano
- Dipartimento di Scienze Chirurgiche; Università di Cagliari; Cagliari Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica; Università Cattolica; Roma Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica; Università Cattolica; Roma Italy
| | - Massimo Cordaro
- Istituto di Clinica Odontostomatologica, Facoltà di Medicina; Università Cattolica; Roma Italy
| | - Gavino Faa
- Dipartimento di Scienze Chirurgiche; Università di Cagliari; Cagliari Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica; Università Cattolica; Roma Italy
- Istituto di Chimica del Riconoscimento Molecolare - CNR; Roma Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare - CNR; Roma Italy
| |
Collapse
|
17
|
Virus ED, Ivanov AV, Luzyanin BP, Kubatiev AA. Some aspects of experimental design in targeted proteomics based on the use of selected reaction monitoring and isotope-labeled peptides. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815130109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Yu J, Schorlemer M, Gomez Toledo A, Pett C, Sihlbom C, Larson G, Westerlind U, Nilsson J. Distinctive MS/MS Fragmentation Pathways of Glycopeptide-Generated Oxonium Ions Provide Evidence of the Glycan Structure. Chemistry 2015; 22:1114-24. [DOI: 10.1002/chem.201503659] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Jin Yu
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences; 44227 Dortmund Germany
| | - Manuel Schorlemer
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences; 44227 Dortmund Germany
| | - Alejandro Gomez Toledo
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; University of Gothenburg; 40530 Gothenburg Sweden
| | - Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences; 44227 Dortmund Germany
| | - Carina Sihlbom
- Proteomics Core Facility; University of Gothenburg; 40530 Gothenburg Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; University of Gothenburg; 40530 Gothenburg Sweden
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences; 44227 Dortmund Germany
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; University of Gothenburg; 40530 Gothenburg Sweden
| |
Collapse
|
19
|
Chaudhury NMA, Proctor GB, Karlsson NG, Carpenter GH, Flowers SA. Reduced Mucin-7 (Muc7) Sialylation and Altered Saliva Rheology in Sjögren's Syndrome Associated Oral Dryness. Mol Cell Proteomics 2015; 15:1048-59. [PMID: 26631508 DOI: 10.1074/mcp.m115.052993] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Sjögren's syndrome is a chronic autoimmune disorder characterized by lymphocytic infiltration and hypofunction of salivary and lacrimal glands. This loss of salivary function leads to oral dryness, impaired swallowing and speech, and increased infection and is associated with other autoimmune diseases and an increased risk of certain cancers. Despite the implications of this prevalent disease, diagnosis currently takes years, partly due to the diversity in patient presentation. Saliva is a complicated biological fluid with major constituents, including heavily glycosylated mucins MUC5B and MUC7, important for its viscoelastic and hydrating and lubricating properties. This study investigated Sjögren's patient's perception of dryness (bother index questionnaires) along with the rheological, protein composition, and glycan analysis of whole mouth saliva and the saliva on the mucosal surface (residual mucosal saliva) to understand the properties that most affect patient wellbeing. Sjögren's patients exhibited a statistically significant reduction in residual mucosal saliva, salivary flow rate, and extensional rheology, spinnbarkeit (stringiness). Although the concentration of mucins MUC5B and MUC7 were similar between patients and controls, a comparison of protein Western blotting and glycan staining identified a reduction in mucin glycosylation in Sjögren's, particularly on MUC7. LC-MS/MS analysis of O-glycans released from MUC7 by β-elimination revealed that although patients had an increase in core 1 sulfation, the even larger reduction in sialylation resulted in a global decline of charged glycans. This was primarily due to the loss of the extended core 2 disialylated structure, with and without fucosylation. A decrease in the extended, fucosylated core 2 disialylated structure on MUC7, residual mucosal wetness, and whole mouth saliva flow rate appeared to have a negative and cumulative effect on the perception of oral dryness. The observed changes in MUC7 glycosylation could be a potential diagnostic tool for saliva quality and taken into consideration for future therapies for this multifactorial syndrome.
Collapse
Affiliation(s)
- Nayab M A Chaudhury
- From the ‡Salivary Unit, Mucosal and Salivary Biology, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| | - Gordon B Proctor
- From the ‡Salivary Unit, Mucosal and Salivary Biology, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| | - Niclas G Karlsson
- §Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Guy H Carpenter
- From the ‡Salivary Unit, Mucosal and Salivary Biology, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| | - Sarah A Flowers
- §Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| |
Collapse
|
20
|
Zad M, Flowers SA, Bankvall M, Jontell M, Karlsson NG. Salivary mucin MUC7 oligosaccharides in patients with recurrent aphthous stomatitis. Clin Oral Investig 2015; 19:2147-52. [PMID: 26051835 DOI: 10.1007/s00784-015-1495-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The aetiology of recurrent aphthous stomatitis remains unknown. In this study, we investigate the composition of oligosaccharides from mucin MUC7 in recurrent aphthous stomatitis as these heavily O-glycosylated mucins confer many of saliva's protective properties such as defence against mucosal pathogens. MATERIALS AND METHODS Unstimulated whole saliva samples were collected from six individuals, three with recurrent aphthous stomatitis and three corresponding sibling, without this condition. Oligosaccharides from salivary MUC7 were isolated and analysed by liquid chromatography-tandem mass spectrometry. RESULTS The types of oligosaccharides identified in the patients and control subjects were similar; however, statistical evaluation indicated semi-quantitative differences between specific oligosaccharide classes. These changes focused on a reduction in terminal glycan residues including fucosylation, sialylation and sulfation on galactose. CONCLUSIONS This study was able to show differential MUC7 glycosylation in the patients suggesting functional changes to salivary mucins in this condition. The terminal glycans altered in disease have been shown to be important for a range of immunological and bacterial binding roles. Further investigation of these epitopes in a larger study may provide critical insights into the pathology of recurrent aphthous stomatitis. CLINICAL RELEVANCE MUC7 glycosylation is altered in recurrent aphthous stomatitis. This may change the protective properties of this mucin against mucosal pathogens, which may effect this condition.
Collapse
Affiliation(s)
- Mikael Zad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Maria Bankvall
- Department of Oral Medicine and Pathology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Jontell
- Department of Oral Medicine and Pathology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden.
| |
Collapse
|
21
|
The Role of Posttranslational Protein Modifications in Rheumatological Diseases: Focus on Rheumatoid Arthritis. J Immunol Res 2015; 2015:712490. [PMID: 26090496 PMCID: PMC4451265 DOI: 10.1155/2015/712490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/16/2015] [Accepted: 02/05/2015] [Indexed: 01/12/2023] Open
Abstract
The definition of posttranslational modification (PTM) encompasses a wide group of chemical reactions that allow modification and modulation of protein functions. The regulation of PTMs is crucial for the activity and survival of the cells. Dysregulation of PTMs has been observed in several pathological conditions, including rheumatoid arthritis (RA). RA is a systemic autoimmune disease primarily targeting the joints. The three PTMs mainly involved in this disease are glycosylation, citrullination, and carbamylation. Glycosylation is essential for antigen processing and presentation and can modulate immunoglobulin activity. Citrullination of self-antigens is strongly associated with RA, as demonstrated by the presence of antibodies directed to anti-citrullinated proteins in patients' sera. Carbamylation and its dysregulation have been recently associated with RA. Aim of this review is to illustrate the most significant alterations of these PTMs in RA and to evaluate their possible involvement in the pathogenesis of the disease.
Collapse
|
22
|
Culp DJ, Robinson B, Cash MN, Bhattacharyya I, Stewart C, Cuadra-Saenz G. Salivary mucin 19 glycoproteins: innate immune functions in Streptococcus mutans-induced caries in mice and evidence for expression in human saliva. J Biol Chem 2014; 290:2993-3008. [PMID: 25512380 DOI: 10.1074/jbc.m114.597906] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19(-/-) mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19(-/-) mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19(-/-) mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19(-/-) mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed.
Collapse
Affiliation(s)
| | | | | | - Indraneel Bhattacharyya
- Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610
| | - Carol Stewart
- Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
23
|
Stavenhagen K, Kolarich D, Wuhrer M. Clinical Glycomics Employing Graphitized Carbon Liquid Chromatography-Mass Spectrometry. Chromatographia 2014; 78:307-320. [PMID: 25750456 PMCID: PMC4346670 DOI: 10.1007/s10337-014-2813-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/25/2014] [Accepted: 11/13/2014] [Indexed: 12/25/2022]
Abstract
Glycoconjugates and free glycan are involved in a variety of biological processes such as cell-cell interaction and cell trafficking. Alterations in the complex glycosylation machinery have been correlated with various pathological processes including cancer progression and metastasis. Mass Spectrometry (MS) has evolved as one of the most powerful tools in glycomics and glycoproteomics and in combination with porous graphitized carbon-liquid chromatography (PGC-LC) it is a versatile and sensitive technique for the analysis of glycans and to some extent also glycopeptides. PGC-LC-ESI-MS analysis is characterized by a high isomer separation power enabling a specific glycan compound analysis on the level of individual structures. This allows the investigation of the biological relevance of particular glycan structures and glycan features. Consequently, this strategy is a very powerful technique suitable for clinical research, such as cancer biomarker discovery, as well as in-depth analysis of recombinant glycoproteins. In this review, we will focus on how PGC in conjunction with MS detection can deliver specific structural information for clinical research on protein-bound N-glycans and mucin-type O-glycans. In addition, we will briefly review PGC analysis approaches for glycopeptides, glycosaminoglycans (GAGs) and human milk oligosaccharides (HMOs). The presented applications cover systems that vary vastly with regard to complexity such as purified glycoproteins, cells, tissue or body fluids revealing specific glycosylation changes associated with various biological processes including cancer and inflammation.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1 OT Golm, 14242 Potsdam, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands ; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands ; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Lazar IM, Deng J, Ikenishi F, Lazar AC. Exploring the glycoproteomics landscape with advanced MS technologies. Electrophoresis 2014; 36:225-37. [PMID: 25311661 DOI: 10.1002/elps.201400400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
Abstract
The advance of glycoproteomic technologies has offered unique insights into the importance of glycosylation in determining the functional roles of a protein within a cell. Biologically active glycoproteins include the categories of enzymes, hormones, proteins involved in cell proliferation, cell membrane proteins involved in cell-cell recognition, and communication events or secreted proteins, just to name a few. The recent progress in analytical instrumentation, methodologies, and computational approaches has enabled a detailed exploration of glycan structure, connectivity, and heterogeneity, underscoring the staggering complexity of the glycome repertoire in a cell. A variety of approaches involving the use of spectroscopy, MS, separation, microfluidic, and microarray technologies have been used alone or in combination to tackle the glycoproteome challenge, the research results of these efforts being captured in an overwhelming number of annual publications. This work is aimed at reviewing the major developments and accomplishments in the field of glycoproteomics, with focus on the most recent advancements (2012-2014) that involve the use of capillary separations and MS detection.
Collapse
Affiliation(s)
- Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
25
|
Ali L, Flowers SA, Jin C, Bennet EP, Ekwall AKH, Karlsson NG. The O-glycomap of lubricin, a novel mucin responsible for joint lubrication, identified by site-specific glycopeptide analysis. Mol Cell Proteomics 2014; 13:3396-409. [PMID: 25187573 PMCID: PMC4256492 DOI: 10.1074/mcp.m114.040865] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/15/2014] [Indexed: 11/06/2022] Open
Abstract
The lubricative, heavily glycosylated mucin-like synovial glycoprotein lubricin has previously been observed to contain glycosylation changes related to rheumatoid and osteoarthritis. Thus, a site-specific investigation of the glycosylation of lubricin was undertaken, in order to further understand the pathological mechanisms involved in these diseases. Lubricin contains an serine/threonine/proline (STP)-rich domain composed of imperfect tandem repeats (EPAPTTPK), the target for O-glycosylation. In this study, using a liquid chromatography-tandem mass spectrometry approach, employing both collision-induced and electron-transfer dissociation fragmentation methods, we identified 185 O-glycopeptides within the STP-rich domain of human synovial lubricin. This showed that adjacent threonine residues within the central STP-rich region could be simultaneously and/or individually glycosylated. In addition to core 1 structures responsible for biolubrication, core 2 O-glycopeptides were also identified, indicating that lubricin glycosylation may have other roles. Investigation of the expression of polypeptide N-acetylgalactosaminyltransferase genes was carried out using cultured primary fibroblast-like synoviocytes, a cell type that expresses lubricin in vivo. This analysis showed high mRNA expression levels of the less understood polypeptide N-acetylgalactosaminyltransferase 15 and 5 in addition to the ubiquitously expressed polypeptide N-acetylgalactosaminyltransferase 1 and 2 genes. This suggests that there is a unique combination of transferase genes important for the O-glycosylation of lubricin. The site-specific glycopeptide analysis covered 82% of the protein sequence and showed that lubricin glycosylation displays both micro- and macroheterogeneity. The density of glycosylation was shown to be high: 168 sites of O-glycosylation, predominately sialylated, were identified. These glycosylation sites were focused in the central STP-rich region, giving the domain a negative charge. The more positively charged lysine and arginine residues in the N and C termini suggest that synovial lubricin exists as an amphoteric molecule. The identification of these unique properties of lubricin may provide insight into the important low-friction lubricating functions of lubricin during natural joint movement.
Collapse
Affiliation(s)
- Liaqat Ali
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Sarah A Flowers
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Chunsheng Jin
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Eric Paul Bennet
- §Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Norre Alle 20, DK-2200 Copenhagen N, Denmark
| | - Anna-Karin H Ekwall
- ¶Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, SE-41346, Gothenburg, Sweden
| | - Niclas G Karlsson
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden;
| |
Collapse
|
26
|
Gianazza E, Tremoli E, Banfi C. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases. Expert Rev Proteomics 2014; 11:771-88. [PMID: 25400095 DOI: 10.1586/14789450.2014.947966] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.
Collapse
Affiliation(s)
- Erica Gianazza
- Laboratory of Cell Biology and Biochemistry of Atherothrombosis, Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milan, Italy
| | | | | |
Collapse
|