1
|
Han B, Amiri E, Wei Q, Tarpy DR, Strand MK, Xu S, Rueppell O. Group size influences maternal provisioning and compensatory larval growth in honeybees. iScience 2023; 26:108546. [PMID: 38089582 PMCID: PMC10711493 DOI: 10.1016/j.isci.2023.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Environmental variation selects for the adaptive plasticity of maternal provisioning. Even though developing honeybees find themselves in a protected colony environment, their reproductively specialized queens actively adjust their maternal investment, even among worker-destined eggs. However, the potentially adaptive consequences of this flexible provisioning strategy and their mechanistic basis are unknown. Under natural conditions, we find that the body size of larvae hatching from small eggs in large colonies converges with that of initially larger larvae hatching from large eggs typically produced in small colonies. However, large eggs confer a persistent body size advantage when small and large eggs are cross-fostered in small and large colonies, respectively. We substantiate the increased maternal investment by identifying growth-promoting metabolomes and proteomes in large eggs compared to small eggs, which are primarily enriched in amino acid metabolism and cell maturation. Thus, our study provides a comprehensive adaptive explanation for the worker egg size plasticity of honeybees.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Esmaeil Amiri
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - David R. Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Micheline K. Strand
- Biological and Biotechnology Sciences, Army Research Office, Army Research Laboratory, Research Triangle Park, Durham, NC 27709, USA
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G2R3, Canada
- Department of Biology, University of North Carolina, Greensboro, NC 27402, USA
| |
Collapse
|
2
|
Hartke J, Ceron-Noriega A, Stoldt M, Sistermans T, Kever M, Fuchs J, Butter F, Foitzik S. Long live the host! Proteomic analysis reveals possible strategies for parasitic manipulation of its social host. Mol Ecol 2023; 32:5877-5889. [PMID: 37795937 DOI: 10.1111/mec.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Parasites with complex life cycles often manipulate the phenotype of their intermediate hosts to increase the probability of transmission to their definitive hosts. Infection with Anomotaenia brevis, a cestode that uses Temnothorax nylanderi ants as intermediate hosts, leads to a multiple-fold extension of host lifespan and to changes in behaviour, morphology and colouration. The mechanisms behind these changes are unknown, as is whether the increased longevity is achieved through parasite manipulation. Here, we demonstrate that the parasite releases proteins into its host with functions that might explain the observed changes. These parasitic proteins make up a substantial portion of the proteome of the hosts' haemolymph, and thioredoxin peroxidase and superoxide dismutase, two antioxidants, exhibited the highest abundances among them. The largest part of the secreted proteins could not be annotated, indicating they are either novel or severely altered during recent coevolution to function in host manipulation. We also detected shifts in the hosts' proteome with infection, in particular an overabundance of vitellogenin-like A in infected ants, a protein that regulates division of labour in Temnothorax ants, which could explain the observed behavioural changes. Our results thus suggest two different strategies that might be employed by this parasite to manipulate its host: secreting proteins with immediate influence on the host's phenotype and altering the host's translational activity. Our findings highlight the intricate molecular interplay required to influence the phenotype of a host and point to potential signalling pathways and genes involved in parasite-host communication.
Collapse
Affiliation(s)
- Juliane Hartke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tom Sistermans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenny Fuchs
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Han B, Wei Q, Amiri E, Hu H, Meng L, Strand MK, Tarpy DR, Xu S, Li J, Rueppell O. The molecular basis of socially induced egg-size plasticity in honey bees. eLife 2022; 11:80499. [PMID: 36346221 PMCID: PMC9747152 DOI: 10.7554/elife.80499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Reproduction involves the investment of resources into offspring. Although variation in reproductive effort often affects the number of offspring, adjustments of propagule size are also found in numerous species, including the Western honey bee, Apis mellifera. However, the proximate causes of these adjustments are insufficiently understood, especially in oviparous species with complex social organization in which adaptive evolution is shaped by kin selection. Here, we show in a series of experiments that queens predictably and reversibly increase egg size in small colonies and decrease egg size in large colonies, while their ovary size changes in the opposite direction. Additional results suggest that these effects cannot be solely explained by egg-laying rate and are due to the queens' perception of colony size. Egg-size plasticity is associated with quantitative changes of 290 ovarian proteins, most of which relate to energy metabolism, protein transport, and cytoskeleton. Based on functional and network analyses, we further study the small GTPase Rho1 as a candidate regulator of egg size. Spatio-temporal expression analysis via RNAscope and qPCR supports an important role of Rho1 in egg-size determination, and subsequent RNAi-mediated gene knockdown confirmed that Rho1 has a major effect on egg size in honey bees. These results elucidate how the social environment of the honey bee colony may be translated into a specific cellular process to adjust maternal investment into eggs. It remains to be studied how widespread this mechanism is and whether it has consequences for population dynamics and epigenetic influences on offspring phenotype in honey bees and other species.
Collapse
Affiliation(s)
- Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Biology, University of North Carolina Greensboro, Greensboro, United States
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina Greensboro, Greensboro, United States.,Delta Research and Extension Center, Mississippi State University, Stoneville, United States
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Micheline K Strand
- Biological and Biotechnology Sciences Branch, U.S. Army Research Office, DEVCOM-ARL, Baltimore, United States
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, Canada
| | - Shufa Xu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Ma B, Ma C, Li J, Fang Y. Revealing phosphorylation regulatory networks during embryogenesis of honey bee worker and drone (Apis mellifera). Front Cell Dev Biol 2022; 10:1006964. [PMID: 36225314 PMCID: PMC9548569 DOI: 10.3389/fcell.2022.1006964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Protein phosphorylation is known to regulate a comprehensive scenario of critical cellular processes. However, phosphorylation-mediated regulatory networks in honey bee embryogenesis are mainly unknown. We identified 6342 phosphosites from 2438 phosphoproteins and predicted 168 kinases in the honey bee embryo. Generally, the worker and drone develop similar phosphoproteome architectures and major phosphorylation events during embryogenesis. In 24 h embryos, protein kinases A play vital roles in regulating cell proliferation and blastoderm formation. At 48–72 h, kinase subfamily dual-specificity tyrosine-regulated kinase, cyclin-dependent kinase (CDK), and induced pathways related to protein synthesis and morphogenesis suggest the centrality to enhance the germ layer development, organogenesis, and dorsal closure. Notably, workers and drones formulated distinct phosphoproteome signatures. For 24 h embryos, the highly phosphorylated serine/threonine-protein kinase minibrain, microtubule-associated serine/threonine-protein kinase 2 (MAST2), and phosphorylation of mitogen-activated protein kinase 3 (MAPK3) at Thr564 in workers, are likely to regulate the late onset of cell proliferation; in contrast, drone embryos enhanced the expression of CDK12, MAPK3, and MAST2 to promote the massive synthesis of proteins and cytoskeleton. In 48 h, the induced serine/threonine-protein kinase and CDK12 in worker embryos signify their roles in the construction of embryonic tissues and organs; however, the highly activated kinases CDK1, raf homolog serine/threonine-protein kinase, and MAST2 in drone embryos may drive the large-scale establishment of tissues and organs. In 72 h, the activated pathways and kinases associated with cell growth and tissue differentiation in worker embryos may promote the configuration of rudimentary organs. However, kinases implicated in cytoskeleton organization in drone embryos may drive the blastokinesis and dorsal closure. Our hitherto most comprehensive phosphoproteome offers a valuable resource for signaling research on phosphorylation dynamics in honey bee embryos.
Collapse
Affiliation(s)
| | | | - Jianke Li
- *Correspondence: Jianke Li, ; Yu Fang,
| | - Yu Fang
- *Correspondence: Jianke Li, ; Yu Fang,
| |
Collapse
|
5
|
Shi T, Meng L, Jiang X, Cao H, Yu L. Proteome analysis reveals the molecular basis of honeybee brain and midgut response to sulfoxaflor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105168. [PMID: 35973773 DOI: 10.1016/j.pestbp.2022.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Sulfoxaflor is a widely used pesticide in agriculture. However, the molecular effects of sublethal sulfoxaflor on honeybees (Apis mellifera L.) remain elusive. Here, the effects of a sublethal dose of sulfoxaflor (0.05 μg/bee) on the brain and midgut proteome response of the honeybee were investigated. Exposure to sublethal sulfoxaflor doses did not cause significant honeybee death, but it induced significant alterations in the brain and midgut proteomes. After sulfoxaflor challenge, 135 and 28 proteins were differentially regulated in the brain and midgut, respectively. The up-regulated proteins were mainly implicated in energy metabolism, neurotransmitter transport and drug metabolism processes, and included in particular enzymes of the citrate cycle and cellular respiration process, such as ATP citrate synthase, malate dehydrogenase, cytochrome b-c1 complex subunits, and NADH dehydrogenase. These findings suggest that honeybees enhance energy metabolism in the midgut and brain to resist sulfoxaflor challenge. Notably, treatment with sulfoxaflor resulted in a 6.8 times increase in expression levels of the major royal jelly protein 1 (MRJP1) in the brain, and knockdown of MRJP1 mRNA expression using RNA interference significantly decreased the survival rate, indicating that MRJP1 may play an important role in sulfoxaflor tolerance. Our data reveals that sulfoxaflor influences multiple processes related to both metabolism and the nervous system, and provides novel insights into the molecular basis of the honeybee brain and midgut response to sublethal dose of sulfoxaflor.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China; Apiculture Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Lifeng Meng
- Institute of Apicultural Research, Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Xingchuan Jiang
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China; Apiculture Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Khan Z, Khan MS, Bawazeer S, Bawazeer N, Suleman, Irfan M, Rauf A, Su XH, Xing LX. A comprehensive review on the documented characteristics of four Reticulitermes termites (Rhinotermitidae, Blattodea) of China. BRAZ J BIOL 2022; 84:e256354. [PMID: 35319619 DOI: 10.1590/1519-6984.256354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Termites are known as social insects worldwide. Presently in China 473 species, 44 genera and 4 families of termites have been reported. Of them, 111 Reticulitermes species are widely spread in different zones of China. The dispersion flight season of these Chinese Reticulitermes species are usually started from February to June, but in some regions different species are distributed, sharing their boundaries and having overlapping flight seasons. These reasons become important sources of hybridization between two different heterospecific populations of termites. It was confirmed that the fertilized eggs and unfertilized eggs of some Reticulitermes termites have the capacity of cleavage. While the unfertilized eggs of R. aculabialis, R. chinensis and R. labralis cleaved normally and the only R. aculabialis unfertilized eggs develop in embryos. While, the R. flaviceps and R. chinensis were observed with their abnormal embryonic development, and not hatching of eggs parthenogenetically. They were reported more threatening to Chinese resources as they propagate with parthenogenesis, hybridization and sexual reproduction. Eggshell and macrophiles of eggs play important roles in species identification and control. Although, they are severe pests and cause a wide range of damages to wooden structures and products in homes, buildings, building materials, trees, crops, and forests in China's Mainland.
Collapse
Affiliation(s)
- Z Khan
- Northwest University, College of Life Sciences, Xi'an, China.,University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - M S Khan
- University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - S Bawazeer
- Umm Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Kingdom of Saudi Arabia
| | - N Bawazeer
- Minister of Interior General Directorate of Prison's Health, Pharmacy Department, Kingdom of Saudi Arabia
| | - Suleman
- University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - M Irfan
- Abdul Wali Khan University, Department of Botany, Mardan, Pakistan.,University of Swabi, Department of Botany, Swabi, Pakistan.,Missouri Botanical Garden, St. Louis, MO, U.S.A
| | - A Rauf
- University of Swabi, Department of Chemistry, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - X-H Su
- Northwest University, College of Life Sciences, Xi'an, China.,Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an, China.,Northwest University, Key Laboratory of Resource Biology and Biotechnology, Xi'an, China
| | - L-X Xing
- Northwest University, College of Life Sciences, Xi'an, China.,Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an, China.,Northwest University, Key Laboratory of Resource Biology and Biotechnology, Xi'an, China
| |
Collapse
|
7
|
Gharehdaghi L, Bakhtiarizadeh MR, He K, Harkinezhad T, Tahmasbi G, Li F. Diet-derived transmission of MicroRNAs from host plant into honey bee Midgut. BMC Genomics 2021; 22:587. [PMID: 34344297 PMCID: PMC8336336 DOI: 10.1186/s12864-021-07916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNA (miRNA) is a class of small noncoding RNAs, which targets on thousands of mRNA and thus plays important roles in many biological processes. It has been reported that miRNA has cross-species regulation functions between parasitoid-host, or plant-animal, etc. For example, several plant miRNAs enter into the honey bees and regulate gene expression. However, whether cross-species regulation function of miRNAs is a universal mechanism remains a debate question. Results We have evaluated transmission of miRNAs from sunflower and sedr plants into the midgut of honey bee using RNA-Seq analyses complemented with confirmation by RT-qPCR. The results showed that at least 11 plant miRNAs were found in the midgut of honey bee feeding by sunflower and sedr pollen. Among which, nine miRNAs, including miR-30d, miR-143, miR-148a, miR-21, let-7 g, miR-26a, miR-126, miR-27a, and miR-203, were shared between the sunflower- and sedr-fed honey bees, suggesting they might have essential roles in plant-insect interactions. Moreover, existence of these co-shared miRNAs presents a strong evidence to support the successful transmission of miRNAs into the midgut of the insect. In total, 121 honeybee mRNAs were predicted to be the target of these 11 plant-derived miRNAs. Interestingly, a sedr-derived miRNA, miR-206, targets on 53 honeybee genes. Kyoto Encyclopedia of Genes and Genome (KEGG) analyses showed that these target genes are significantly involved in hippo signaling pathway-fly, Wnt signaling pathway, and N-Glycan biosynthesis. Conclusions In summary, these results provide evidence of cross-species regulation function of miRNA between honeybee and flowering host plants, extending our understanding of the molecular interactions between plants and animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07916-4.
Collapse
Affiliation(s)
- Leila Gharehdaghi
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | | | - Kang He
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Taher Harkinezhad
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Gholamhosein Tahmasbi
- Department of Honeybee, Agricultural Research, Education and Extension Organization (AREEO), Animal Science Research Institute of Iran, Karaj, Iran
| | - Fei Li
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Gao WZ, Xue HL, Yang JC. Proteomics analysis of the secondary hair follicle cycle in Liaoning cashmere goat. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Altaye SZ, Meng L, Lu Y, Li J. The Emerging Proteomic Research Facilitates in-Depth Understanding of the Biology of Honeybees. Int J Mol Sci 2019; 20:ijms20174252. [PMID: 31480282 PMCID: PMC6747239 DOI: 10.3390/ijms20174252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Advances in instrumentation and computational analysis in proteomics have opened new doors for honeybee biological research at the molecular and biochemical levels. Proteomics has greatly expanded the understanding of honeybee biology since its introduction in 2005, through which key signaling pathways and proteins that drive honeybee development and behavioral physiology have been identified. This is critical for downstream mechanistic investigation by knocking a gene down/out or overexpressing it and being able to attribute a specific phenotype/biochemical change to that gene. Here, we review how emerging proteome research has contributed to the new understanding of honeybee biology. A systematic and comprehensive analysis of global scientific progress in honeybee proteome research is essential for a better understanding of research topics and trends, and is potentially useful for future research directions.
Collapse
Affiliation(s)
- Solomon Zewdu Altaye
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Lu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Hu H, Bezabih G, Feng M, Wei Q, Zhang X, Wu F, Meng L, Fang Y, Han B, Ma C, Li J. In-depth Proteome of the Hypopharyngeal Glands of Honeybee Workers Reveals Highly Activated Protein and Energy Metabolism in Priming the Secretion of Royal Jelly. Mol Cell Proteomics 2019; 18:606-621. [PMID: 30617159 PMCID: PMC6442370 DOI: 10.1074/mcp.ra118.001257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Royal jelly (RJ) is a secretion of the hypopharyngeal glands (HGs) of honeybee workers. High royal jelly producing bees (RJBs), a stock of honeybees selected from Italian bees (ITBs), have developed a stronger ability to produce RJ than ITBs. However, the mechanism underpinning the high RJ-producing performance in RJBs is still poorly understood. We have comprehensively characterized and compared the proteome across the life span of worker bees between the ITBs and RJBs. Our data uncover distinct molecular landscapes that regulate the gland ontogeny and activity corresponding with age-specific tasks. Nurse bees (NBs) have a well-developed acini morphology and cytoskeleton of secretory cells in HGs to prime the gland activities of RJ secretion. In RJB NBs, pathways involved in protein synthesis and energy metabolism are functionally induced to cement the enhanced RJ secretion compared with ITBs. In behavior-manipulated RJB NBs, the strongly expressed proteins implicated in protein synthesis and energy metabolism further demonstrate their critical roles in the regulation of RJ secretion. Our findings provide a novel understanding of the mechanism consolidating the high RJ-output in RJBs.
Collapse
Affiliation(s)
- Han Hu
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Gebreamlak Bezabih
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Mao Feng
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Qiaohong Wei
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Xufeng Zhang
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Fan Wu
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Lifeng Meng
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Yu Fang
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Bin Han
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Chuan Ma
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Jianke Li
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China.
| |
Collapse
|
11
|
Faragalla KM, Chernyshova AM, Gallo AJ, Thompson GJ. From gene list to gene network: Recognizing functional connections that regulate behavioral traits. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:317-329. [DOI: 10.1002/jez.b.22829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
|
12
|
Surlis C, Carolan JC, Coffey M, Kavanagh K. Quantitative proteomics reveals divergent responses in Apis mellifera worker and drone pupae to parasitization by Varroa destructor. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:291-301. [PMID: 29273327 DOI: 10.1016/j.jinsphys.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Varroa destructor is a haemophagous ectoparasite of honeybees and is considered a major causal agent of colony losses in Europe and North America. Although originating in Eastern Asia where it parasitizes Apis cerana, it has shifted hosts to the western honeybee Apis mellifera on which it has a greater deleterious effect on the individual and colony level. To investigate this important host-parasite interaction and to determine whether Varroa causes different effects on different castes we conducted a label free quantitative proteomic analysis of Varroa-parasitized and non-parasitized drone and worker Apis mellifera pupae. 1195 proteins were identified in total, of which 202 and 250 were differentially abundant in parasitized drone and worker pupae, respectively. Both parasitized drone and worker pupae displayed reduced abundance in proteins associated with the cuticle, lipid transport and innate immunity. Proteins involved in metabolic processes were more abundant in both parasitized castes although the response in workers was more pronounced. A number of caste specific responses were observed including differential abundance of numerous cytoskeletal and muscle proteins, which were of higher abundance in parasitized drones in comparison to parasitized workers. Proteins involved in fatty acid and carbohydrate metabolism were more abundant in parasitized workers as were a large number of ribosomal proteins highlighting either potentially divergent responses to Varroa or a different strategy by the mite when parasitizing the different castes. This data improves our understanding of this interaction and may provide a basis for future studies into improvements to therapy and control of Varroasis.
Collapse
Affiliation(s)
- Carla Surlis
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mary Coffey
- Department of Life Sciences, University of Limerick, Limerick, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
13
|
Hu X, Ke L, Wang Z, Zeng Z. Dynamic transcriptome landscape of Asian domestic honeybee (Apis cerana) embryonic development revealed by high-quality RNA sequencing. BMC DEVELOPMENTAL BIOLOGY 2018; 18:11. [PMID: 29653508 PMCID: PMC5899340 DOI: 10.1186/s12861-018-0169-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Background Honeybee development consists of four stages: embryo, larva, pupa and adult. Embryogenesis, a key process of cell division and differentiation, takes 3 days in honeybees. However, the embryonic transcriptome and the dynamic regulation of embryonic transcription are still largely uncharacterized in honeybees, especially in the Asian honeybee (Apis cerana). Here, we employed high-quality RNA-seq to explore the transcriptome of Asian honeybee embryos at three ages, approximately 24, 48 and 72 h (referred to as Day1, Day2 and Day3, respectively). Results Nine embryo samples, three from each age, were collected for RNA-seq. According to the staging scheme of honeybee embryos and the morphological features we observed, our Day1, Day2 and Day3 embryos likely corresponded to the late stage four, stage eight and stage ten development stages, respectively. Hierarchical clustering and principal component analysis showed that same-age samples were grouped together, and the Day2 samples had a closer relationship with the Day3 samples than the Day1 samples. Finally, a total of 18,284 genes harboring 55,646 transcripts were detected in the A. cerana embryos, of which 44.5% consisted of the core transcriptome shared by all three ages of embryos. A total of 4088 upregulated and 3046 downregulated genes were identified among the three embryo ages, of which 2010, 3177 and 1528 genes were upregulated and 2088, 2294 and 303 genes were downregulated from Day1 to Day2, from Day1 to Day3 and from Day2 to Day3, respectively. The downregulated genes were mostly involved in cellular, biosynthetic and metabolic processes, gene expression and protein localization, and macromolecule modification; the upregulated genes mainly participated in cell development and differentiation, tissue, organ and system development, and morphogenesis. Interestingly, several biological processes related to the response to and detection of light stimuli were enriched in the first-day A. cerana embryogenesis but not in the Apis mellifera embryogenesis, which was valuable for further investigations. Conclusions Our transcriptomic data substantially expand the number of known transcribed elements in the A. cerana genome and provide a high-quality view of the transcriptome dynamics of A. cerana embryonic development. Electronic supplementary material The online version of this article (10.1186/s12861-018-0169-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofen Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Li Ke
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zilong Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
14
|
Hora ZA, Altaye SZ, Wubie AJ, Li J. Proteomics Improves the New Understanding of Honeybee Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3605-3615. [PMID: 29558123 DOI: 10.1021/acs.jafc.8b00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The honeybee is one of the most valuable insect pollinators, playing a key role in pollinating wild vegetation and agricultural crops, with significant contribution to the world's food production. Although honeybees have long been studied as model for social evolution, honeybee biology at the molecular level remained poorly understood until the year 2006. With the availability of the honeybee genome sequence and technological advancements in protein separation, mass spectrometry, and bioinformatics, aspects of honeybee biology such as developmental biology, physiology, behavior, neurobiology, and immunology have been explored to new depths at molecular and biochemical levels. This Review comprehensively summarizes the recent progress in honeybee biology using proteomics to study developmental physiology, task transition, and physiological changes in some of the organs, tissues, and cells based on achievements from the authors' laboratory in this field. The research advances of honeybee proteomics provide new insights for understanding of honeybee biology and future research directions.
Collapse
Affiliation(s)
- Zewdu Ararso Hora
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Solomon Zewdu Altaye
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Abebe Jemberie Wubie
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
15
|
Ararso Z, Ma C, Qi Y, Feng M, Han B, Hu H, Meng L, Li J. Proteome Comparisons between Hemolymph of Two Honeybee Strains (Apis mellifera ligustica) Reveal Divergent Molecular Basis in Driving Hemolymph Function and High Royal Jelly Secretion. J Proteome Res 2017; 17:402-419. [DOI: 10.1021/acs.jproteome.7b00621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zewdu Ararso
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuan Ma
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuping Qi
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mao Feng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Han
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Hu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianke Li
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
16
|
Meng L, Huo X, Feng M, Fang Y, Han B, Hu H, Wu F, Li J. Proteomics Reveals the Molecular Underpinnings of Stronger Learning and Memory in Eastern Compared to Western Bees. Mol Cell Proteomics 2017; 17:255-269. [PMID: 29187519 PMCID: PMC5795390 DOI: 10.1074/mcp.ra117.000159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/11/2017] [Indexed: 11/06/2022] Open
Abstract
The eastern (Apis cerana cerana, Acc) and western (Apis mellifera ligustica, Aml) honeybee are two major honeybee species. Surprisingly, little is known about the fundamental molecular neurobiology of brain suborgans of Acc and Aml. We characterized and compared the proteomes of mushroom bodies (MBs), antennal lobes (ALs) and optical lobes (OLs) in the brain of both species, and biologically validated the functions related to learning and memory. Acc and Aml have evolved similar proteome signatures in MBs and OLs to drive the domain-specific neural activities. In MBs of both species, commonly enriched and enhanced functional groups related to protein metabolism and Ca2+ transport relative to ALs and OLs, suggests that proteins and Ca2+ are vital for consolidating learning and memory via modulation of synaptic structure and signal transduction. Furthermore, in OLs of both species, the mainly enriched ribonucleoside metabolism suggests its vital role as second messenger in promoting phototransduction. Notably, in ALs of both species, distinct proteome settings have shaped to prime olfactory learning and memory. In ALs of Acc, this is supported by the enriched cytoskeleton organization to sustain olfactory signaling through modulation of plasticity in glomeruli and intracellular transport. In ALs of Aml, however, the enriched functional groups implicated in hydrogen ion transport are indicative of their importance in supporting olfactory processes by regulation of synaptic transmission. The biological confirmation of enhanced activities of protein metabolism and signal transduction in ALs and MBs of Acc relative to in Aml demonstrates that a stronger sense of olfactory learning and memory has evolved in Acc. The reported first in-depth proteome data of honeybee brain suborgans provide a novel insight into the molecular basis of neurobiology, and is potentially useful for further neurological studies in honeybees and other insects.
Collapse
Affiliation(s)
- Lifeng Meng
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Xinmei Huo
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Mao Feng
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yu Fang
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Han Hu
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Fan Wu
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jianke Li
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| |
Collapse
|
17
|
Teixeira ADD, Games PD, Katz BB, Tomich JM, Zanuncio JC, Serrão JE. Proteomic analysis in the Dufour's gland of Africanized Apis mellifera workers (Hymenoptera: Apidae). PLoS One 2017; 12:e0177415. [PMID: 28542566 PMCID: PMC5443511 DOI: 10.1371/journal.pone.0177415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 11/19/2022] Open
Abstract
The colony of eusocial bee Apis mellifera has a reproductive queen and sterile workers performing tasks such as brood care and foraging. Chemical communication plays a crucial role in the maintenance of sociability in bees with many compounds released by the exocrine glands. The Dufour’s gland is a non-paired gland associated with the sting apparatus with important functions in the communication between members of the colony, releasing volatile chemicals that influence workers roles and tasks. However, the protein content in this gland is not well studied. This study identified differentially expressed proteins in the Dufour’s glands of nurse and forager workers of A. mellifera through 2D-gel electrophoresis and mass spectrometry. A total of 131 spots showed different expression between nurse and forager bees, and 28 proteins were identified. The identified proteins were categorized into different functions groups including protein, carbohydrate, energy and lipid metabolisms, cytoskeleton-associated proteins, detoxification, homeostasis, cell communication, constitutive and allergen. This study provides new insights of the protein content in the Dufour’s gland contributing to a more complete understanding of the biological functions of this gland in honeybees.
Collapse
Affiliation(s)
| | - Patricia D. Games
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Benjamin B. Katz
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - John M. Tomich
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - José C. Zanuncio
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
18
|
Micas AFD, Ferreira GA, Laure HJ, Rosa JC, Bitondi MMG. PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:3-24. [PMID: 27160491 DOI: 10.1002/arch.21336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The integument of insects and other arthropods is composed of an inner basal lamina coated by the epidermis, which secretes the bulk of the outer integument layer, the cuticle. The genome sequencing of several insect species has allowed predicting classes of proteins integrating the cuticle. However, only a small proportion of them, as well as other proteins in the integumentary system, have been validated. Using two-dimensional gel electrophoresis coupled with mass spectrometry, we identified 45 different proteins in a total of 112 selected gel spots derived from thoracic integument samples of developing honeybee workers, including 14 cuticular proteins (AmelCPR 3, AmelCPR 12, AmelCPR 16, AmelCPR 27, apidermin 2, apidermin 3, endocuticle structural glycoprotein SgAbd-8-like, LOC100577363, LOC408365, LOC413679, LOC725454, LOC100576916, LOC725838, and peritrophin 3-C analogous). Gene ontology functional analysis revealed that the higher proportions of the identified proteins have molecular functions related to catalytic and structural molecule activities, are involved in metabolic biological processes, and pertain to the protein class of structural or cytoskeletal proteins and hydrolases. It is noteworthy that 26.7% of the identified proteins, including five cuticular proteins, were revealed as protein species resulting from allelic isoforms or derived from posttranslational modifications. Also, 66.7% of the identified cuticular proteins were expressed in more than one developmental phase, thus indicating that they are part of the larval, pupal, and adult cuticle. Our data provide experimental support for predicted honeybee gene products and new information on proteins expressed in the developing integument.
Collapse
Affiliation(s)
- André Fernando Ditondo Micas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Germano Aguiar Ferreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Helen Julie Laure
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José Cesar Rosa
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Huo X, Wu B, Feng M, Han B, Fang Y, Hao Y, Meng L, Wubie AJ, Fan P, Hu H, Qi Y, Li J. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica). J Proteome Res 2016; 15:3342-57. [DOI: 10.1021/acs.jproteome.6b00526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xinmei Huo
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Wu
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Mao Feng
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yu Fang
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yue Hao
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Lifeng Meng
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Abebe Jenberie Wubie
- Department
of Animal production and Technology, College of Agriculture and Environmental
Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Pei Fan
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Han Hu
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yuping Qi
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jianke Li
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| |
Collapse
|
20
|
Hu H, Bienefeld K, Wegener J, Zautke F, Hao Y, Feng M, Han B, Fang Y, Wubie AJ, Li J. Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Insight into Honeybee Resistance against Varroa Infestation. J Proteome Res 2016; 15:2841-54. [PMID: 27384112 DOI: 10.1021/acs.jproteome.6b00423] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Varroa destructor has been identified as a major culprit responsible for the losses of millions of honeybee colonies. Varroa sensitive hygiene (VSH) is a suite of behaviors from adult bees to suppress mite reproduction by uncapping and/or removing mite infested pupae from a sealed brood. Despite the efforts to elucidate the molecular underpinnings of VSH, they remain largely unknown. We investigated the proteome of mushroom bodies (MBs) and antennae of adult bees with and without VSH from a stock selected for VSH based on their response to artificially Varroa-infected brood cells by near-infrared camera observation. The pupal hemolymph proteome was also compared between the VSH-line and the line that was not selected for VSH. The identified 8609 proteins in the hemolymph, MBs, and antennae represent the most depth coverage of the honeybee proteome (>55%) to date. In the hemolymph, the VSH-line adapts a unique strategy to boost the social immunity and drive pupal organogenesis by enhancing energy metabolism and protein biosynthesis. In MBs, the up-regulated proteins implicated in neuronal sensitivity suggest their roles to promote the execution of VSH by activation of synaptic vesicles and calcium channel activities. In antennae, the highly expressed proteins associated with sensitivity of olfactory senses and signal transmissions signify their roles by inputting a strong signal to the MBs for initiating VSH. These observations illustrate that the enhanced social immunities and olfactory and neuronal sensitivity play key roles in the combat against Varroa infestation. The identified candidate markers may be useful for accelerating marker-associated selection for VSH to aid in resistance to a parasite responsible for decline in honeybee health.
Collapse
Affiliation(s)
- Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Kaspar Bienefeld
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Jakob Wegener
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Fred Zautke
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Yue Hao
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Abebe Jenberie Wubie
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| |
Collapse
|
21
|
McAfee A, Harpur BA, Michaud S, Beavis RC, Kent CF, Zayed A, Foster LJ. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics. J Proteome Res 2016; 15:411-21. [DOI: 10.1021/acs.jproteome.5b00589] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alison McAfee
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Brock A. Harpur
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Sarah Michaud
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ronald C. Beavis
- Department
of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, 336-745 Bannatyne Avenue, Winnipeg, Manitoba R3E
0J9, Canada
| | - Clement F. Kent
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Amro Zayed
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
22
|
Qi Y, Fan P, Hao Y, Han B, Fang Y, Feng M, Cui Z, Li J. Phosphoproteomic Analysis of Protein Phosphorylation Networks in the Hypopharyngeal Gland of Honeybee Workers (Apis mellifera ligustica). J Proteome Res 2015; 14:4647-61. [DOI: 10.1021/acs.jproteome.5b00530] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuping Qi
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Pei Fan
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
- College
of Bioengineering, Henan University of Technology, No. 100 of Science Road, Zhengzhou 450001, China
| | - Yue Hao
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Bin Han
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Yu Fang
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Mao Feng
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Ziyou Cui
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
- Department
of Pediatrics, Medical School, and Lillehei Heart Institute, University of Minnesota, Twin Cities 4-240 CCRB, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Jianke Li
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| |
Collapse
|
23
|
Fang Y, Feng M, Han B, Qi Y, Hu H, Fan P, Huo X, Meng L, Li J. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica). J Proteome Res 2015; 14:4059-71. [PMID: 26260241 DOI: 10.1021/acs.jproteome.5b00625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.
Collapse
Affiliation(s)
- Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Yuping Qi
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Pei Fan
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Xinmei Huo
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| |
Collapse
|
24
|
Li JY, Ye LP, Che JQ, Song J, You ZY, Yun KC, Wang SH, Zhong BX. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production. J Proteomics 2015; 126:109-20. [DOI: 10.1016/j.jprot.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 01/20/2023]
|