1
|
Yu M, Feng Y, Yan J, Zhang X, Tian Z, Wang T, Wang J, Shen W. Transcriptomic regulatory analysis of skeletal muscle development in landrace pigs. Gene 2024; 915:148407. [PMID: 38531491 DOI: 10.1016/j.gene.2024.148407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
The development of pig skeletal muscle is a complex dynamic regulation process, which mainly includes the formation of primary and secondary muscle fibers, the remodeling of muscle fibers, and the maturation of skeletal muscle; However, the regulatory mechanism of the entire developmental process remains unclear. This study analyzed the whole-transcriptome data of skeletal muscles at 27 developmental nodes (E33-D180) in Landrace pigs, and their key regulatory factors in the development process were identified using the bioinformatics method. Firstly, we constructed a transcriptome expression map of skeletal muscle development from embryo to adulthood in Landrace pig. Subsequently, due to drastic change in gene expression, the perinatal periods including E105, D0 and D9, were focused, and the genes related to the process of muscle fiber remodeling and volume expansion were revealed. Then, though conjoint analysis with miRNA and lncRNA transcripts, a ceRNA network were identified, which consist of 11 key regulatory genes (such as CHAC1, RTN4IP1 and SESN1), 7 miRNAs and 43 lncRNAs, and they potentially play an important role in the process of muscle fiber differentiation, muscle fiber remodeling and volume expansion, intramuscular fat deposition, and other skeletal muscle developmental events. In summary, we reveal candidate genes and underlying molecular regulatory networks associated with perinatal skeletal muscle fiber type remodeling and expansion. These data provide new insights into the molecular regulation of mammalian skeletal muscle development and diversity.
Collapse
Affiliation(s)
- Mubin Yu
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiamao Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyuan Zhang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Tian
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Wang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Feng X, Tong L, Ma L, Mu T, Yu B, Ma R, Li J, Wang C, Zhang J, Gu Y. Mining key circRNA-associated-ceRNA networks for milk fat metabolism in cows with varying milk fat percentages. BMC Genomics 2024; 25:323. [PMID: 38561663 PMCID: PMC10983688 DOI: 10.1186/s12864-024-10252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Cow milk fat is an essential indicator for evaluating and measuring milk quality and cow performance. Growing research has identified the molecular functions of circular RNAs (circRNAs) necessary for mammary gland development and lactation in mammals. METHOD The present study analyzed circRNA expression profiling data in mammary epithelial cells (MECs) from cows with highly variable milk fat percentage (MFP) using differential expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS A total of 309 differentially expressed circRNAs (DE-circRNAs) were identified in the high and low MFP groups. WGCNA analysis revealed that the pink module was significantly associated with MFP (r = - 0.85, P = 0.007). Parental genes of circRNAs in this module were enriched mainly in lipid metabolism-related signaling pathways, such as focal adhesion, ECM-receptor interaction, adherens junction and AMPK. Finally, six DE-circRNAs were screened from the pink module: circ_0010571, circ_0007797, circ_0002746, circ_0003052, circ_0004319, and circ_0012840. Among them, circ_0002746, circ_0003052, circ_0004319, and circ_0012840 had circular structures and were highly expressed in mammary tissues. Subcellular localization revealed that these four DE-circRNAs may play a regulatory role in the mammary glands of dairy cows, mainly as competitive endogenous RNAs (ceRNAs). Seven hub target genes (GNB1, GNG2, PLCB1, PLCG1, ATP6V0C, NDUFS4, and PIGH) were obtained by constructing the regulatory network of their ceRNAs and then analyzed by CytoHubba and MCODE plugins in Cytoscape. Functional enrichment analysis revealed that these genes are crucial and most probable ceRNA regulators in milk fat metabolism. CONCLUSIONS Our study identified several vital circRNAs and ceRNAs affecting milk fat synthesis, providing new research ideas and a theoretical basis for cow lactation, milk quality, and breed improvement.
Collapse
Affiliation(s)
- Xiaofang Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Lijia Tong
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Lina Ma
- NingXia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Tong Mu
- School of Life Science, Yan'an University, 716000, Yanan, China
| | - Baojun Yu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Ruoshuang Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Jiwei Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Chuanchuan Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Juan Zhang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| | - Yaling Gu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| |
Collapse
|
3
|
Bonnet A, Bluy L, Gress L, Canario L, Ravon L, Sécula A, Billon Y, Liaubet L. Sex and fetal genome influence gene expression in pig endometrium at the end of gestation. BMC Genomics 2024; 25:303. [PMID: 38515025 PMCID: PMC10958934 DOI: 10.1186/s12864-024-10144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.
Collapse
Affiliation(s)
- Agnes Bonnet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France.
| | - Lisa Bluy
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Ravon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Aurelie Sécula
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
- Present Address: IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Yvon Billon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| |
Collapse
|
4
|
Ribeiro DM, Coelho D, Costa M, Carvalho DFP, Leclercq CC, Renaut J, Freire JPB, Almeida AM, Mestre Prates JA. Integrated transcriptomics and proteomics analysis reveals muscle metabolism effects of dietary Ulva lactuca and ulvan lyase supplementation in weaned piglets. Sci Rep 2024; 14:4589. [PMID: 38409238 DOI: 10.1038/s41598-024-55462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation may have contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects of cell wall degradation during digestion.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Diogo Coelho
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mónica Costa
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Céline C Leclercq
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - André Martinho Almeida
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José António Mestre Prates
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
5
|
Maigné É, Noirot C, Henry J, Adu Kesewaah Y, Badin L, Déjean S, Guilmineau C, Krebs A, Mathevet F, Segalini A, Thomassin L, Colongo D, Gaspin C, Liaubet L, Vialaneix N. Asterics: a simple tool for the ExploRation and Integration of omiCS data. BMC Bioinformatics 2023; 24:391. [PMID: 37853347 PMCID: PMC10583411 DOI: 10.1186/s12859-023-05504-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND The rapid development of omics acquisition techniques has induced the production of a large volume of heterogeneous and multi-level omics datasets, which require specific and sometimes complex analyses to obtain relevant biological information. Here, we present ASTERICS (version 2.5), a publicly available web interface for the analyses of omics datasets. RESULTS ASTERICS is designed to make both standard and complex exploratory and integration analysis workflows easily available to biologists and to provide high quality interactive plots. Special care has been taken to provide a comprehensive documentation of the implemented analyses and to guide users toward sound analysis choices regarding some specific omics data. Data and analyses are organized in a comprehensive graphical workflow within ASTERICS workspace to facilitate the understanding of successive data editions and analyses leading to a given result. CONCLUSION ASTERICS provides an easy to use platform for omics data exploration and integration. The modular organization of its open source code makes it easy to incorporate new workflows and analyses by external contributors. ASTERICS is available at https://asterics.miat.inrae.fr and can also be deployed using provided docker images.
Collapse
Affiliation(s)
- Élise Maigné
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
| | - Céline Noirot
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
- Université Fédérale de Toulouse, INRAE, Bioinfomics, Genotoul Bioinformatics Facility, 31326, Castanet-Tolosan, France
| | - Julien Henry
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
- Plateforme Biostatistique, Genotoul, Toulouse, France
| | - Yaa Adu Kesewaah
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
- Plateforme Biostatistique, Genotoul, Toulouse, France
| | | | - Sébastien Déjean
- Plateforme Biostatistique, Genotoul, Toulouse, France
- IMT, UMR 5219, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Camille Guilmineau
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
- Plateforme Biostatistique, Genotoul, Toulouse, France
| | - Arielle Krebs
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
- Université Fédérale de Toulouse, INRAE, Bioinfomics, Genotoul Bioinformatics Facility, 31326, Castanet-Tolosan, France
| | - Fanny Mathevet
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
- Plateforme Biostatistique, Genotoul, Toulouse, France
| | | | | | | | - Christine Gaspin
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
- Université Fédérale de Toulouse, INRAE, Bioinfomics, Genotoul Bioinformatics Facility, 31326, Castanet-Tolosan, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Nathalie Vialaneix
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France.
- Plateforme Biostatistique, Genotoul, Toulouse, France.
| |
Collapse
|
6
|
Li WL, Liu YH, Li JX, Ding MT, Adeola AC, Isakova J, Aldashev AA, Peng MS, Huang X, Xie G, Chen X, Yang WK, Zhou WW, Ghanatsaman ZA, Olaogun SC, Sanke OJ, Dawuda PM, Hytönen MK, Lohi H, Esmailizadeh A, Poyarkov AD, Savolainen P, Wang GD, Zhang YP. Multiple Origins and Genomic Basis of Complex Traits in Sighthounds. Mol Biol Evol 2023; 40:msad158. [PMID: 37433053 PMCID: PMC10401622 DOI: 10.1093/molbev/msad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.
Collapse
Affiliation(s)
- Wu-Lue Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Ting Ding
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Jainagul Isakova
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Almaz A Aldashev
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xuezhen Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Guoli Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Kang Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar J Sanke
- Ministry of Agriculture and Natural Resources, Taraba State Government, Jalingo, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Roma, Southern Africa
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Andrey D Poyarkov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| | - Peter Savolainen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, Sweden
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Liaubet L, Guilmineau C, Lefort G, Billon Y, Reigner S, Bailly J, Marty-Gasset N, Gress L, Servien R, Bonnet A, Gilbert H, Vialaneix N, Quesnel H. Plasma 1H-NMR metabolic and amino acid profiles of newborn piglets from two lines divergently selected for residual feed intake. Sci Rep 2023; 13:7127. [PMID: 37130953 PMCID: PMC10154392 DOI: 10.1038/s41598-023-34279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/27/2023] [Indexed: 05/04/2023] Open
Abstract
Together with environmental factors, physiological maturity at birth is a major determinant for neonatal survival and postnatal development in mammalian species. Maturity at birth is the outcome of complex mechanisms of intra-uterine development and maturation during the end of gestation. In pig production, piglet preweaning mortality averages 20% of the litter and thus, maturity is a major welfare and economic concern. Here, we used both targeted and untargeted metabolomic approaches to provide a deeper understanding of the maturity in a model of lines of pigs divergently selected on residual feed intake (RFI), previously shown to have contrasted signs of maturity at birth. Analyses were conducted on plasma metabolome of piglets at birth and integrated with other phenotypic characteristics associated to maturity. We confirmed proline and myo-inositol, previously described for their association with delayed growth, as potential markers of maturity. Urea cycle and energy metabolism were found more regulated in piglets from high and low RFI lines, respectively, suggesting a better thermoregulation ability for the low RFI (with higher feed efficiency) piglets.
Collapse
Affiliation(s)
- Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France.
| | | | - Gaëlle Lefort
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
- Université de Toulouse, INRAE, UR MIAT, 31326, Castanet-Tolosan, France
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Yvon Billon
- INRAE, GENESI, 17700, Saint Pierre d'Amilly, France
| | | | - Jean Bailly
- INRAE, GENESI, 17700, Saint Pierre d'Amilly, France
| | | | - Laure Gress
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - Rémi Servien
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100, Narbonne, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | | | - Hélène Quesnel
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
| |
Collapse
|
8
|
Kitamura N, Zhang S, Morel JD, Nagano U, Taworntawat T, Hosoda S, Nakamura A, Ogawa Y, Benegiamo G, Auwerx J, Tsubota K, Yokoyama Y, Watanabe M. Sodium ferrous citrate and 5-aminolevulinic acid improve type 2 diabetes by maintaining muscle and mitochondrial health. Obesity (Silver Spring) 2023; 31:1038-1049. [PMID: 36823345 DOI: 10.1002/oby.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 02/25/2023]
Abstract
OBJECTIVE Improving mitochondrial function is a promising strategy for intervention in type 2 diabetes mellitus. This study investigated the preventive effects of sodium ferrous citrate (SFC) and 5-aminolevulinic acid phosphate (ALA) on several metabolic dysfunctions associated with obesity because they have been shown to alleviate abnormal glucose metabolism in humans. METHODS Six-week-old male C57BL/6J mice were fed with a normal diet, a high-fat diet, or a high-fat diet supplemented with SFC and ALA for 15 weeks. RESULTS The simultaneous supplementation of SFC + ALA to high-fat diet-fed mice prevented loss of muscle mass, improved muscle strength, and reduced obesity and insulin resistance. SFC + ALA prevented abnormalities in mitochondrial morphology and reverted the diet effect on the skeletal muscle transcriptome, including the expression of glucose uptake and mitochondrial oxidative phosphorylation-related genes. In addition, SFC + ALA prevented the decline in mitochondrial DNA copy number by enhancing mitochondrial DNA maintenance and antioxidant transcription activity, both of which are impaired in high-fat diet-fed mice during long-term fasting. CONCLUSIONS These findings suggest that SFC + ALA supplementation exerts its preventive effects in type 2 diabetes mellitus via improved skeletal muscle and mitochondrial health, further validating its application as a promising strategy for the prevention of obesity-induced metabolic disorders.
Collapse
Affiliation(s)
- Naho Kitamura
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Shiyang Zhang
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Jean-David Morel
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Utana Nagano
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Tanon Taworntawat
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Shotaro Hosoda
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Anna Nakamura
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Giorgia Benegiamo
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kazuo Tsubota
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Yoko Yokoyama
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Mitsuhiro Watanabe
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
- Department of Environment and Information Studies, Keio University, Kanagawa, Japan
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Sécula A, Bluy LE, Chapuis H, Bonnet A, Collin A, Gress L, Cornuez A, Martin X, Bodin L, Bonnefont CMD, Morisson M. Maternal dietary methionine restriction alters hepatic expression of one-carbon metabolism and epigenetic mechanism genes in the ducklings. BMC Genomics 2022; 23:823. [PMID: 36510146 PMCID: PMC9746021 DOI: 10.1186/s12864-022-09066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Embryonic and fetal development is very susceptible to the availability of nutrients that can interfere with the setting of epigenomes, thus modifying the main metabolic pathways and impacting the health and phenotypes of the future individual. We have previously reported that a 38% reduction of the methyl donor methionine in the diet of 30 female ducks reduced the body weight of their 180 mule ducklings compared to that of 190 ducklings from 30 control females. The maternal methionine-restricted diet also altered plasmatic parameters in 30 of their ducklings when compared to that of 30 ducklings from the control group. Thus, their plasma glucose and triglyceride concentrations were higher while their free fatty acid level and alanine transaminase activity were decreased. Moreover, the hepatic transcript level of 16 genes involved in pathways related to energy metabolism was significantly different between the two groups of ducklings. In the present work, we continued studying the liver of these newly hatched ducklings to explore the impact of the maternal dietary methionine restriction on the hepatic transcript level of 70 genes mostly involved in one-carbon metabolism and epigenetic mechanisms. RESULTS Among the 12 genes (SHMT1, GART, ATIC, FTCD, MSRA, CBS, CTH, AHCYL1, HSBP1, DNMT3, HDAC9 and EZH2) identified as differentially expressed between the two maternal diet groups (p-value < 0.05), 3 of them were involved in epigenetic mechanisms. Ten other studied genes (MTR, GLRX, MTHFR, AHCY, ADK, PRDM2, EEF1A1, ESR1, PLAGL1, and WNT11) tended to be differently expressed (0.05 < p-value < 0.10). Moreover, the maternal dietary methionine restriction altered the number and nature of correlations between expression levels of differential genes for one-carbon metabolism and epigenetic mechanisms, expression levels of differential genes for energy metabolism, and phenotypic traits of ducklings. CONCLUSION This avian model showed that the maternal dietary methionine restriction impacted both the mRNA abundance of 22 genes involved in one-carbon metabolism or epigenetic mechanisms and the mRNA abundance of 16 genes involved in energy metabolism in the liver of the newly hatched offspring, in line with the previously observed changes in their phenotypic traits.
Collapse
Affiliation(s)
- Aurélie Sécula
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Lisa E. Bluy
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Hervé Chapuis
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Agnès Bonnet
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Anne Collin
- grid.511104.0INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | - Laure Gress
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Alexis Cornuez
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d’Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Xavier Martin
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d’Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Loys Bodin
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Cécile M. D. Bonnefont
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Mireille Morisson
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| |
Collapse
|
10
|
Lin S, Xian M, Ren T, Mo G, Zhang L, Zhang X. Mining of chicken muscle growth genes and the function of important candidate gene RPL3L in muscle development. Front Physiol 2022; 13:1033075. [PMID: 36407004 PMCID: PMC9669902 DOI: 10.3389/fphys.2022.1033075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2023] Open
Abstract
The birth weight of chickens does not significantly affect the weight at slaughter, while the different growth rate after birth was one of the important reasons for the difference in slaughter weight. Also, the increase in chickens' postnatal skeletal muscle weight is the main cause of the slaughter weight gain, but which genes are involved in this biological process is still unclear. In this study, by integrating four transcriptome datasets containing chicken muscles at different developmental times or different chicken tissues in public databases, a total of nine candidate genes that may be related to postnatal muscle development in chickens were obtained, including RPL3L, FBP2, ASB4, ASB15, CKMT2, PGAM1, YIPF7, PFKM, and LDHA. One of these candidate genes is RPL3L, whose 42 bp insertion/deletion (indel) mutation significantly correlated with multiple carcass traits in the F2 resource population from Xinghua chickens crossing with White Recessive Rock (WRR) chickens, including live weight, carcass weight, half eviscerated weight, eviscerated weight, breast meat weight, wing weight, leg muscle shear force, and breast muscle shear force. Also, there was a very significant difference between different genotypes of the RPL3L 42 bp indel mutation in these trains. Further experiments showed that RPL3L was highly expressed in chicken skeletal muscle, and its overexpression could promote the proliferation and inhibit the differentiation of chicken myoblasts by regulating ASB4 and ASB15 expression. Our findings demonstrated that the RPL3L 42 bp indel may be one of the molecular markers of chicken weight-related traits.
Collapse
Affiliation(s)
- Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mingjian Xian
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tuanhui Ren
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guodong Mo
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Sécula A, Chapuis H, Collin A, Bluy LE, Bonnet A, Bodin L, Gress L, Cornuez A, Martin X, Bonnefont CMD, Morisson M. Maternal dietary methionine restriction alters the expression of energy metabolism genes in the duckling liver. BMC Genomics 2022; 23:407. [PMID: 35637448 PMCID: PMC9150296 DOI: 10.1186/s12864-022-08634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background In mammals, the nutritional status experienced during embryonic development shapes key metabolic pathways and influences the health and phenotype of the future individual, a phenomenon known as nutritional programming. In farmed birds as well, the quantity and quality of feed offered to the dam can impact the phenotype of the offspring. We have previously reported that a 38% reduction in the intake of the methyl donor methionine in the diet of 30 female ducks during the growing and laying periods - from 10 to 51 weeks of age - reduced the body weight of their 180 mule ducklings compared to that of 190 ducklings from 30 control females. The maternal dietary methionine restriction also altered the hepatic energy metabolism studied in 30 of their ducklings. Thus, their plasma glucose and triglyceride concentrations were higher while their plasma free fatty acid level was lower than those measured in the plasma of 30 ducklings from the control group. The objective of this new study was to better understand how maternal dietary methionine restriction affected the livers of their newly hatched male and female ducklings by investigating the hepatic expression levels of 100 genes primarily targeting energy metabolism, amino acid transport, oxidative stress, apoptotic activity and susceptibility to liver injury. Results Sixteen of the genes studied were differentially expressed between the ducklings from the two groups. Maternal dietary methionine restriction affected the mRNA levels of genes involved in different pathways related to energy metabolism such as glycolysis, lipogenesis or electron transport. Moreover, the mRNA levels of the nuclear receptors PPARGC1B, PPARG and RXRA were also affected. Conclusions Our results show that the 38% reduction in methionine intake in the diet of female ducks during the growing and egg-laying periods impacted the liver transcriptome of their offspring, which may explain the previously observed differences in their liver energy metabolism. These changes in mRNA levels, together with the observed phenotypic data, suggest an early modulation in the establishment of metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08634-1.
Collapse
Affiliation(s)
- Aurélie Sécula
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France.,Present Address: IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Hervé Chapuis
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Anne Collin
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | - Lisa E Bluy
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Loys Bodin
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Alexis Cornuez
- UEPFG INRAE Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, F-40280, Benquet, France
| | - Xavier Martin
- UEPFG INRAE Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, F-40280, Benquet, France
| | - Cécile M D Bonnefont
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France.
| |
Collapse
|
12
|
Marti-Marimon M, Vialaneix N, Lahbib-Mansais Y, Zytnicki M, Camut S, Robelin D, Yerle-Bouissou M, Foissac S. Major Reorganization of Chromosome Conformation During Muscle Development in Pig. Front Genet 2021; 12:748239. [PMID: 34675966 PMCID: PMC8523936 DOI: 10.3389/fgene.2021.748239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The spatial organization of the genome in the nucleus plays a crucial role in eukaryotic cell functions, yet little is known about chromatin structure variations during late fetal development in mammals. We performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing of DNA from muscle samples of pig fetuses at two late stages of gestation. Comparative analysis of the resulting Hi-C interaction matrices between both groups showed widespread differences of different types. First, we discovered a complex landscape of stable and group-specific Topologically Associating Domains (TADs). Investigating the nuclear partition of the chromatin into transcriptionally active and inactive compartments, we observed a genome-wide fragmentation of these compartments between 90 and 110 days of gestation. Also, we identified and characterized the distribution of differential cis- and trans-pairwise interactions. In particular, trans-interactions at chromosome extremities revealed a mechanism of telomere clustering further confirmed by 3D Fluorescence in situ Hybridization (FISH). Altogether, we report major variations of the three-dimensional genome conformation during muscle development in pig, involving several levels of chromatin remodeling and structural regulation.
Collapse
Affiliation(s)
| | | | | | | | - Sylvie Camut
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - David Robelin
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Sylvain Foissac
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
13
|
The maturity in fetal pigs using a multi-fluid metabolomic approach. Sci Rep 2020; 10:19912. [PMID: 33199811 PMCID: PMC7670440 DOI: 10.1038/s41598-020-76709-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022] Open
Abstract
In mammalian species, the first days after birth are an important period for survival and the mortality rate is high before weaning. In pigs, perinatal deaths average 20% of the litter, with important economic and societal consequences. Maturity is one of the most important factors that influence piglet survival at birth. Maturity can be defined as the outcome of complex mechanisms of intra-uterine development and maturation during the last month of gestation. Here, we provide new insights into maturity obtained by studying the end of gestation at two different stages (3 weeks before term and close to term) in two breeds of pigs that strongly differ in terms of neonatal survival. We used metabolomics to characterize the phenotype, to identify biomarkers, and provide a comprehensive understanding of the metabolome of the fetuses in late gestation in three fluids (plasma, urine, and amniotic fluid). Our results show that the biological processes related to amino acid and carbohydrate metabolisms are critical for piglet maturity. We confirm the involvement of some previously described metabolites associated with delayed growth (e.g., proline and myo-inositol). Altogether, our study proposes new routes for improved characterization of piglet maturity at birth.
Collapse
|
14
|
Lefort G, Liaubet L, Canlet C, Tardivel P, Père MC, Quesnel H, Paris A, Iannuccelli N, Vialaneix N, Servien R. ASICS: an R package for a whole analysis workflow of 1D 1H NMR spectra. Bioinformatics 2020; 35:4356-4363. [PMID: 30977816 DOI: 10.1093/bioinformatics/btz248] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION In metabolomics, the detection of new biomarkers from Nuclear Magnetic Resonance (NMR) spectra is a promising approach. However, this analysis remains difficult due to the lack of a whole workflow that handles spectra pre-processing, automatic identification and quantification of metabolites and statistical analyses, in a reproducible way. RESULTS We present ASICS, an R package that contains a complete workflow to analyse spectra from NMR experiments. It contains an automatic approach to identify and quantify metabolites in a complex mixture spectrum and uses the results of the quantification in untargeted and targeted statistical analyses. ASICS was shown to improve the precision of quantification in comparison to existing methods on two independent datasets. In addition, ASICS successfully recovered most metabolites that were found important to explain a two level condition describing the samples by a manual and expert analysis based on bucketing. It also found new relevant metabolites involved in metabolic pathways related to risk factors associated with the condition. AVAILABILITY AND IMPLEMENTATION ASICS is distributed as an R package, available on Bioconductor. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gaëlle Lefort
- MIAT, Université de Toulouse, INRA, Castanet Tolosan, France.,GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Cécile Canlet
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Patrick Tardivel
- Institute of Mathematics, University of Wroclaw, Wroclaw 50-384, Poland
| | | | | | - Alain Paris
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP54, Paris, France
| | | | | | - Rémi Servien
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
| |
Collapse
|
15
|
Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle. Sci Rep 2020; 10:1750. [PMID: 32019949 PMCID: PMC7000794 DOI: 10.1038/s41598-020-58349-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
The growth and development of embryonic skeletal muscle plays a crucial role in sheep muscle mass. But proteomic analyses for embryonic skeletal development in sheep had been little involved in the past research. In this study, we explored differential abundance proteins during embryonic skeletal muscle development by the tandem mass tags (TMT) and performed a protein profile analyses in the longissimus dorsi of Chinese merino sheep at embryonic ages Day85 (D85N), Day105 (D105N) and Day135 (D135N). 5,520 proteins in sheep embryonic skeletal muscle were identified, and 1,316 of them were differential abundance (fold change ≥1.5 and p-value < 0.05). After the KEGG enrichment analyses, these differential abundance proteins were significant enriched in the protein binding, muscle contraction and energy metabolism pathways. After validation of the protein quantification with the parallel reaction monitoring (PRM), 41% (16/39) significant abundance proteins were validated, which was similar to the results of protein quantification with TMT. All results indicated that D85N to D105N was the stage of embryonic muscle fibers proliferation, while D105N to D135N was the stage of their hypertrophy. These findings provided a deeper understanding of the function and rules of proteins in different phases of sheep embryonic skeletal muscle growth and development.
Collapse
|
16
|
Cao XK, Cheng J, Huang YZ, Wang XG, Ma YL, Peng SJ, Chaogetu B, Zhuoma Z, Chen H. Growth Performance and Meat Quality Evaluations in Three-Way Cross Cattle Developed for the Tibetan Plateau and their Molecular Understanding by Integrative Omics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:541-550. [PMID: 30596412 DOI: 10.1021/acs.jafc.8b05477] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite of favorable characteristics of high protein, low fat, and free-pollution, yak meat has intrinsically poor performance in tenderness and color, which is ever challenging yak sector. To this end, a three-way cross system was first developed for high quality beef of the Tibetan Plateau using Angus cattle ( Bos taurus) as terminal sire to mate with 1/2 yak (F1) generated from♂Qaidam cattle ( Bos taurus) × ♀yak ( Bos grunniens). The withers height, chest girth, and body weight of 1/4 yak (F2) were all great higher than that of yak and 1/2 yak ( P < 0.01), especially at later period, suggesting the faster growth rate of 1/4 yak. Also the dressing percentage was much better in 1/4 yak ( P < 0.01). Tenderness and meat color were both significantly improved in 1/4 yak with some unpleasant sacrifice of PUFAs, such as EPA and DHA, and meat protein, given the significantly lower shear force and higher L* ( P < 0.01). A total of 769 genes, including SREBF1, GHR, and FASN, the widely recognized causal genes of meat quality, were identified from 11947 differently expressed genes by the data integration of transcriptome, GWAS and QTL. These genes were significantly enriched for important pathway and GO terms, such as insulin signaling pathway, fatty acid biosynthesis, calcium signaling pathway, metabolic pathway, and cellular response to stress ( P < 0.01). And 12 promising candidates were exemplified with annotation of H3K4me3 data from divergent meat quality, such as OSTF1, NRAS1, and KCNJ11. Interestingly, 75 high-altitude adaptive candidate genes were also detected in the list. This study is a first step toward high quality beef of the Tibetan Plateau and provides useful information for their molecular understanding.
Collapse
Affiliation(s)
- Xiu-Kai Cao
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Jie Cheng
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yong-Zhen Huang
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Xiao-Gang Wang
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yu-Lin Ma
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture , Delingha , Qinghai 817000 , China
| | - Shu-Jun Peng
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Buren Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture , Delingha , Qinghai 817000 , China
| | - Zhaxi Zhuoma
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture , Delingha , Qinghai 817000 , China
| | - Hong Chen
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| |
Collapse
|
17
|
A new approach of gene co-expression network inference reveals significant biological processes involved in porcine muscle development in late gestation. Sci Rep 2018; 8:10150. [PMID: 29977047 PMCID: PMC6033925 DOI: 10.1038/s41598-018-28173-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/14/2018] [Indexed: 12/28/2022] Open
Abstract
The integration of genetic information in the cellular and nuclear environments is crucial for deciphering the way in which the genome functions under different physiological conditions. Experimental techniques of 3D nuclear mapping, a high-flow approach such as transcriptomic data analyses, and statistical methods for the development of co-expressed gene networks, can be combined to develop an integrated approach for depicting the regulation of gene expression. Our work focused more specifically on the mechanisms involved in the transcriptional regulation of genes expressed in muscle during late foetal development in pig. The data generated by a transcriptomic analysis carried out on muscle of foetuses from two extreme genetic lines for birth mortality are used to construct networks of differentially expressed and co-regulated genes. We developed an innovative co-expression networking approach coupling, by means of an iterative process, a new statistical method for graph inference with data of gene spatial co-localization (3D DNA FISH) to construct a robust network grouping co-expressed genes. This enabled us to highlight relevant biological processes related to foetal muscle maturity and to discover unexpected gene associations between IGF2, MYH3 and DLK1/MEG3 in the nuclear space, genes that are up-regulated at this stage of muscle development.
Collapse
|