1
|
Poncha KF, Paparella AT, Young NL. Normalized and Directional Interplay Scoring for the Interrogation of Proteoform Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624157. [PMID: 39605462 PMCID: PMC11601473 DOI: 10.1101/2024.11.18.624157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Histone proteoforms, often presenting multiple co-occurring post-translational modifications (PTMs), are central to chromatin regulation and gene expression. A proteoform is a specific form of a protein that includes variations arising from genetic changes, alternative RNA splicing, proteolytic processing, and PTMs. Genomic context-dependent histone proteoforms define the histone code, influencing cellular phenotype by dictating interactions with DNA and chromatin-associated proteins. Understanding the dynamics of histone proteoforms is essential for elucidating chromatin-based regulatory mechanisms. Advances in middle-down and top-down proteomics methods enable accurate identification and quantitation of hundreds to thousands of proteoforms in a single run. However, the resulting data complexity presents significant challenges for analysis and visualization. Here, we introduce new computational methods to analyze the dynamics of histone PTMs and demonstrate their use in mouse organs during aging. We have developed and benchmarked two novel PTM crosstalk scores. The score that we term 'Normalized Interplay' addresses limitations of the original crosstalk score 'Interplay' providing a more complete and accurate measure of PTM crosstalk. The second score, 'delta I' or Directional Interplay is an asymmetric measure quantifying the magnitude and directionality of crosstalk between PTMs. Applying our two-stage scoring approach to data from CrosstalkDB, a community resource that curates proteoform-level data, reveals the dynamics of histone H3 modifications during aging. The source code is available under an Apache license at https://github.com/k-p4/ptm_interplay_scoring.
Collapse
Affiliation(s)
- Karl F Poncha
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
| | - Alyssa T. Paparella
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
2
|
Joseph FM, Young NL. Histone variant-specific post-translational modifications. Semin Cell Dev Biol 2023; 135:73-84. [PMID: 35277331 PMCID: PMC9458767 DOI: 10.1016/j.semcdb.2022.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/12/2023]
Abstract
Post-translational modifications (PTMs) of histones play a key role in DNA-based processes and contribute to cell differentiation and gene function by adding an extra layer of regulation. Variations in histone sequences within each family of histones expands the chromatin repertoire and provide further mechanisms for regulation and signaling. While variants are known to be present in certain genomic loci and carry out important functions, much remains unknown about variant-specific PTMs and their role in regulating chromatin. This ambiguity is in part due to the limited technologies and appropriate reagents to identify and quantitate variant-specific PTMs. Nonetheless, histone variants are an integral portion of the chromatin system and the understanding of their modifications and resolving how PTMs function differently on specific variants is paramount to the advancement of the field. Here we review the current knowledge on post-translational modifications specific to histone variants, with an emphasis on well-characterized PTMs of known function. While not every possible PTM is addressed, we present key variant-specific PTMs and what is known about their function and mechanisms in convenient reference tables.
Collapse
Affiliation(s)
- Faith M Joseph
- Translational Biology and Molecular Medicine Graduate Program, USA
| | - Nicolas L Young
- Translational Biology and Molecular Medicine Graduate Program, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
4
|
Robusti G, Vai A, Bonaldi T, Noberini R. Investigating pathological epigenetic aberrations by epi-proteomics. Clin Epigenetics 2022; 14:145. [PMID: 36371348 PMCID: PMC9652867 DOI: 10.1186/s13148-022-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetics includes a complex set of processes that alter gene activity without modifying the DNA sequence, which ultimately determines how the genetic information common to all the cells of an organism is used to generate different cell types. Dysregulation in the deposition and maintenance of epigenetic features, which include histone posttranslational modifications (PTMs) and histone variants, can result in the inappropriate expression or silencing of genes, often leading to diseased states, including cancer. The investigation of histone PTMs and variants in the context of clinical samples has highlighted their importance as biomarkers for patient stratification and as key players in aberrant epigenetic mechanisms potentially targetable for therapy. Mass spectrometry (MS) has emerged as the most powerful and versatile tool for the comprehensive, unbiased and quantitative analysis of histone proteoforms. In recent years, these approaches-which we refer to as "epi-proteomics"-have demonstrated their usefulness for the investigation of epigenetic mechanisms in pathological conditions, offering a number of advantages compared with the antibody-based methods traditionally used to profile clinical samples. In this review article, we will provide a critical overview of the MS-based approaches that can be employed to study histone PTMs and variants in clinical samples, with a strong focus on the latest advances in this area, such as the analysis of uncommon modifications and the integration of epi-proteomics data into multi-OMICs approaches, as well as the challenges to be addressed to fully exploit the potential of this novel field of research.
Collapse
Affiliation(s)
- Giulia Robusti
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Alessandro Vai
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Tiziana Bonaldi
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hematology-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberta Noberini
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| |
Collapse
|
5
|
Lai S, Jia J, Cao X, Zhou PK, Gao S. Molecular and Cellular Functions of the Linker Histone H1.2. Front Cell Dev Biol 2022; 9:773195. [PMID: 35087830 PMCID: PMC8786799 DOI: 10.3389/fcell.2021.773195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Linker histone H1.2, which belongs to the linker histone family H1, plays a crucial role in the maintenance of the stable higher-order structures of chromatin and nucleosomes. As a critical part of chromatin structure, H1.2 has an important function in regulating chromatin dynamics and participates in multiple other cellular processes as well. Recent work has also shown that linker histone H1.2 regulates the transcription levels of certain target genes and affects different processes as well, such as cancer cell growth and migration, DNA duplication and DNA repair. The present work briefly summarizes the current knowledge of linker histone H1.2 modifications. Further, we also discuss the roles of linker histone H1.2 in the maintenance of genome stability, apoptosis, cell cycle regulation, and its association with disease.
Collapse
Affiliation(s)
- Shuting Lai
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Medicine, University of South China, Hengyang, China
| | - Xiaoyu Cao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Life Sciences, Hebei University, Baoding, China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
6
|
Hollas MAR, Robey M, Fellers R, LeDuc R, Thomas P, Kelleher N. The Human Proteoform Atlas: a FAIR community resource for experimentally derived proteoforms. Nucleic Acids Res 2022; 50:D526-D533. [PMID: 34986596 PMCID: PMC8728143 DOI: 10.1093/nar/gkab1086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 01/01/2023] Open
Abstract
The Human Proteoform Atlas (HPfA) is a web-based repository of experimentally verified human proteoforms on-line at http://human-proteoform-atlas.org and is a direct descendant of the Consortium of Top-Down Proteomics' (CTDP) Proteoform Atlas. Proteoforms are the specific forms of protein molecules expressed by our cells and include the unique combination of post-translational modifications (PTMs), alternative splicing and other sources of variation deriving from a specific gene. The HPfA uses a FAIR system to assign persistent identifiers to proteoforms which allows for redundancy calling and tracking from prior and future studies in the growing community of proteoform biology and measurement. The HPfA is organized around open ontologies and enables flexible classification of proteoforms. To achieve this, a public registry of experimentally verified proteoforms was also created. Submission of new proteoforms can be processed through email vianrtdphelp@northwestern.edu, and future iterations of these proteoform atlases will help to organize and assign function to proteoforms, their PTMs and their complexes in the years ahead.
Collapse
Affiliation(s)
- Michael A R Hollas
- Departments of Molecular Biosciences, Chemistry, and the Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Matthew T Robey
- Departments of Molecular Biosciences, Chemistry, and the Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Ryan T Fellers
- Departments of Molecular Biosciences, Chemistry, and the Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Richard D LeDuc
- Departments of Molecular Biosciences, Chemistry, and the Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Paul M Thomas
- Departments of Molecular Biosciences, Chemistry, and the Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Neil L Kelleher
- Departments of Molecular Biosciences, Chemistry, and the Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
7
|
Marjani N, Dareini M, Asadzade-Lotfabad M, Pejhan M, Mokaberi P, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: spectroscopic, calorimetric, and molecular dynamics approaches. LUMINESCENCE 2021; 37:310-322. [PMID: 34862709 DOI: 10.1002/bio.4173] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023]
Abstract
With advances in new drug therapies, it is essential to understand the interactions between drugs and target molecules. In this study, we applied multiple spectroscopic techniques including absorbance, fluorescence, circular dichroism spectroscopy, viscosity, thermal melting, calorimetric, and molecular dynamics (MD) simulation to study the interaction between 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione (PPF) and calf thymus DNA (ct DNA) in the absence or presence of histone H1. PPF exhibits a high binding affinity towards ct DNA in binary and ternary systems. In addition, the result for the binding constant was observed within the range 104 M-1 achieved through fluorescence quenching data, while the values for enthalpy and entropy changes for ct DNA-PPF and (ct DNA-H1) PPF complexes were measured to be -72.54 kJ.mol-1 , -161.14 J.mol-1 K-1 , -85.34 kJ.mol-1 , and -19.023 J.mol-1 K-1 , respectively. Furthermore, in accordance with circular dichroism spectra, the inducement of ct DNA structural changes was observed during binding of PPF and H1 in binary and ternary system forms. The essential roles of hydrogen bonding and van der Waals forces throughout the interaction were suggested using thermodynamic parameters. According to the obtained data, the interaction mode of ct DNA-PPF and (ct DNA-H1) PPF complexes was intercalation binding. Suggested by the MD simulation study, the ct DNA-H1 complex caused a reduction in the stability of the DNA structure in the presence or absence of ligand, which demonstrated that PPF as an intercalating agent can further distort the structure. The information achieved from this study will be very helpful in understanding the effects of PPF on the conformational state of ct DNA in the absence or presence of the H1 molecule, which seems to be quite significant for clarifying the mechanisms of action and its pharmacokinetics.
Collapse
Affiliation(s)
- Narges Marjani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maryam Dareini
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maryam Asadzade-Lotfabad
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahtab Pejhan
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
8
|
Abstract
In this review, Prendergast and Reinberg discuss the likelihood that the family of histone H1 variants may be key to understanding several fundamental processes in chromatin biology and underscore their particular contributions to distinctly significant chromatin-related processes. Major advances in the chromatin and epigenetics fields have uncovered the importance of core histones, histone variants and their post-translational modifications (PTMs) in modulating chromatin structure. However, an acutely understudied related feature of chromatin structure is the role of linker histone H1. Previous assumptions of the functional redundancy of the 11 nonallelic H1 variants are contrasted by their strong evolutionary conservation, variability in their potential PTMs, and increased reports of their disparate functions, sub-nuclear localizations and unique expression patterns in different cell types. The commonly accepted notion that histone H1 functions solely in chromatin compaction and transcription repression is now being challenged by work from multiple groups. These studies highlight histone H1 variants as underappreciated facets of chromatin dynamics that function independently in various chromatin-based processes. In this review, we present notable findings involving the individual somatic H1 variants of which there are seven, underscoring their particular contributions to distinctly significant chromatin-related processes.
Collapse
Affiliation(s)
- Laura Prendergast
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| |
Collapse
|
9
|
Saha A, Dalal Y. A glitch in the snitch: the role of linker histone H1 in shaping the epigenome in normal and diseased cells. Open Biol 2021; 11:210124. [PMID: 34343462 PMCID: PMC8331230 DOI: 10.1098/rsob.210124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone H1s or the linker histones are a family of dynamic chromatin compacting proteins that are essential for higher-order chromatin organization. These highly positively charged proteins were previously thought to function solely as repressors of transcription. However, over the last decade, there is a growing interest in understanding this multi-protein family, finding that not all variants act as repressors. Indeed, the H1 family members appear to have distinct affinities for chromatin and may potentially affect distinct functions. This would suggest a more nuanced contribution of H1 to chromatin organization. The advent of new technologies to probe H1 dynamics in vivo, combined with powerful computational biology, and in vitro imaging tools have greatly enhanced our knowledge of the mechanisms by which H1 interacts with chromatin. This family of proteins can be metaphorically compared to the Golden Snitch from the Harry Potter series, buzzing on and off several regions of the chromatin, in combat with competing transcription factors and chromatin remodellers, thereby critical to the epigenetic endgame on short and long temporal scales in the life of the nucleus. Here, we summarize recent efforts spanning structural, computational, genomic and genetic experiments which examine the linker histone as an unseen architect of chromatin fibre in normal and diseased cells and explore unanswered fundamental questions in the field.
Collapse
Affiliation(s)
- Ankita Saha
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Lui KW, Ngai SM. PrSM-Level Side-by-Side Comparison of Online LC-MS Methods with Intact Histone H3 and H4 Proteoforms. J Proteome Res 2021; 20:4331-4345. [PMID: 34327993 DOI: 10.1021/acs.jproteome.1c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heterogeneity of histone H3 proteoforms makes histone H3 top-down analysis challenging. To enhance the detection coverage of the proteoforms, performing liquid chromatography (LC) front-end to mass spectrometry (MS) detection is recommended. Here, using optimized electron-transfer/high-energy collision dissociation (EThcD) parameters, we have conducted a proteoform-spectrum match (PrSM)-level side-by-side comparison of reversed-phase LC-MS (RPLC-MS), "dual-gradient" weak cation-exchange/hydrophilic interaction LC-MS (dual-gradient WCX/HILIC-MS), and "organic-rich" WCX/HILIC-MS on the top-down analyses of H3.1, H3.2, and H4 proteins extracted from a HeLa cell culture. While both dual-gradient WCX/HILIC and organic-rich WCX/HILIC could resolve intact H3 and H4 proteoforms by the number of acetylations, the organic-rich method could enhance the separations of different trimethyl/acetyl near-isobaric H3 proteoforms. In comparison with RPLC-MS, both of the WCX/HILIC-MS methods enhanced the qualities of the H3 PrSMs and remarkably improved the range, reproducibility, and confidence in the identifications of H3 proteoforms.
Collapse
Affiliation(s)
- Kin-Wing Lui
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, P. R. China
| | - Sai-Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, P. R. China.,State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, P. R. China
| |
Collapse
|
11
|
Holt MV, Wang T, Young NL. Expeditious Extraction of Histones from Limited Cells or Tissue Samples and Quantitative Top-Down Proteomic Analysis. Curr Protoc 2021; 1:e26. [PMID: 33534192 DOI: 10.1002/cpz1.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Histones are the primary protein component of chromatin and are involved in virtually all DNA-templated processes. Histones are abundantly post-translationally modified by a variety of chromatin-modifying machinery. These post-translational modifications (PTMs) are recognized by a range of "reader" proteins, which recruit additional proteins to specific locations on chromatin and impart precise and powerful effects on gene regulation. Each PTM typically exerts a positive or negative effect on transcription, and recent studies have shown that histone PTMs function in a combinatorial histone code: that is, histone PTMs function in combination to exert precise DNA-templated regulation. Thus, there is a need to identify and understand proteoforms, or unambiguously defined single protein molecules with all combinations of modifications. Top-down proteomics is currently the only viable approach for identifying and quantitating histone proteoforms, and mass spectrometry instruments have become sufficiently powerful to perform these quantitative analyses in a robust and high-throughput fashion. These recent innovations have enabled new experimental directions in chromatin research but have also introduced temporal and other constraints. This has led us to develop the protocols described here, which increase throughput, reduce sample requirements, and maintain robust quantitation. Although originally designed for high-throughput quantitative top-down proteomics, the protocols described here are useful for a wide range of chromatin biology applications. Starting with small amounts of cells or tissue, we describe two basic protocols for exceptionally rapid and efficient nuclei isolation, acid extraction of histones, and high-performance liquid chromatography fractionation of histones into histone families. We additionally describe the quantitative top-down proteomic analysis of histone H4 proteoforms. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Nuclei isolation and acid extraction of histones from mammalian cells in culture/tissues Basic Protocol 2: HPLC fractionation of histones and histone H4 HPLC-MS/MS Support Protocol: Preparation of intact H3 histone tails by Glu-C digestion.
Collapse
Affiliation(s)
- Matthew V Holt
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Tao Wang
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas.,Current Address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Melby JA, Roberts DS, Larson EJ, Brown KA, Bayne EF, Jin S, Ge Y. Novel Strategies to Address the Challenges in Top-Down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1278-1294. [PMID: 33983025 PMCID: PMC8310706 DOI: 10.1021/jasms.1c00099] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed. In this Account & Perspective, we discuss the major challenges currently facing the top-down proteomics field, particularly in protein solubility, proteome dynamic range, proteome complexity, data analysis, proteoform-function relationship, and analytical throughput for precision medicine. We specifically review the major technology developments addressing these challenges with an emphasis on our research group's efforts, including the development of top-down MS-compatible surfactants for protein solubilization, functionalized nanoparticles for the enrichment of low-abundance proteoforms, strategies for multidimensional chromatography separation of proteins, and a new comprehensive user-friendly software package for top-down proteomics. We have also made efforts to connect proteoforms with biological functions and provide our visions on what the future holds for top-down proteomics.
Collapse
Affiliation(s)
- Jake A Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
13
|
Combinations of histone post-translational modifications. Biochem J 2021; 478:511-532. [DOI: 10.1042/bcj20200170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Histones are essential proteins that package the eukaryotic genome into its physiological state of nucleosomes, chromatin, and chromosomes. Post-translational modifications (PTMs) of histones are crucial to both the dynamic and persistent regulation of the genome. Histone PTMs store and convey complex signals about the state of the genome. This is often achieved by multiple variable PTM sites, occupied or unoccupied, on the same histone molecule or nucleosome functioning in concert. These mechanisms are supported by the structures of ‘readers’ that transduce the signal from the presence or absence of PTMs in specific cellular contexts. We provide background on PTMs and their complexes, review the known combinatorial function of PTMs, and assess the value and limitations of common approaches to measure combinatorial PTMs. This review serves as both a reference and a path forward to investigate combinatorial PTM functions, discover new synergies, and gather additional evidence supporting that combinations of histone PTMs are the central currency of chromatin-mediated regulation of the genome.
Collapse
|
14
|
Noberini R, Robusti G, Bonaldi T. Mass spectrometry-based characterization of histones in clinical samples: applications, progresses, and challenges. FEBS J 2021; 289:1191-1213. [PMID: 33415821 PMCID: PMC9291046 DOI: 10.1111/febs.15707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
In the last 15 years, increasing evidence linking epigenetics to various aspects of cancer biology has prompted the investigation of histone post-translational modifications (PTMs) and histone variants in the context of clinical samples. The studies performed so far demonstrated the potential of this type of investigations for the discovery of both potential epigenetic biomarkers for patient stratification and novel epigenetic mechanisms potentially targetable for cancer therapy. Although traditionally the analysis of histones in clinical samples was performed through antibody-based methods, mass spectrometry (MS) has emerged as a more powerful tool for the unbiased, comprehensive, and quantitative investigation of histone PTMs and variants. MS has been extensively used for the analysis of epigenetic marks in cell lines and animal tissue and, thanks to recent technological advances, is now ready to be applied also to clinical samples. In this review, we will provide an overview on the quantitative MS-based analysis of histones, their PTMs and their variants in cancer clinical samples, highlighting current achievements and future perspectives for this novel field of research. Among the different MS-based approaches currently available for histone PTM profiling, we will focus on the 'bottom-up' strategy, namely the analysis of short proteolytic peptides, as it has been already successfully employed for the analysis of clinical samples.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
15
|
Histone H1 Post-Translational Modifications: Update and Future Perspectives. Int J Mol Sci 2020; 21:ijms21165941. [PMID: 32824860 PMCID: PMC7460583 DOI: 10.3390/ijms21165941] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Histone H1 is the most variable histone and its role at the epigenetic level is less characterized than that of core histones. In vertebrates, H1 is a multigene family, which can encode up to 11 subtypes. The H1 subtype composition is different among cell types during the cell cycle and differentiation. Mass spectrometry-based proteomics has added a new layer of complexity with the identification of a large number of post-translational modifications (PTMs) in H1. In this review, we summarize histone H1 PTMs from lower eukaryotes to humans, with a particular focus on mammalian PTMs. Special emphasis is made on PTMs, whose molecular function has been described. Post-translational modifications in H1 have been associated with the regulation of chromatin structure during the cell cycle as well as transcriptional activation, DNA damage response, and cellular differentiation. Additionally, PTMs in histone H1 that have been linked to diseases such as cancer, autoimmune disorders, and viral infection are examined. Future perspectives and challenges in the profiling of histone H1 PTMs are also discussed.
Collapse
|
16
|
Affiliation(s)
- Clement
M. Potel
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Simone Lemeer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
Jiang T, Hoover ME, Holt MV, Freitas MA, Marshall AG, Young NL. Middle-Down Characterization of the Cell Cycle Dependence of Histone H4 Posttranslational Modifications and Proteoforms. Proteomics 2018; 18:e1700442. [PMID: 29667342 PMCID: PMC8087174 DOI: 10.1002/pmic.201700442] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Post-translational modifications (PTMs) of histones are important epigenetic regulatory mechanisms that are often dysregulated in cancer. We employ middle-down proteomics to investigate the PTMs and proteoforms of histone H4 during cell cycle progression. We use pH gradient weak cation exchange-hydrophilic interaction liquid chromatography (WCX-HILIC) for on-line liquid chromatography-mass spectrometry analysis to separate and analyze the proteoforms of histone H4. This procedure provides enhanced separation of proteoforms, including positional isomers, and simplifies downstream data analysis. We use ultrahigh mass accuracy and resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to unambiguously distinguish between acetylation and tri-methylation (∆m = 0.036 Da). In total, we identify and quantify 233 proteoforms of histone H4 in two breast cancer cell lines. We observe significant increases in S1 phosphorylation during mitosis, implicating an important role in mitotic chromatin condensation. A decrease of K20 unmodified proteoforms is observed as the cell cycle progresses, corresponding to an increase of K20 mono- and di-methylation. Acetylation at K5, K8, K12, and K16 declines as cells traverse from S phase to mitosis, suggesting cell cycle-dependence and an important role during chromatin replication and condensation. These new insights into the epigenetics of the cell cycle may provide new diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| | - Michael E Hoover
- Department of Cancer Biology and Genetics, Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Matthew V Holt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Alan G Marshall
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Nicolas L Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
18
|
Simithy J, Sidoli S, Garcia BA. Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics 2018. [PMID: 29512899 DOI: 10.1002/pmic.201700309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromatin fiber is the control panel of eukaryotic cells. Chromatin is mostly composed of DNA, which contains the genetic instruction for cell phenotype, and histone proteins, which provide the scaffold for chromatin folding and part of the epigenetic inheritance. Histone writers/erasers "flag" chromatin regions by catalyzing/removing covalent histone post-translational modifications (PTMs). Histone PTMs chemically contribute to chromatin relaxation or compaction and recruit histone readers to modulate DNA readout. The precursors of protein PTMs are mostly small metabolites. For instance, acetyl-CoA is used for acetylation, ATP for phosphorylation, and S-adenosylmethionine for methylation. Interestingly, PTMs such as acetylation can occur at neutral pH also without their respective enzyme when the precursor is sufficiently concentrated. Therefore, it is essential to differentially quantify the contribution of histone writers/erasers versus the effect of local concentration of metabolites to understand the primary regulation of histone PTM abundance. Aberrant phenotypes such as cancer cells have misregulated metabolism and thus the composition and the modulation of chromatin is not only driven by enzymatic tuning. In this review, the latest advances in mass spectrometry (MS) to analyze histone PTMs and the most adopted quantification methods for related metabolites, both necessary to understand PTM relative changes, are discussed.
Collapse
Affiliation(s)
- Johayra Simithy
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Tucker R, Pedro A. Blood-derived non-extracellular vesicle proteins as potential biomarkers for the diagnosis of early ER+ breast cancer and detection of lymph node involvement. F1000Res 2018; 7:283. [PMID: 29946439 PMCID: PMC6008847 DOI: 10.12688/f1000research.14129.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV's) are membrane surrounded structures released by different cell types and are emerging as potential therapeutic and diagnostic targets in cancer. In the present study, plasma samples derived from 7 patients with metastatic and non-metastatic ER+ (estrogen receptor positive) breast cancer (BC) were collected and their respective (EVs) isolated and the protein content analyzed by mass spectrometry and FunRich analysis. Two putative plasma biomarkers (absent in healthy controls samples) were identified which could be used to detect early ER+ breast cancer and for those with lymph node (LN) involvement However, given the current limitations of the EV isolation method used, it is possible that these biomarkers did not originate from EVs and may represent blood-derived extracellular proteins. Further work in a larger patient cohort is warranted to confirm these findings and examine the diagnostic potential of these biomarkers.
Collapse
Affiliation(s)
- Rod Tucker
- Roma Laboratories Ltd, Hull, East Yorkshire, HU7 3GE, UK
| | - Ana Pedro
- Roma Laboratories Ltd, Hull, East Yorkshire, HU7 3GE, UK
| |
Collapse
|
20
|
Tucker R, Pedro A. Blood-derived extracellular proteins as potential biomarkers for the diagnosis of early ER+ breast cancer and detection of lymph node involvement. F1000Res 2018; 7:283. [PMID: 29946439 PMCID: PMC6008847 DOI: 10.12688/f1000research.14129.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 09/27/2023] Open
Abstract
Extracellular vesicles (EV's) are membrane surrounded structures released by different cell types and are emerging as potential therapeutic and diagnostic targets in cancer. In the present study, plasma samples derived from 7 patients with metastatic and non-metastatic ER+ (estrogen receptor positive) breast cancer (BC) were collected and their respective (EVs) isolated and the protein content analyzed by mass spectrometry and FunRich analysis. Here we report on the presence of two putative plasma EV biomarkers (which were absent in healthy controls samples) that could be used to detect early ER+ breast cancer and for those with lymph node (LN) involvement However, given the preliminar nature of the work, further investigation in a larger patient cohort is warranted to corroborate these findings. If confirmed, these biomarkers could be incorporated into simple blood test kit for the early detection of those with ER+ breast cancer and lymph node involvement.
Collapse
Affiliation(s)
- Rod Tucker
- Roma Laboratories Ltd, Hull, East Yorkshire, HU7 3GE, UK
| | - Ana Pedro
- Roma Laboratories Ltd, Hull, East Yorkshire, HU7 3GE, UK
| |
Collapse
|
21
|
Tucker R, Pedro A. Blood-derived extracellular vesicle proteins as potential biomarkers for the diagnosis of early ER+ breast cancer and detection of lymph node involvement. F1000Res 2018; 7:283. [PMID: 29946439 PMCID: PMC6008847 DOI: 10.12688/f1000research.14129.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 09/27/2023] Open
Abstract
Extracellular vesicles (EV's) are membrane surrounded structures released by different cell types and are emerging as potential therapeutic and diagnostic targets in cancer. In the present study, plasma samples derived from 7 patients with metastatic and non-metastatic ER+ (estrogen receptor positive) breast cancer (BC) were collected and their respective (EVs) isolated and the protein content analyzed by mass spectrometry and FunRich analysis. Here we report on the presence of two putative plasma EV biomarkers (which were absent in healthy controls samples) that could be used to detect early ER+ breast cancer and for those with lymph node (LN) involvement However, given the preliminar nature of the work, further investigation in a larger patient cohort is warranted to corroborate these findings. If confirmed, these biomarkers could be incorporated into simple blood test kit for the early detection of those with ER+ breast cancer and lymph node involvement.
Collapse
Affiliation(s)
- Rod Tucker
- Roma Laboratories Ltd, Hull, East Yorkshire, HU7 3GE, UK
| | - Ana Pedro
- Roma Laboratories Ltd, Hull, East Yorkshire, HU7 3GE, UK
| |
Collapse
|
22
|
Liu X, Yang C, Hu Y, Lei E, Lin X, Zhao L, Zou Z, Zhang A, Zhou H, Chen H, Qian P, Jin M. HIST1H1C Regulates Interferon-β and Inhibits Influenza Virus Replication by Interacting with IRF3. Front Immunol 2017; 8:350. [PMID: 28392790 PMCID: PMC5364133 DOI: 10.3389/fimmu.2017.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/10/2017] [Indexed: 01/26/2023] Open
Abstract
Influenza virus NS2 is well known for its role in viral ribonucleoprotein nuclear export; however, its function has not been fully understood. A recent study showed that NS2 might interact with HIST1H1C (H1C, H1.2). Histones have been found to affect influenza virus replication, such as the H2A, H2B, H3, and H4, but H1 has not been detected. Here, we found that H1C interacts with NS2 via its C-terminal in the nucleus and that H1C affects influenza virus replication. The H1N1 influenza virus replicates better in H1C knockout A549 cells compared to wild-type A549 cells, primarily because of the regulation of H1C on interferon-β (IFN-β). Further studies showed that the H1C phosphorylation mutant (T146A) decreases IFN-β, while H1C methylation mutants (K34A, K187A) increases IFN-β by releasing the nucleosome and promoting IRF3 binding to the IFN-β promoter. Interestingly, NS2 interacts with H1C, which reduces H1C-IRF3 interaction and results in the inhibition of IFN-β enhanced by H1C. In summary, our study reveals a novel function of H1C to regulate IFN-β and uncovers an underlying mechanism, which suggests H1C plays a role in epigenetic regulation. Moreover, our results suggest a novel mechanism for the influenza virus to antagonize the innate immune response by NS2.
Collapse
Affiliation(s)
- Xiaokun Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Cha Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Yong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Erming Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
|
24
|
Abbaoui B, Telu KH, Lucas CR, Thomas-Ahner JM, Schwartz SJ, Clinton SK, Freitas MA, Mortazavi A. The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer. J Proteomics 2017; 156:94-103. [PMID: 28132875 DOI: 10.1016/j.jprot.2017.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/07/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
Cruciferous vegetable intake is associated with reduced risk of bladder cancer, yet mechanisms remain unclear. Cruciferous vegetable isothiocyanates (ITCs), namely sulforaphane (SFN) and erucin (ECN), significantly inhibit histone deacetylase (HDAC) activity in human bladder cancer cells representing superficial to invasive biology (59-83% inhibition with 20μM, 48h treatment), and in bladder cancer xenografts (59±3% ECN inhibition). Individual HDACs inhibited by SFN and ECN include HDACs 1, 2, 4 and 6. Interestingly, global acetylation status of histones H3 or H4 remain unaltered. The interplay between HDAC inhibition and modest modulation of AcH3 and AcH4 status is partially explained by decreased histone acetyl transferase activity (48.8±5.3%). In contrast, a significant decrease in phosphorylation status of all isoforms of histone H1 was observed, concomitant with increased phosphatase PP1β and PP2A activity. Together, these findings suggest that ITCs modulate histone status via HDAC inhibition and phosphatase enhancement. This allows for reduced levels of histone H1 phosphorylation, a marker correlated with human bladder cancer progression. Therefore, ITC-mediated inhibition of histone H1 phosphorylation presents a novel direction of research in elucidating epidemiological relationships and supports future food-based prevention strategies. SIGNIFICANCE Collectively, our findings suggest that the cruciferous vegetable isothiocyanates: sulforaphane (SFN) and erucin (ECN), impact histones status in bladder cancer cells by modulating specific HDACs and HATs, and enhancing phosphatase activity, resulting in reduction of histone H1 phosphorylation. These findings are significant due to the fact that our previous work positively correlated histone H1 phosphorylation with bladder cancer carcinogenesis and progression. Therefore, we propose that SFN and ECN may inhibit bladder carcinogenesis via epigenetic modulation of gene expression associated with histone H1 phosphorylation. These efforts may elucidate biomarkers useful in epidemiologic studies related to cruciferous vegetable intake and cancer risk or provide intermediate biomarkers for food-based clinical intervention studies in high-risk cohorts.
Collapse
Affiliation(s)
- Besma Abbaoui
- The Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kelly H Telu
- Department of Chemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher R Lucas
- The Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Steven J Schwartz
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Division of Medical Oncology, Department of Internal Medicine, College of Medicine; The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Amir Mortazavi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Division of Medical Oncology, Department of Internal Medicine, College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Geis-Asteggiante L, Ostrand-Rosenberg S, Fenselau C, Edwards NJ. Evaluation of Spectral Counting for Relative Quantitation of Proteoforms in Top-Down Proteomics. Anal Chem 2016; 88:10900-10907. [PMID: 27748581 PMCID: PMC6178225 DOI: 10.1021/acs.analchem.6b02151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Spectral counting is a straightforward label-free quantitation strategy used in bottom-up proteomics workflows. The application of spectral counting in label-free top-down proteomics workflows can be similarly straightforward but has not been applied as widely as quantitation by chromatographic peak areas or peak intensities. In this study, we evaluate spectral counting for quantitative comparisons in label-free top-down proteomics workflows by comparison with chromatographic peak areas and intensities. We tested these quantitation approaches by spiking standard proteins into a complex protein background and comparing relative quantitation by spectral counts with normalized chromatographic peak areas and peak intensities from deconvoluted extracted ion chromatograms of the spiked proteins. Ratio estimates and statistical significance of differential abundance from each quantitation technique are evaluated against the expected ratios and each other. In this experiment, spectral counting was able to detect differential abundance of spiked proteins for expected ratios ≥2, with comparable or higher sensitivity than normalized areas and intensities. We also found that while ratio estimates using peak areas and intensities are usually more accurate, the spectral-counting-based estimates are not substantially worse. Following the evaluation and comparison of these label-free top-down quantitation strategies using spiked proteins, spectral counting, along with normalized chromatographic peak areas and intensities, were used to analyze the complex protein cargo of exosomes shed by myeloid-derived suppressor cells collected under high and low conditions of inflammation, revealing statistically significant differences in abundance for several proteoforms, including the active pro-inflammatory proteins S100A8 and S100A9.
Collapse
Affiliation(s)
| | | | | | - Nathan J. Edwards
- Georgetown University Medical Center, Washington DC 20007, United States
| |
Collapse
|
26
|
Sun Y, Jia X, Gao Q, Liu X, Hou L. The ubiquitin ligase UBE4A inhibits prostate cancer progression by targeting interleukin-like EMT inducer (ILEI). IUBMB Life 2016; 69:16-21. [PMID: 27862841 DOI: 10.1002/iub.1585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is an important prerequisite for metastasis to secondary organs. Interleukin-like EMT inducer (ILEI) protein has been shown to translationally upregulated during EMT and metastatic progression as a consequence of aberrant TGF-β signaling. Our initial evaluation of FAM3C (encoding ILEI) and ILEI expression in normal prostate (PCS-440-010) and prostate cancer cell lines (DU145, LNCaP, and PC3) revealed detectable protein expression in only LNCaP cell line even though all cell lines tested had comparable FAM3C expression. Given that PC3 and DU145 cell lines did not have detectable ILEI expression hinted at additional level of regulation of ILEI expression. Treatment with MG-132 resulted in robust detection of ILEI in the PCS-440-010, PC3 and DU145 cell lines, suggesting that at least in these cell lines, ILEI is actively degraded by the proteasome. Mass spectrometric analysis of FLAG immunoprecipitates of untreated and MG-132 treated FLAG-ILEI transfected cells indicated that UBE4A and UBE3C ubiquitin ligases were interacting with ILEI. Ectopic overexpression of UBE4A, but not UBE3C, resulted in destabilization of ILEI in LNCaP cells, whereas RNAi-mediated silencing of UBE4A in PCS-440-010, PC3 and DU145 cell lines resulted in robust accumulation of ILEI, indicating UBE4A as the cognate ubiquitin ligase for ILEI. Co-immunoprecipitation experiments established direct interaction of endogenous ILEI and UBE4A. Furthermore, co-immunoprecipitation of FLAG-tagged ILEI in cells co-transfected with either HA-UBE4A or HA-UBE3C revealed robust polyubiquitinated smear of ILEI in cells transfected with UBE4A, but not UBE3C, thus confirming UBE4A as the ubiquitin ligase for ILEI degradation. Ectopic overexpression of UBE4A, but not UBE3C, in cells was downregulated in vitro migration and invasion in these cells. Cumulatively, our data reveals a novel post-translational regulatory mechanism of regulating ILEI1 expression, a protein required for metastatic progression in prostate cancer cells. © 2016 IUBMB Life, 69(1):16-21, 2017.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital of the People's Liberation Army (PLA), Shijiazhuang, Hebei, China
| | - Xiaopeng Jia
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiang Gao
- Department of Nutrition and Food Hygiene, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xing Liu
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Lianguo Hou
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
27
|
Anderson LC, Karch KR, Ugrin SA, Coradin M, English AM, Sidoli S, Shabanowitz J, Garcia BA, Hunt DF. Analyses of Histone Proteoforms Using Front-end Electron Transfer Dissociation-enabled Orbitrap Instruments. Mol Cell Proteomics 2016; 15:975-88. [PMID: 26785730 PMCID: PMC4813714 DOI: 10.1074/mcp.o115.053843] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Histones represent a class of proteins ideally suited to analyses by top-down mass spectrometry due to their relatively small size, the high electron transfer dissociation-compatible charge states they exhibit, and the potential to gain valuable information concerning combinatorial post-translational modifications and variants. We recently described new methods in mass spectrometry for the acquisition of high-quality MS/MS spectra of intact proteins (Anderson, L. C., English, A. M., Wang, W., Bai, D. L., Shabanowitz, J., and Hunt, D. F. (2015) Int. J. Mass Spectrom. 377, 617-624). Here, we report an extension of these techniques. Sequential ion/ion reactions carried out in a modified Orbitrap Velos Pro/Elite(TM) capable of multiple fragment ion fills of the C-trap, in combination with data-dependent and targeted HPLC-MS experiments, were used to obtain high resolution MS/MS spectra of histones from butyrate-treated HeLa cells. These spectra were used to identify several unique intact histone proteoforms with up to 81% sequence coverage. We also demonstrate that parallel ion parking during ion/ion proton transfer reactions can be used to separate species of overlapping m/z that are not separated chromatographically, revealing previously indiscernible signals. Finally, we characterized several truncated forms of H2A and H2B found within the histone fractions analyzed, achieving up to 93% sequence coverage by electron transfer dissociation MS/MS. Results of follow-up in vitro experiments suggest that some of the truncated histone H2A proteoforms we observed can be generated by cathepsin L, an enzyme known to also catalyze clipping of histone H3.
Collapse
Affiliation(s)
- Lissa C Anderson
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Kelly R Karch
- the §Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and
| | - Scott A Ugrin
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Mariel Coradin
- the §Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and
| | - A Michelle English
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Simone Sidoli
- the §Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and
| | - Jeffrey Shabanowitz
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Benjamin A Garcia
- the §Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and
| | - Donald F Hunt
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904; the ¶Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
28
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|