1
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
2
|
Bruzek S, Betensky M, Di Paola J, Diacovo T, Goldenberg N, Ignjatovic V. What can the plasma proteome tell us about platelets and (vice versa)? Platelets 2023; 34:2186707. [PMID: 36894508 DOI: 10.1080/09537104.2023.2186707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Multi-omics approaches are being used increasingly to study physiological and pathophysiologic processes. Proteomics specifically focuses on the study of proteins as functional elements and key contributors to, and markers of the phenotype, as well as targets for diagnostic and therapeutic approaches. Depending on the condition, the plasma proteome can mirror the platelet proteome, and hence play an important role in elucidating both physiologic and pathologic processes. In fact, both plasma and platelet protein signatures have been shown to be important in the setting of thrombosis-prone disease states such as atherosclerosis and cancer. Plasma and platelet proteomes are increasingly being studied as a part of a single entity, as is the case with patient-centric sample collection approaches such as capillary blood. Future studies should cut across the plasma and platelet proteome silos, taking advantage of the vast knowledge available when they are considered as part of the same studies, rather than studied as distinct entities.
Collapse
Affiliation(s)
- Steven Bruzek
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Marisol Betensky
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Johns Hopkins All Children's Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jorge Di Paola
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Diacovo
- Departments of Pediatrics and Pharmacology, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Neil Goldenberg
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Pediatrics and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Vera Ignjatovic
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Pediatrics, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
3
|
Abstract
Proteomics tools provide a powerful means to identify, detect, and quantify protein-related details in studies of platelet phenotype and function. Here, we consider how historical and recent advances in proteomics approaches have informed our understanding of platelet biology, and, how proteomics tools can be used going forward to advance studies of platelets. It is now apparent that the platelet proteome is comprised of thousands of different proteins, where specific changes in platelet protein systems can accompany alterations in platelet function in health and disease. Going forward, many challenges remain in how to best carry out, validate and interpret platelet proteomics experiments. Future studies of platelet protein post-translational modifications such as glycosylation, or studies that take advantage of single cell proteomics and top-down proteomics methods all represent areas of interest to profiling and more richly understanding platelets in human wellness and disease.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Tang Z, Shi H, Chen C, Teng J, Dai J, Ouyang X, Liu H, Hu Q, Cheng X, Ye J, Su Y, Sun Y, Pan H, Wang X, Liu J, Su B, Yang C, Xu Y, Liu T. Activation of Platelet mTORC2/Akt Pathway by Anti-β2GP1 Antibody Promotes Thrombosis in Antiphospholipid Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:1818-1832. [PMID: 37381985 DOI: 10.1161/atvbaha.123.318978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Anti-β2GP1 (β2-glycoprotein 1) antibodies are the primary pathogenic antibody to promote thrombosis in antiphospholipid syndrome (APS), yet the underlying mechanism remains obscure. We aimed to explore the intracellular pathway that mediated platelet activation. METHODS Platelets were isolated from patients with APS and subjected to RNA sequencing. Platelet aggregation, the release of platelet granules, platelet spreading, and clot retraction were detected to evaluate platelet activation. We purified anti-β2GP1 antibodies from patients with APS and the total IgG from healthy donors to stimulate platelets with/without FcγRIIA (Fcγ receptor IIA) blocking antibody or Akt (protein kinase B) inhibitor. Platelet-specific Sin1 (stress-activated protein kinase-interacting protein) deficiency mice were established. The thrombus model of inferior vena cava flow restriction, ferric chloride-induced carotid injury model, and laser-induced vessel wall injury in cremaster arterioles model were constructed after administration of anti-β2GP1 antibodies. RESULTS Combined RNA sequencing and bioinformatics analysis suggested that APS platelets exhibited increased levels of mRNA associated with platelet activation, which was in line with the hyperactivation of APS platelets in response to stimuli. Platelet activation in APS platelets was accompanied by upregulation of the mTORC2 (mammalian target of the rapamycin complex 2)/Akt pathway and increased levels of SIN1 phosphorylation at threonine 86. Anti-β2GP1 antibody derived from patients with APS enhanced platelet activation and upregulated the mTORC2/Akt pathway. Moreover, the Akt inhibitor weakened the potentiating effect of the anti-β2GP1 antibody on platelet activation. Notably, Sin1 deficiency suppresses anti-β2GP1 antibody-enhanced platelet activation in vitro and thrombosis in all 3 models. CONCLUSIONS This study elucidated the novel mechanism involving the mTORC2/Akt pathway, which mediates the promotion of platelet activation and induction of thrombosis by the anti-β2GP1 antibody. The findings suggest that SIN1 may be a promising therapeutic target for the treatment of APS.
Collapse
Affiliation(s)
- Zihan Tang
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital (C.C., J.D., X.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital (C.C., J.D., X.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Xinxing Ouyang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Ministry of Education Key Laboratory of Cell Death and Differentiation (X.O., B.S.), Shanghai Jiao Tong University School of Medicine, China
- Department of Tumor Biology, Shanghai Chest Hospital (X.O.), Shanghai Jiao Tong University School of Medicine, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Haoyu Pan
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital (C.C., J.D., X.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology (J.L., Y.X.), Shanghai Jiao Tong University School of Medicine, China
| | - Bing Su
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Ministry of Education Key Laboratory of Cell Death and Differentiation (X.O., B.S.), Shanghai Jiao Tong University School of Medicine, China
- Center for Human Translational Immunology at Shanghai Institute of Immunology, Ruijin Hospital (B.S.), Shanghai Jiao Tong University School of Medicine, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism (B.S.), Shanghai Jiao Tong University School of Medicine, China
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China (B.S.)
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology (J.L., Y.X.), Shanghai Jiao Tong University School of Medicine, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
5
|
Kocatürk B, Lee Y, Nosaka N, Abe M, Martinon D, Lane ME, Moreira D, Chen S, Fishbein MC, Porritt RA, Franklin BS, Noval Rivas M, Arditi M. Platelets exacerbate cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. JCI Insight 2023; 8:e169855. [PMID: 37279077 PMCID: PMC10443810 DOI: 10.1172/jci.insight.169855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Increased platelet counts and activation are observed during the course of KD, and elevated platelet counts are associated with higher risks of developing intravenous immunoglobulin resistance and coronary artery aneurysms. However, the role of platelets in KD pathogenesis remains unclear. Here, we analyzed transcriptomics data generated from the whole blood of patients with KD and discovered changes in the expression of platelet-related genes during acute KD. In the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, LCWE injection increased platelet counts and the formation of monocyte-platelet aggregates (MPAs), upregulated the concentration of soluble P-selectin, and increased circulating thrombopoietin and interleukin 6 (IL-6). Furthermore, platelet counts correlated with the severity of cardiovascular inflammation. Genetic depletion of platelets (Mpl-/- mice) or treatment with an anti-CD42b antibody significantly reduced LCWE-induced cardiovascular lesions. Furthermore, in the mouse model, platelets promoted vascular inflammation via the formation of MPAs, which likely amplified IL-1B production. Altogether, our results indicate that platelet activation exacerbates the development of cardiovascular lesions in a murine model of KD vasculitis. These findings enhance our understanding of KD vasculitis pathogenesis and highlight MPAs, which are known to enhance IL-1B production, as a potential therapeutic target for this disorder.
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Youngho Lee
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nobuyuki Nosaka
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Masanori Abe
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daisy Martinon
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Malcolm E. Lane
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debbie Moreira
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shuang Chen
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael C. Fishbein
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rebecca A. Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bernardo S. Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
6
|
Mishra KP, Bakshi J, Sharma G, Singh S, Panjwani U. A Comparative Analysis of Effectiveness of Recombinant Interleukin-11 Versus Papaya Leaf Extract for Treatment of Thrombocytopenia: A Review. Indian J Clin Biochem 2023; 38:297-304. [PMID: 37234180 PMCID: PMC10205934 DOI: 10.1007/s12291-022-01097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
Platelets or thrombocytes play an important role in thrombosis and maintaining hemostasis. Thrombocytes help in forming blood clots at the site of the wound. When the level of platelets decreases, uncontrolled bleeding occurs which can result in mortality. A decrease in the blood platelet level is known as thrombocytopenia which can be caused due to various reasons. A variety of treatment options are available for thrombocytopenia like platelet transfusion, splenectomy, platelet management with various types of corticosteroids, and recombinant interleukin-11 (rhIL-11). The use of rhIL-11 is approved by FDA for the treatment of thrombocytopenia. rhIL-11 is a recombinant cytokine that is administered to patients suffering from chemotherapy-induced thrombocytopenia as it enhances megakaryocytic proliferation which aids in platelet production. But this treatment has various side effects and is costly. Hence, there is a crucial need to identify cost-effective alternative strategies that present no side effects. The majority of the population in low-income countries requires a functional and cost-effective treatment for low thrombocyte count. Carica papaya is a tropical herbaceous plant that has been reported in recovering low platelet count during dengue virus infection. Even though multiple benefits of the Carica papaya leaf extract (CPLE) are popular, the active compound present in it, which mediates these benefits, remains to be identified. This review aims to highlight the different aspects of rhIL-11 and CPLE-induced platelet counts and their limitations and benefits in the treatment of thrombocytopenia. The literature related to the treatment of thrombocytopenia using rhIL-11 and CPLE from 1970 to 2022 was searched using PubMed and Google Scholar databases with the keywords Recombinant Interleukin-11, Papaya Leaf Extract, Thrombocytopenia, and Platelets.
Collapse
Affiliation(s)
- K. P. Mishra
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Jyotsana Bakshi
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Gitika Sharma
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Somnath Singh
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Usha Panjwani
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| |
Collapse
|
7
|
Bruno A, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Cyclooxygenases and platelet functions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:133-165. [PMID: 37236757 DOI: 10.1016/bs.apha.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cyclooxygenase (COX) isozymes, i.e., COX-1 and COX-2, are encoded by separate genes and are involved in the generation of the same products, prostaglandin (PG)G2 and PGH2 from arachidonic acid (AA) by the COX and peroxidase activities of the enzymes, respectively. PGH2 is then transformed into prostanoids in a tissue-dependent fashion due to the different expression of downstream synthases. Platelets present almost exclusively COX-1, which generates large amounts of thromboxane (TX)A2, a proaggregatory and vasoconstrictor mediator. This prostanoid plays a central role in atherothrombosis, as shown by the benefit of the antiplatelet agent low-dose aspirin, a preferential inhibitor of platelet COX-1. Recent findings have shown the relevant role played by platelets and TXA2 in developing chronic inflammation associated with several diseases, including tissue fibrosis and cancer. COX-2 is induced in response to inflammatory and mitogenic stimuli to generate PGE2 and PGI2 (prostacyclin), in inflammatory cells. However, PGI2 is constitutively expressed in vascular cells in vivo and plays a crucial role in protecting the cardiovascular systems due to its antiplatelet and vasodilator effects. Here, platelets' role in regulating COX-2 expression in cells of the inflammatory microenvironment is described. Thus, the selective inhibition of platelet COX-1-dependent TXA2 by low-dose aspirin prevents COX-2 induction in stromal cells leading to antifibrotic and antitumor effects. The biosynthesis and functions of other prostanoids, such as PGD2, and isoprostanes, are reported. In addition to aspirin, which inhibits platelet COX-1 activity, possible strategies to affect platelet functions by influencing platelet prostanoid receptors or synthases are discussed.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G.d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
8
|
Kreft IC, Huisman EJ, Cnossen MH, van Alphen FPJ, van der Zwaan C, van Leeuwen K, van Spaendonk R, Porcelijn L, Veen CSB, van den Biggelaar M, de Haas M, Meijer AB, Hoogendijk AJ. Proteomic landscapes of inherited platelet disorders with different etiologies. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:359-372.e3. [PMID: 36700500 DOI: 10.1016/j.jtha.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inherited platelet disorders (IPDs) are a heterogeneous group of rare diseases that are caused by the defects in early megakaryopoiesis, proplatelet formation, and/or mature platelet function. Although genomic sequencing is increasingly used to identify genetic variants underlying IPD, this technique does not disclose resulting molecular changes that impact platelet function. Proteins are the functional units that shape platelet function; however, insights into how variants that cause IPDs impact platelet proteomes are limited. OBJECTIVES The objective of this study was to profile the platelet proteomics signatures of IPDs. METHODS We performed unbiased label-free quantitative mass spectrometry (MS)-based proteome profiling on platelets of 34 patients with IPDs with variants in 13 ISTH TIER1 genes that affect different stages of platelet development. RESULTS In line with the phenotypical heterogeneity between IPDs, proteomes were diverse between IPDs. We observed extensive proteomic alterations in patients with a GFI1B variant and for genetic variants in genes encoding proteins that impact cytoskeletal processes (MYH9, TUBB1, and WAS). Using the diversity between IPDs, we clustered protein dynamics, revealing disrupted protein-protein complexes. This analysis furthermore grouped proteins with similar cellular function and location, classifying mitochondrial protein constituents and identifying both known and putative novel alpha granule associated proteins. CONCLUSIONS With this study, we demonstrate a MS-based proteomics perspective to IPDs. By integrating the effects of IPDs that impact different aspects of platelet function, we dissected the biological contexts of protein alterations to gain further insights into the biology of platelet (dys)function.
Collapse
Affiliation(s)
- Iris C Kreft
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Elise J Huisman
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands; Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands
| | | | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Rosalina van Spaendonk
- Department of Immunohematology Diagnostic, Sanquin Diagnostic Services, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline S B Veen
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Maartje van den Biggelaar
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Masja de Haas
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands; Center for Clinical Transfusion Research, Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander B Meijer
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Jozwik C, Eidelman O, Srivastava M. Discovery of a Hidden Proinflammatory Signaling Proteome Using a Large-Scale, Targeted Antibody Microarray Platform. Methods Mol Biol 2023; 2660:219-233. [PMID: 37191800 DOI: 10.1007/978-1-0716-3163-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Dynamic post-translational processes regulate protein expression in eukaryotic cells. However, the processes are difficult to assess on a proteomic scale because protein levels actually reflect the sum of individual biosynthesis and degradation rates. These rates are presently hidden from the conventional proteomic technologies. We present here a novel and dynamic, antibody microarray-based time-resolved approach to simultaneously measure not only the total protein changes but also the rates of biosynthesis of low abundance proteins in the proteome of lung epithelial cells. In this chapter, we describe the feasibility of this technique by investigating the complete proteomic kinetics of 507 low abundance proteins in cultured cystic fibrosis (CF) lung epithelial cells using 35[S] methionine or 32[P] and the consequences of repair by gene therapy with [wildtype] CFTR. This novel antibody microarray-based technology identifies relevant, hidden proteins whose regulation by the CF genotype would never have been detected by simple measurements of total proteomic masses.
Collapse
Affiliation(s)
- Catherine Jozwik
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA.
| |
Collapse
|
10
|
Tiedemann K, Tsao S, Komarova SV. Platelets and osteoblasts: secretome connections. Am J Physiol Cell Physiol 2022; 323:C347-C353. [PMID: 35675640 DOI: 10.1152/ajpcell.00187.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Megakaryocyte hyperplasia associated with myeloproliferative neoplasms commonly leads to abnormal bone tissue deposition in the bone marrow, known as osteosclerosis. In this study, we aimed to synthesize the known proteomics literature describing factors released by megakaryocytes and platelets and to examine if any of the secreted factors have a known ability to stimulate the bone-forming cells, osteoblasts. Using a systematic search of Medline, we identified 77 articles reporting on factors secreted by platelets and megakaryocytes. After a full-text screening and analysis of the studies, we selected seven papers that reported proteomics data for factors secreted by platelets from healthy individuals. From 60 proteins reported in at least two studies, we focused on 23 that contained a putative signal peptide, which we searched for a potential osteoblast-stimulatory function. From nine proteins with a positive effect on osteoblast formation and function, two extracellular matrix (ECM) proteins, secreted protein acidic and rich in cysteine (SPARC) and tissue inhibitor of metalloproteinase-1 (TIMP1), and three cellular proteins with known extracellular function, the 70-kDa heat shock protein (HSP70), thymosin-β4 (TB4), and super dismutase (SOD), were identified as hypothetical candidate molecules to be examined as potential mediators in mouse models of osteomyelofibrosis. Thus, careful analysis of prior literature can be beneficial in assisting the planning of future experimental studies.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Serena Tsao
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Barad DH, Albertini DF, Molinari E, Gleicher N. Preliminary report of intraovarian injections of autologous platelet-rich plasma (PRP) in extremely poor prognosis patients with only oocyte donation as alternative: a prospective cohort study. Hum Reprod Open 2022; 2022:hoac027. [PMID: 35795849 PMCID: PMC9247703 DOI: 10.1093/hropen/hoac027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
STUDY QUESTION
Does intraovarian injection of platelet-rich plasma (PRP) change ovarian function in patients with extremely low functional ovarian reserve (LFOR) who, otherwise, would likely only have a chance of pregnancy through third-party oocyte donation?
SUMMARY ANSWER
No clinically significant effects of PRP treatment on ovarian function were observed over 1 year of follow-up.
WHAT IS KNOWN ALREADY
Several investigators have reported improved responses to ovulation induction after treatment with PRP. However, previous published reports have involved, at most, only small case series. Whether PRP actually improves ovarian performance is, therefore, still unknown. PRP is nevertheless widely offered as an ‘established’ fertility treatment, often under the term ‘ovarian rejuvenation’.
STUDY DESIGN, SIZE, DURATION
We are reporting a prospective cohort study of 80 consecutive patients at ages 28–54 with LFOR, defined by anti-Müllerian hormone <1.1 ng/ml, FSH >12 mIU/ml or at least one prior IVF cycle with ≤3 oocytes within 1 year. The women were followed for 1 year after an intraovarian PRP procedure.
PARTICIPANTS/MATERIALS, SETTING, METHODS
PRP (1.5 ml) was injected into the cortex of ovaries with an average of 12 injections per ovary. Study participants were followed every 3 days for 2 weeks after PRP treatment with estradiol and FSH measurements and vaginal ultrasound to observe follicle growth and thereafter followed weekly. Beginning 1 month after their PRP treatment, participants underwent one or more cycles of ovarian stimulation for IVF. Outcome measures were endocrine response, and numbers of oocytes and embryos produced in response to a maximal gonadotropin stimulation before and after PRP treatment.
MAIN RESULTS AND THE ROLE OF CHANCE
In this study, women failed to demonstrate statistically significant outcome benefits from intraovarian PRP. However, two 40-year-old very poor-prognosis patients, with prior failed IVF cycles that never reached embryo transfer at other centers, achieved pregnancy, resulting in an ongoing pregnancy rate of 4.7% among patients who, following PRP, produced at least one oocyte (n = 42).
LIMITATIONS, REASONS FOR CAUTION
As an observational study of patients who performed poorly in past ovarian stimulation cycles, the improvement may be accounted for by regression to the mean. Similar considerations may also explain the occurrence of the two pregnancies.
WIDER IMPLICATIONS OF THE FINDINGS
This study demonstrates that, even in extremely poor prognosis patients due to LFOR, sporadic pregnancies are possible. The study, however, does not allow for the conclusion that those pregnancies were the consequence of PRP treatments. A case series, indeed, does not allow for such conclusions, even if results are more suggestive than here. This registered study, therefore, must be viewed as a preliminary report, with further data expected from this study but also from two other prospectively randomized ongoing registered studies with more controlled patient selection.
STUDY FUNDING/COMPETING INTEREST(S)
This work was supported by intramural funds from The Center for Human Reproduction and the not-for-profit research Foundation for Reproductive Medicine, both in New York, NY, USA. N.G. and D.H.B. are listed as co-inventors on several US patents. Some of these patents relate to pre-supplementation of hypo-androgenic infertile women with androgens, such as dehydroepiandrosterone and testosterone and, therefore, at least peripherally relate to the subject of this manuscript. They, as well as D.F.A., have also received research support, travel funds and speaker honoraria from several pharmaceutical and medical device companies, though none related to the here presented subject and manuscript. N.G. is a shareholder in Fertility Nutraceuticals and he and D.H.B. receive royalty payments from Fertility Nutraceuticals LLC. E.M. has no conflicts of interest to declare.
TRIAL REGISTRATION NUMBER
NCT04275700
Collapse
Affiliation(s)
- D H Barad
- The Center for Human Reproduction , New York, NY, USA
- The Foundation for Reproductive Medicine , New York, NY, USA
| | - D F Albertini
- The Center for Human Reproduction , New York, NY, USA
- Department of Developmental Cell Biology, Bedford Research Foundation , Bedford, MA, USA
| | - E Molinari
- The Center for Human Reproduction , New York, NY, USA
| | - N Gleicher
- The Center for Human Reproduction , New York, NY, USA
- The Foundation for Reproductive Medicine , New York, NY, USA
- Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University , New York, NY, USA
- Department of Obstetrics and Gynecology, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
12
|
The Underestimated Role of Platelets in Severe Infection a Narrative Review. Cells 2022; 11:cells11030424. [PMID: 35159235 PMCID: PMC8834344 DOI: 10.3390/cells11030424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Beyond their role in hemostasis, platelets have emerged as key contributors in the immune response; accordingly, the occurrence of thrombocytopenia during sepsis/septic shock is a well-known risk factor of mortality and a marker of disease severity. Recently, some studies elucidated that the response of platelets to infections goes beyond a simple fall in platelets count; indeed, sepsis-induced thrombocytopenia can be associated with—or even anticipated by—several changes, including an altered morphological pattern, receptor expression and aggregation. Of note, alterations in platelet function and morphology can occur even with a normal platelet count and can modify, depending on the nature of the pathogen, the pattern of host response and the severity of the infection. The purpose of this review is to give an overview on the pathophysiological interaction between platelets and pathogens, as well as the clinical consequences of platelet dysregulation. Furthermore, we try to clarify how understanding the nature of platelet dysregulation may help to optimize the therapeutic approach.
Collapse
|
13
|
Wassmer SC, Humpel C, Orian JM. Editorial: Platelets as Players in Neuropathologies: Novel Diagnostic and Therapeutic Targets. Front Immunol 2021; 12:772352. [PMID: 34659273 PMCID: PMC8513524 DOI: 10.3389/fimmu.2021.772352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christian Humpel
- Laboratory for Psychiatry and Experimental Alzheimer’s Research, Medical University Innsbruck, Innsbruck, Austria
| | - Jacqueline M. Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Ferrer-Raventós P, Beyer K. Alternative platelet activation pathways and their role in neurodegenerative diseases. Neurobiol Dis 2021; 159:105512. [PMID: 34537329 DOI: 10.1016/j.nbd.2021.105512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE OF THE REVIEW The study of platelets in the context of neurodegenerative diseases is intensifying, and increasing evidence suggests that platelets may play an important role in the pathogenesis of neurodegenerative disorders. Therefore, we aim to provide a comprehensive overview of the role of platelets and their diverse activation pathways in the development of these diseases. RECENT FINDINGS Platelets participate in synaptic plasticity, learning, memory, and platelets activated by exercise promote neuronal differentiation in several brain regions. Platelets also contribute to the immune response by modulating their surface protein profile and releasing pro- and anti-inflammatory mediators. In Alzheimer's disease, increased levels of platelet amyloid precursor protein raise the production of amyloid-beta peptides promoting platelet activation, triggering at the same time amyloid-beta fibrillation. In Parkinson's disease, increased platelet α-synuclein is associated with elevated ROS production and mitochondrial dysfunction. SUMMARY In this review, we revise different platelet activation pathways, those classically involved in hemostasis and wound healing, and alternative activation pathways recently described in the context of neurodegenerative diseases, especially in Alzheimer's disease.
Collapse
Affiliation(s)
- Paula Ferrer-Raventós
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Barcelona, Spain.
| |
Collapse
|
15
|
Abstract
Until recently, the nucleic acid content of platelets was considered to be fully determined by their progenitor megakaryocyte. However, it is now well understood that additional mediators (eg, cancer cells) can intervene, thereby influencing the RNA repertoire of platelets. Platelets are highly dynamic cells that are able to communicate and influence their environment. For instance, platelets have been involved in various steps of cancer development and progression by supporting tumor growth, survival, and dissemination. Cancer cells can directly and/or indirectly influence platelet RNA content, resulting in tumor-mediated "education" of platelets. Alterations in the tumor-educated platelet RNA profile have been described as a novel source of potential biomarkers. Individual platelet RNA biomarkers as well as complex RNA signatures may be used for early detection of cancer and treatment monitoring. Here, we review the RNA transfer occurring between cancer cells and platelets. We explore the potential use of platelet RNA biomarkers as a liquid biopsy biosource and discuss methods to evaluate the transcriptomic content of platelets.
Collapse
|
16
|
Sarker MMR, Khan F, Mohamed IN. Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves. Front Pharmacol 2021; 12:610912. [PMID: 33981215 PMCID: PMC8109180 DOI: 10.3389/fphar.2021.610912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue, a very widespread mosquito-borne infectious disease caused by Aedes aegypti virus, has been occurring during the monsoons every year. The prevalence and incidence of dengue fever and death due to its complications have been increased drastically in these recent years in Bangladesh, Philippines, Thailand, Brazil, and India. Recently, dengue had spread in an epidemic form in Bangladesh, Thailand, and Philippines. Although the infection affected a large number of people around the world, there is no established specific and effective treatment by synthetic medicines. In this subcontinent, Malaysia could effectively control its incidences and death of patients using alternative medication treatment mainly prepared from Carica papaya L. leaves along with proper care and hospitalization. Papaya leaves, their juice or extract, as well as their different forms of preparation have long been used traditionally for treating dengue fever and its complications to save patients’ lives. Although it is recommended by traditional healers, and the general public use Papaya leaves juice or their other preparations in dengue fever, this treatment option is strictly denied by the physicians offering treatment in hospitals in Bangladesh as they do not believe in the effectiveness of papaya leaves, thus suggesting to patients that they should not use them. In Bangladesh, 1,01,354 dengue patients have been hospitalized, with 179 deaths in the year 2019 according to information from the Institute of Epidemiology, Disease Control, and Research as well as the Directorate General of Health Services of Bangladesh. Most of the patients died because of the falling down of platelets to dangerous levels and hemorrhage or serious bleeding. Therefore, this paper aims to critically review the scientific basis and effectiveness of Carica papaya L. leaves in treating dengue fever based on preclinical and clinical reports. Thrombocytopenia is one of the major conditions that is typical in cases of dengue infection. Besides, the infection and impairment of immunity are concerned with dengue patients. This review summarizes all the scientific reports on Carica papaya L. for its ability on three aspects of dengue: antiviral activities, prevention of thrombocytopenia and improvement of immunity during dengue fever.
Collapse
Affiliation(s)
- Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Farzana Khan
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Cheras, Malaysia
| |
Collapse
|
17
|
El-Kadiry AEH, Merhi Y. The Role of the Proteasome in Platelet Function. Int J Mol Sci 2021; 22:3999. [PMID: 33924425 PMCID: PMC8069084 DOI: 10.3390/ijms22083999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets are megakaryocyte-derived acellular fragments prepped to maintain primary hemostasis and thrombosis by preserving vascular integrity. Although they lack nuclei, platelets harbor functional genomic mediators that bolster platelet activity in a signal-specific manner by performing limited de novo protein synthesis. Furthermore, despite their limited protein synthesis, platelets are equipped with multiple protein degradation mechanisms, such as the proteasome. In nucleated cells, the functions of the proteasome are well established and primarily include proteostasis among a myriad of other signaling processes. However, the role of proteasome-mediated protein degradation in platelets remains elusive. In this review article, we recapitulate the developing literature on the functions of the proteasome in platelets, discussing its emerging regulatory role in platelet viability and function and highlighting how its functional coupling with the transcription factor NF-κB constitutes a novel potential therapeutic target in atherothrombotic diseases.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
18
|
Orian JM, D'Souza CS, Kocovski P, Krippner G, Hale MW, Wang X, Peter K. Platelets in Multiple Sclerosis: Early and Central Mediators of Inflammation and Neurodegeneration and Attractive Targets for Molecular Imaging and Site-Directed Therapy. Front Immunol 2021; 12:620963. [PMID: 33679764 PMCID: PMC7933211 DOI: 10.3389/fimmu.2021.620963] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Platelets are clearly central to thrombosis and hemostasis. In addition, more recently, evidence has emerged for non-hemostatic roles of platelets including inflammatory and immune reactions/responses. Platelets express immunologically relevant ligands and receptors, demonstrate adhesive interactions with endothelial cells, monocytes and neutrophils, and toll-like receptor (TLR) mediated responses. These properties make platelets central to innate and adaptive immunity and potential candidate key mediators of autoimmune disorders. Multiple sclerosis (MS) is the most common chronic autoimmune central nervous system (CNS) disease. An association between platelets and MS was first indicated by the increased adhesion of platelets to endothelial cells. This was followed by reports identifying structural and functional changes of platelets, their chronic activation in the peripheral blood of MS patients, platelet presence in MS lesions and the more recent revelation that these structural and functional abnormalities are associated with all MS forms and stages. Investigations based on the murine experimental autoimmune encephalomyelitis (EAE) MS model first revealed a contribution to EAE pathogenesis by exacerbation of CNS inflammation and an early role for platelets in EAE development via platelet-neuron and platelet-astrocyte associations, through sialated gangliosides in lipid rafts. Our own studies refined and extended these findings by identifying the critical timing of platelet accumulation in pre-clinical EAE and establishing an initiating and central rather than merely exacerbating role for platelets in disease development. Furthermore, we demonstrated platelet-neuron associations in EAE, coincident with behavioral changes, but preceding the earliest detectable autoreactive T cell accumulation. In combination, these findings establish a new paradigm by asserting that platelets play a neurodegenerative as well as a neuroinflammatory role in MS and therefore, that these two pathological processes are causally linked. This review will discuss the implications of these findings for our understanding of MS, for future applications for imaging toward early detection of MS, and for novel strategies for platelet-targeted treatment of MS.
Collapse
Affiliation(s)
- Jacqueline M Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Claretta S D'Souza
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Pece Kocovski
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Guy Krippner
- Medicinal Chemistry, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Matthew W Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Science, La Trobe University, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Liu Y, Lv H, Tan R, An X, Niu XH, Liu YJ, Yang X, Yin X, Xia YL. Platelets Promote Ang II (Angiotensin II)-Induced Atrial Fibrillation by Releasing TGF-β1 (Transforming Growth Factor-β1) and Interacting With Fibroblasts. Hypertension 2020; 76:1856-1867. [PMID: 33175633 DOI: 10.1161/hypertensionaha.120.15016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypertension is a risk factor of atrial fibrillation (AF), and a certain number of patients with hypertension were found with an enlarged left atrium. Platelet activation is found in patients with hypertension or pressure overload/Ang II (angiotensin II)-induced hypertensive animal models and contribute to ventricular fibrosis. Whether hypertension-induced atrial fibrosis is mediated by platelets remains unknown. Our previous experimental data showed that platelet-derived TGF-β1 (transforming growth factor-β1) was reduced in patients with hypertensive AF. The present study is to investigate whether platelet-derived TGF-β1 promotes Ang II-induced atrial fibrosis and AF. Platelet activation and atrial platelet accumulation were measured in sinus rhythm controls, normotensive AF, and patients with hypertensive AF. Ang II (1500 ng/kg per minute, 3 weeks) infused mice with pharmacological (clopidogrel) and genetic platelet inhibition (TGF-β1 deletion in platelets) were used. Platelet activation, atrial structural remodeling, atrial electrical transmission, AF inducibility, inflammation, and fibrosis were measured in mice. We found that circulating platelets were activated in patients with hypertensive AF. A large amount of platelet was accumulated in the atriums of patients with hypertensive AF. Both clopidogrel treatment and platelet-specific deletion of TGF-β1 attenuated Ang II-induced structural remodeling, atrial electrical transmission, AF inducibility, as well as atrial inflammation and fibrosis than mice without interventions. Furthermore, clopidogrel blocked atrial platelet accumulation and platelet-fibroblast conjugation. Platelets promoted atrial fibroblast differentiation in cell culture. Profibrotic actions of platelets are largely via activation of atrial fibroblasts by releasing TGF-β1 and inducing platelet-fibroblast conjugation, and platelet inhibition is sufficient to inhibit atrial fibrosis and AF inducibility.
Collapse
Affiliation(s)
- Yang Liu
- From the Institute of Heart and Vascular Diseases (Y.L., R.T., X.A., X.N., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China
| | - Haichen Lv
- Department of Cardiology (H.L., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China
| | - Ruopeng Tan
- From the Institute of Heart and Vascular Diseases (Y.L., R.T., X.A., X.N., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China
| | - Xiangbo An
- From the Institute of Heart and Vascular Diseases (Y.L., R.T., X.A., X.N., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China
| | - Xiao-Hui Niu
- From the Institute of Heart and Vascular Diseases (Y.L., R.T., X.A., X.N., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China.,Yixing People's Hospital, the Affiliated Hospital of Jiangsu University, China (X.N.)
| | - Yue-Jian Liu
- Central Laboratory (Y.-J.L.), the First Affiliated Hospital of Dalian Medical University, China
| | - Xiaolei Yang
- From the Institute of Heart and Vascular Diseases (Y.L., R.T., X.A., X.N., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China
| | - Xiaomeng Yin
- Department of Cardiology (H.L., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China
| | - Yun-Long Xia
- From the Institute of Heart and Vascular Diseases (Y.L., R.T., X.A., X.N., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China.,Department of Cardiology (H.L., X.Y., Y.-L.X.), the First Affiliated Hospital of Dalian Medical University, China
| |
Collapse
|
20
|
Neu CT, Gutschner T, Haemmerle M. Post-Transcriptional Expression Control in Platelet Biogenesis and Function. Int J Mol Sci 2020; 21:ijms21207614. [PMID: 33076269 PMCID: PMC7589263 DOI: 10.3390/ijms21207614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Platelets are highly abundant cell fragments of the peripheral blood that originate from megakaryocytes. Beside their well-known role in wound healing and hemostasis, they are emerging mediators of the immune response and implicated in a variety of pathophysiological conditions including cancer. Despite their anucleate nature, they harbor a diverse set of RNAs, which are subject to an active sorting mechanism from megakaryocytes into proplatelets and affect platelet biogenesis and function. However, sorting mechanisms are poorly understood, but RNA-binding proteins (RBPs) have been suggested to play a crucial role. Moreover, RBPs may regulate RNA translation and decay following platelet activation. In concert with other regulators, including microRNAs, long non-coding and circular RNAs, RBPs control multiple steps of the platelet life cycle. In this review, we will highlight the different RNA species within platelets and their impact on megakaryopoiesis, platelet biogenesis and platelet function. Additionally, we will focus on the currently known concepts of post-transcriptional control mechanisms important for RNA fate within platelets with a special emphasis on RBPs.
Collapse
Affiliation(s)
- Carolin T. Neu
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
- Correspondence: ; Tel.: +49-345-557-3964
| |
Collapse
|
21
|
Hormonal Effects in Reproductive Technology with Focus on Diminished Ovarian Reserve. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32406026 DOI: 10.1007/978-3-030-38474-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Modern use of reproductive technologies has revolutionized the treatment of infertile couples. Strategies to improve ovarian function in cases of diminished ovarian reserve are perhaps the least understood area in this field and will be the chief focus of this chapter.
Collapse
|
22
|
Platelet-Rich Fibrin Facilitates One-Stage Cartilage Repair by Promoting Chondrocytes Viability, Migration, and Matrix Synthesis. Int J Mol Sci 2020; 21:ijms21020577. [PMID: 31963217 PMCID: PMC7014470 DOI: 10.3390/ijms21020577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/18/2023] Open
Abstract
The main aim of this study is to develop a one-stage method to combine platelet-rich fibrin (PRF) and autologous cartilage autografts for porcine articular cartilage repair. The porcine chondrocytes were treated with different concentrations of PRF-conditioned media and were evaluated for their cell viability and extracellular glycosaminoglycan (GAG) synthesis during six day cultivation. The chemotactic effects of PRF on chondrocytes on undigested cartilage autografts were revealed in explant cultures. For the in vivo part, porcine chondral defects were created at the medial femoral condyles of which were (1) left untreated, (2) implanted with PRF combined with hand-diced cartilage grafts, or (3) implanted with PRF combined with device-diced cartilage grafts. After six months, gross grades, histological, and immunohistochemical analyses were compared. The results showed that PRF promotes the viability and GAG expression of the cultured chondrocytes. Additionally, the PRF-conditioned media induce significant cellular migration and outgrowth of chondrocytes from undigested cartilage grafts. In the in vivo study, gross grading and histological scores showed significantly better outcomes in the treatment groups as compared with controls. Moreover, both treatment groups showed significantly more type II collagen staining and minimal type I collagen staining as compared with controls, indicating more hyaline-like cartilage and less fibrous tissue. In conclusion, PRF enhances the viability, differentiation, and migration of chondrocytes, thus, showing an appealing capacity for cartilage repair. The data altogether provide evidences to confirm the feasibility of a one-stage, culture-free method of combining PRF and cartilage autografts for repairing articular cartilage defects. From translational standpoints, these advantages benefit clinical applications by simplifying and potentiating the efficacy of cartilage autograft transplants.
Collapse
|
23
|
Zhou WL, Mo ZZ, Xiao FY, Dai W, Wang G, Zhou G, Zhang W, Chen BL. microRNA-605 rs2043556 polymorphisms affect clopidogrel therapy through modulation of CYP2B6 and P2RY12 in acute coronary syndrome patients. Platelets 2019; 31:897-905. [PMID: 31766967 DOI: 10.1080/09537104.2019.1696455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wan-Lu Zhou
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Zhen Mo
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fei-Yan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Dai
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Lian Chen
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
An X, Jiang G, Cheng C, Lv Z, Liu Y, Wang F. Inhibition of Platelets by Clopidogrel Suppressed Ang II-Induced Vascular Inflammation, Oxidative Stress, and Remodeling. J Am Heart Assoc 2019; 7:e009600. [PMID: 30608200 PMCID: PMC6404205 DOI: 10.1161/jaha.118.009600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Platelets play a role in promoting inflammatory responses under several disease conditions. Platelets are activated in hypertensive patients. However, the mechanisms responsible for platelet‐mediating vascular inflammation are unknown. The present study investigated the role of platelets in promoting vascular inflammation following angiotensin II (Ang II) stimulation, and the efficacy of antiplatelet intervention. Methods and Results Within a mouse model of Ang II infusion (490 ng/kg per min), we measured the portion of P‐selectin–positive platelets and platelet‐monocyte (P‐M) binding in blood samples, and platelet accumulation and P‐M binding in vessels under Ang II stimulation at days 1, 3, and 7. We tested the efficacy of clopidogrel (15 mg/kg per day, followed by 5 mg/kg per day) on Ang II‐induced platelet activation, P‐M binding, vascular platelet accumulation, as well as vascular inflammation and remodeling at day 7 or 14. Clopidogrel reduced platelet vascular deposition (28.7±2.4% versus 18.3±2.9%), suppressed inflammatory cell infiltration (3.6±0.8×104/vessel versus 2.3±1.2×104/vessel) and oxidative stress, and attenuated vascular remodeling and dysfunction (55.0±5.5% versus 84.0±6.0%) following Ang II stimulation at day 7 or 14. Clopidogrel suppressed Ang II‐induced P‐M binding both at circulating (13.4±3.3% versus 5.9±2.7%) and regional (33.4±4.3% versus 11.9±2.7%) levels. Conclusions Platelets play a critical role in vascular inflammation under Ang II stimulation, with a marked promotion of P‐M binding as an important mechanism. Clopidogrel prevented vascular inflammation in Ang II‐infused mice.
Collapse
Affiliation(s)
- Xiangbo An
- 1 Department of Interventional Therapy the First Affiliated Hospital of Dalian Medical University Dalian China.,3 Institute of Cardiovascular Diseases the First Affiliated Hospital of Dalian Medical University Dalian China
| | - Guinan Jiang
- 1 Department of Interventional Therapy the First Affiliated Hospital of Dalian Medical University Dalian China.,3 Institute of Cardiovascular Diseases the First Affiliated Hospital of Dalian Medical University Dalian China
| | - Cheng Cheng
- 4 Center for Clinical Research on Neurological Diseases the First Affiliated Hospital of Dalian Medical University Dalian China
| | - Zhengshuai Lv
- 2 Department of Anesthesia the First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yang Liu
- 3 Institute of Cardiovascular Diseases the First Affiliated Hospital of Dalian Medical University Dalian China
| | - Feng Wang
- 1 Department of Interventional Therapy the First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
25
|
Maués JHDS, Aquino Moreira-Nunes CDF, Rodriguez Burbano RM. MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks-A Review. Cells 2019; 8:E1256. [PMID: 31618890 PMCID: PMC6829606 DOI: 10.3390/cells8101256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Platelet concentrate (PC) is one of the main products used in a therapeutic transfusion. This blood component requires special storage at blood banks, however, even under good storage conditions, modifications or degradations may occur and are known as platelet storage lesions. METHODS This research was performed on scientific citation databases PubMed/Medline, ScienceDirect, and Web of Science, for publications containing platelet storage lesions. The results obtained mainly reveal the clinical applicability of miRNAs as biomarkers of storage injury and as useful tools for a problem affecting public and private health, the lack of PC bags in countries with few blood donors. The major studies listed in this review identified miRNAs associated with important platelet functions that are relevant in clinical practice as quality biomarkers of PC, such as miR-223, miR-126, miR-10a, miR-150, miR-16, miR-21, miR-326, miR-495, let-7b, let-7c, let-7e, miR-107, miR-10b, miR-145, miR-155, miR-17, miR-191, miR-197, miR-200b, miR-24, miR-331, miR-376. These miRNAs can be used in blood banks to identify platelet injury in PC bags. CONCLUSION The studies described in this review relate the functions of miRNAs with molecular mechanisms that result in functional platelet differences, such as apoptosis. Thus, miRNA profiles can be used to measure the quality of storage PC for more than 5 days, identify bags with platelet injury, and distinguish those with functional platelets.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil.
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil.
| | - Caroline de Fátima Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil.
- Christus University Center-Unichristus, Faculty of Biomedicine, Fortaleza, CE 60192-345, Brazil.
| | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil.
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil.
| |
Collapse
|
26
|
Kojok K, El-Kadiry AEH, Merhi Y. Role of NF-κB in Platelet Function. Int J Mol Sci 2019; 20:E4185. [PMID: 31461836 PMCID: PMC6747346 DOI: 10.3390/ijms20174185] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Platelets are megakaryocyte-derived fragments lacking nuclei and prepped to maintain primary hemostasis by initiating blood clots on injured vascular endothelia. Pathologically, platelets undergo the same physiological processes of activation, secretion, and aggregation yet with such pronouncedness that they orchestrate and make headway the progression of atherothrombotic diseases not only through clot formation but also via forcing a pro-inflammatory state. Indeed, nuclear factor-κB (NF-κB) is largely implicated in atherosclerosis and its pathological complication in atherothrombotic diseases due to its transcriptional role in maintaining pro-survival and pro-inflammatory states in vascular and blood cells. On the other hand, we know little on the functions of platelet NF-κB, which seems to function in other non-genomic ways to modulate atherothrombosis. Therein, this review will resemble a rich portfolio for NF-κB in platelets, specifically showing its implications at the levels of platelet survival and function. We will also share the knowledge thus far on the effects of active ingredients on NF-κB in general, as an extrapolative method to highlight the potential therapeutic targeting of NF-κB in coronary diseases. Finally, we will unzip a new horizon on a possible extra-platelet role of platelet NF-κB, which will better expand our knowledge on the etiology and pathophysiology of atherothrombosis.
Collapse
Affiliation(s)
- Kevin Kojok
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Abed El-Hakim El-Kadiry
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Yahye Merhi
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada.
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada.
| |
Collapse
|
27
|
Ribeiro LS, Migliari Branco L, Franklin BS. Regulation of Innate Immune Responses by Platelets. Front Immunol 2019; 10:1320. [PMID: 31244858 PMCID: PMC6579861 DOI: 10.3389/fimmu.2019.01320] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
The role of platelets has been extensively studied in the context of coagulation and vascular integrity. Their hemostatic imbalance can lead to known conditions as atherosclerotic plaques, thrombosis, and ischemia. Nevertheless, the knowledge regarding the regulation of different cell types by platelets has been growing exponentially in the past years. Among these biological systems, the innate immune response is remarkably affected by the crosstalk with platelets. This interaction can come from the formation of platelet-leukocyte aggregates, signaling by direct contact between membrane surface molecules or by the stimulation of immune cells by soluble factors and active microparticles secreted by platelets. These ubiquitous blood components are able to sense and react to danger signals, guiding leukocytes to an injury site and providing a scaffold for the formation of extracellular traps for efficient microbial killing and clearance. Using several different mechanisms, platelets have an important task as they regulate the release of different cytokines and chemokines upon sterile or infectious damage, the expression of cell markers and regulation of cell death and survival. Therefore, platelets are more than clotting agents, but critical players within the fine inflammatory equilibrium for the host. In this review, we present pointers to a better understanding about how platelets control and modulate innate immune cells, as well as a summary of the outcome of this interaction, providing an important step for therapeutic opportunities and guidance for future research on infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Lucas Secchim Ribeiro
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Laura Migliari Branco
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bernardo S Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Chaurasia SN, Kushwaha G, Kulkarni PP, Mallick RL, Latheef NA, Mishra JK, Dash D. Platelet HIF-2α promotes thrombogenicity through PAI-1 synthesis and extracellular vesicle release. Haematologica 2019; 104:2482-2492. [PMID: 31004026 PMCID: PMC6959171 DOI: 10.3324/haematol.2019.217463] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Oxygen-compromised environments, such as high altitude, are associated with platelet hyperactivity. Platelets confined within the relatively impervious core of an aggregate/thrombus have restricted access to oxygen, yet they continue to perform energy-intensive procoagulant activities that sustain the thrombus. Studying platelet signaling under hypoxia is, therefore, critical to our understanding of the mechanistic basis of thrombus stability. We report here that hypoxia-inducible factor (HIF)-2α is translated from pre-existing mRNA and stabilized against proteolytic degradation in enucleate platelets exposed to hypoxia. Hypoxic stress, too, stimulates platelets to synthesize plasminogen-activator inhibitor-1 (PAI-1) and shed extracellular vesicles, both of which potentially contribute to the prothrombotic phenotype associated with hypoxia. Stabilization of HIF-α by administering hypoxia-mimetics to mice accelerates thrombus formation in mesenteric arterioles. In agreement, platelets from patients with chronic obstructive pulmonary disease and high altitude residents exhibiting thrombogenic attributes have abundant expression of HIF-2α and PAI- 1. Thus, targeting platelet hypoxia signaling could be an effective anti-thrombotic strategy.
Collapse
Affiliation(s)
- Susheel N Chaurasia
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Geeta Kushwaha
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Paresh P Kulkarni
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ram L Mallick
- Department of Biochemistry, Birat Medical College & Teaching Hospital, Biratnagar, Nepal
| | - Nazmy A Latheef
- Department of Tuberculosis & Respiratory Diseases, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jai K Mishra
- Department of Tuberculosis & Respiratory Diseases, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
29
|
Tan SJ, Nakahara K, Sou K, Takeoka S. An Assay to Evaluate the Function of Liposomal Platelet Substitutes Delivered to Platelet Aggregates. Front Bioeng Biotechnol 2019; 7:77. [PMID: 31032254 PMCID: PMC6473183 DOI: 10.3389/fbioe.2019.00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Aggregation of liposomal platelet substitutes with activated platelets is the primary endpoint to estimate hemostatic potential. Although light transmission aggregometry is a “gold standard” in assessing platelet aggregation in vitro, this method is less specific and sensitive when tested using liposomal platelet substitutes. In the current study, a new method is developed to evaluate the function of platelet substitutes. By labeling liposomes with a fluorescent dye, DiD, we evaluated their ability to target platelet aggregates using a fluorescence microscope. By incorporating an image-based 96 microtiter microplate, this method was optimized by varying the final lipid concentrations and washing times and validated using unmodified liposomes (e.g., L550 with 0 mol% of carboxylic headgroup lipid; L551 with 9 mol% of carboxylic headgroup lipid) and modified liposomes (e.g., H12-L551 with 9 mol% of carboxylic headgroup lipid and 0.3 mol% of dodecapeptide). Our results showed that 200 μM of H12-L551 liposomes and four washes represent optimal conditions for quantitative fluorescence imaging. This method allowed users to qualitatively observe the fluorescently labeled liposomes involved in platelet aggregates. The imaging analysis tool was sufficiently sensitive to quantitatively determine the significantly enhanced delivery of the modified liposomes to platelet aggregates. This enhancement was achieved using dodecapeptide, which specifically binds to activated platelets. This robust and high-throughput method enables the evaluation of liposome function and should facilitate the development of platelet substitutes with a greater ability to target platelet aggregates.
Collapse
Affiliation(s)
- Suyun Janet Tan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Keiko Nakahara
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Keitaro Sou
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, Japan.,Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| |
Collapse
|
30
|
Best MG, In 't Veld SGJG, Sol N, Wurdinger T. RNA sequencing and swarm intelligence-enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA. Nat Protoc 2019; 14:1206-1234. [PMID: 30894694 DOI: 10.1038/s41596-019-0139-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Blood-based diagnostics tests, using individual or panels of biomarkers, may revolutionize disease diagnostics and enable minimally invasive therapy monitoring. However, selection of the most relevant biomarkers from liquid biosources remains an immense challenge. We recently presented the thromboSeq pipeline, which enables RNA sequencing and cancer classification via self-learning and swarm intelligence-enhanced bioinformatics algorithms using blood platelet RNA. Here, we provide the wet-lab protocol for the generation of platelet RNA-sequencing libraries and the dry-lab protocol for the development of swarm intelligence-enhanced machine-learning-based classification algorithms. The wet-lab protocol includes platelet RNA isolation, mRNA amplification, and preparation for next-generation sequencing. The dry-lab protocol describes the automated FASTQ file pre-processing to quantified gene counts, quality controls, data normalization and correction, and swarm intelligence-enhanced support vector machine (SVM) algorithm development. This protocol enables platelet RNA profiling from 500 pg of platelet RNA and allows automated and optimized biomarker panel selection. The wet-lab protocol can be performed in 5 d before sequencing, and the algorithm development can be completed in 2 d, depending on computational resources. The protocol requires basic molecular biology skills and a basic understanding of Linux and R. In all, with this protocol, we aim to enable the scientific community to test platelet RNA for diagnostic algorithm development.
Collapse
Affiliation(s)
- Myron G Best
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands. .,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands. .,Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.
| | - Sjors G J G In 't Veld
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Nik Sol
- Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands. .,Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Provost P. Platelet MicroRNAs. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
|
33
|
Deana Y, Burgara-Estrella AJ, Montalvo-Corral M, Angulo-Molina A, Acosta-Elías MA, Silva-Campa E, Sarabia-Sainz JA, Rodríguez-Hernández IC, Pedroza-Montero MR. Effect of gamma irradiation doses in the structural and functional properties of mice splenic cells. Int J Radiat Biol 2018; 95:286-297. [PMID: 30496016 DOI: 10.1080/09553002.2019.1547435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Ionizing radiation is nowadays effectively used in cancer treatments. However, the effect of irradiation in immune-system cells is poorly understood and remains controversial. The aim of this work was to determine the effect of γ-irradiation in the structural and functional properties of mice splenic cells. MATERIALS AND METHODS Structural traits of irradiated splenic cells were evaluated by Atomic Force Microscopy and Raman spectroscopy. Functional properties were measured by gene and protein expression by RT-qPCR and ELISA, respectively. The induced cytotoxic effect was evaluated by MTT assay and the phagocytic capability by flow cytometry. RESULTS Membrane roughness and molecular composition of splenic adherent cells are not changed by irradiation doses exposure. An increase in transcription of pro-inflammatory cytokines was observed. While protein expression decreased in IL-2 dose-dependent, relevant differences were identified in the anti-inflammatory marker IL-10 at 27 Gy. An increase of cytotoxicity in irradiated cells at 7 Gy and 27 Gy doses was observed, while phagocytosis was slight increased at 7 Gy dose but not statistically significant. CONCLUSIONS We have demonstrated that γ-irradiation affects the splenic cells and changes the cytokines profile toward a pro-inflammatory phenotype and a tendency to increase the cytotoxicity was found, which implies a stimulation of immune response induced by γ-irradiation.
Collapse
Affiliation(s)
- Yanik Deana
- a Departamento de Investigación en Física , Universidad de Sonora , Hermosillo , México.,b Institute for Chemistry and Bioanalytics , University of Applied Sciences and Arts Northwestern , Muttenz , Switzerland
| | | | - Maricela Montalvo-Corral
- c Departamento de Nutrición , Centro de Investigación en Alimentación y Desarrollo A.C. , Hermosillo , México
| | | | - Mónica A Acosta-Elías
- a Departamento de Investigación en Física , Universidad de Sonora , Hermosillo , México
| | - Erika Silva-Campa
- a Departamento de Investigación en Física , Universidad de Sonora , Hermosillo , México
| | - Jose A Sarabia-Sainz
- a Departamento de Investigación en Física , Universidad de Sonora , Hermosillo , México
| | | | | |
Collapse
|
34
|
Impacts of Cancer on Platelet Production, Activation and Education and Mechanisms of Cancer-Associated Thrombosis. Cancers (Basel) 2018; 10:cancers10110441. [PMID: 30441823 PMCID: PMC6266827 DOI: 10.3390/cancers10110441] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Platelets are small anucleate cells that are traditionally described as the major effectors of hemostasis and thrombosis. However, increasing evidence indicates that platelets play several roles in the progression of malignancies and in cancer-associated thrombosis. A notable cross-communication exists between platelets and cancer cells. On one hand, cancer can “educate” platelets, influencing their RNA profiles, the numbers of circulating platelets and their activation states. On the other hand, tumor-educated platelets contain a plethora of active biomolecules, including platelet-specific and circulating ingested biomolecules, that are released upon platelet activation and participate in the progression of malignancy. The numerous mechanisms by which the primary tumor induces the production, activation and aggregation of platelets (also known as tumor cell induced platelet aggregation, or TCIPA) are directly related to the pro-thrombotic state of cancer patients. Moreover, the activation of platelets is critical for tumor growth and successful metastatic outbreak. The development or use of existing drugs targeting the activation of platelets, adhesive proteins responsible for cancer cell-platelet interactions and platelet agonists should be used to reduce cancer-associated thrombosis and tumor progression.
Collapse
|
35
|
Impact of Escherichia coli K12 and O18:K1 on human platelets: Differential effects on platelet activation, RNAs and proteins. Sci Rep 2018; 8:16145. [PMID: 30385858 PMCID: PMC6212526 DOI: 10.1038/s41598-018-34473-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Blood platelets can interact with bacteria, possibly leading to platelet activation, cytokine and microparticle release and immune signalling. Besides, bacteria can also affect the platelet RNA content. We investigated the impact of non-pathogenic K12 and pathogenic O18:K1 Escherichia (E.) coli strains on platelet activation, RNA expression patterns, and selected proteins. Depending on bacteria concentration, contact of platelets with E. coli K12 lead to an increase of P-selectin (24–51.3%), CD63 (15.9–24.3%), PAC-1 (3.8–14.9%) and bound fibrinogen (22.4–39%) on the surface. E. coli O18:K1 did not affect these markers. Sequencing analysis of total RNA showed that E. coli K12 caused a significant concentration change of 103 spliced mRNAs, of which 74 decreased. For the RNAs of HMBS (logFC = +5.73), ATP2C1 (logFC = −3.13) and LRCH4 (logFC = −4.07) changes were detectable by thromboSeq and Tuxedo pipelines. By Western blot we observed the conversion of HMBS protein from a 47 kDA to 40 kDa product by E. coli K12, O18:K1 and by purified lipopolysaccharide. While ATP2C1 protein was released from platelets, E. coli either reduced the secretion or broke down the released protein making it undetectable by antibodies. Our results demonstrate that different E. coli strains influence activation, RNA and protein levels differently which may affect platelet-bacteria crosstalk.
Collapse
|
36
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Zhang Q, Hu H, Liu H, Jin J, Zhu P, Wang S, Shen K, Hu Y, Li Z, Zhan P, Zhu S, Fan H, Zhang J, Lv T, Song Y. RNA sequencing enables systematic identification of platelet transcriptomic alterations in NSCLC patients. Biomed Pharmacother 2018; 105:204-214. [PMID: 29857300 DOI: 10.1016/j.biopha.2018.05.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/24/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023] Open
Abstract
Platelets are implicated as key players in the metastatic dissemination of tumor cells. Previous evidence demonstrated platelets retained cytoplasmic RNAs with physiologically activity, splicing pre-mRNA to mRNA and translating into functional proteins in response to external stimulation. Recently, platelets gene profile of healthy or diseased individuals were characterized with the help of RNA sequencing (RNA-Seq) in some studies, leading to new insights into the mechanisms underlying disease pathogenesis. In this study, we performed RNA-seq in platelets from 7 healthy individuals and 15 non-small cell lung cancer (NSCLC) patients. Our data revealed a subset of near universal differently expressed gene (DEG) profiles in platelets of metastatic NSCLC compared to healthy individuals, including 626 up-regulated RNAs (mRNAs and ncRNAs) and 1497 down-regulated genes. The significant over-expressed genes showed enrichment in focal adhesion, platelets activation, gap junction and adherens junction pathways. The DEGs also included previously reported tumor-related genes such as PDGFR, VEGF, EGF, etc., verifying the consistence and significance of platelet RNA-Seq in oncology study. We also validated several up-regulated DEGs involved in tumor cell-induced platelet aggregation (TCIPA) and tumorigenesis. Additionally, transcriptomic comparison analyses of NSCLC subgroups were conducted. Between non-metastatic and metastatic NSCLC patients, 526 platelet DEGs were identified with the most altered expression. The outcomes from subgroup analysis between lung adenocarcinoma and lung squamous cell carcinoma demonstrated the diagnostic potential of platelet RNA-Seq on distinguishing tumor histological types.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Huan Hu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, 210002, China
| | - Peiyuan Zhu
- Department of Blood Transfusion, Jinling Hospital, Nanjing, 210002, China
| | - Shujun Wang
- Department of Blood Transfusion, Jinling Hospital, Nanjing, 210002, China
| | - Kaikai Shen
- Department of Respiratory Medicine, Jinling Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Yangbo Hu
- Department of Respiratory Medicine, Jinling Hospital, Southeast University School of Medicine, Nanjing, 210002, China
| | - Zhou Li
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hang Fan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| |
Collapse
|
38
|
Scherlinger M, Sisirak V, Richez C, Lazaro E, Duffau P, Blanco P. New Insights on Platelets and Platelet-Derived Microparticles in Systemic Lupus Erythematosus. Curr Rheumatol Rep 2018; 19:48. [PMID: 28718063 DOI: 10.1007/s11926-017-0678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Current knowledge on the role of platelets and platelet-derived microparticles (PMPs) on the immune system has been fast-growing. Systemic lupus erythematosus (SLE) is a systemic auto-immune disorder characterized by a loss of tolerance toward nuclear auto-antigens. Although recent studies allowed a better understanding of SLE pathogenesis, there is an urgent need for the development of new treatments and the identification of new biomarkers to assess the disease activity. We describe here the state-of-the-art knowledge linking platelets and PMPs to SLE. RECENT FINDINGS Platelet system activation is a key event in the pathogenesis of SLE. Circulating immune complexes, anti-phospholipid antibodies, and infectious agents such as virus are the main activators of platelets in SLE. Platelet activation can be monitored through different ways such as P-selectin expression, mean platelet volume, or circulating PMP levels, suggesting their potential use as biomarkers. Upon activation, platelets promote type I interferon production, NETosis, dendritic cell activation, and T and B lymphocyte activation, all essential events contributing to the development of SLE. Of interest, platelets also play a fundamental role in SLE organ disease such as the development of cardiovascular, thrombotic, and renal diseases. Finally, we review current knowledge on drugs targeting platelet activation and their potential impact on SLE pathogenesis. Platelets play a major role in SLE pathogenesis and organ disease and represent a great potential for novel biomarkers and drug development.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Estibaliz Lazaro
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France
| | - Pierre Duffau
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076, Bordeaux, France
| | - Patrick Blanco
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.
| |
Collapse
|
39
|
Scherlinger M, Guillotin V, Truchetet ME, Contin-Bordes C, Sisirak V, Duffau P, Lazaro E, Richez C, Blanco P. Systemic lupus erythematosus and systemic sclerosis: All roads lead to platelets. Autoimmun Rev 2018; 17:625-635. [PMID: 29635077 DOI: 10.1016/j.autrev.2018.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are two phenotypically distincts inflammatory systemic diseases. However, SLE and SSc share pathogenic features such as interferon signature, loss of tolerance against self-nuclear antigens and increased tissue damage such as fibrosis. Recently, platelets have emerged as a major actor in immunity including auto-immune diseases. Both SLE and SSc are characterized by strong platelet system activation, which is likely to be both the witness and culprit in their pathogenesis. Platelet activation pathways are multiple and sometimes redundant. They include immune complexes, Toll-like receptors activation, antiphospholipid antibodies and ischemia-reperfusion associated with Raynaud phenomenon. Once activated, platelet promote immune dysregulation by priming interferon production by immune cells, providing CD40L supporting B lymphocyte functions and providing a source of autoantigens. Platelets are actively implicated in SLE and SSc end-organ damage such as cardiovascular and renal disease and in the promotion of tissue fibrosis. Finally, after understanding the main pathogenic implications of platelet activation in both diseases, we discuss potential therapeutics targeting platelets.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vivien Guillotin
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Elise Truchetet
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Cécile Contin-Bordes
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pierre Duffau
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Estibaliz Lazaro
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Blanco
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
40
|
Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Vilar E, Bhattacharya P, Millward S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 2018; 36:289-303. [PMID: 28762014 PMCID: PMC5557878 DOI: 10.1007/s10555-017-9675-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After more than a century, aspirin remains one of the most commonly used drugs in western medicine. Although mainly used for its anti-thrombotic, anti-pyretic, and analgesic properties, a multitude of clinical studies have provided convincing evidence that regular, low-dose aspirin use dramatically lowers the risk of cancer. These observations coincide with recent studies showing a functional relationship between platelets and tumors, suggesting that aspirin's chemopreventive properties may result, in part, from direct modulation of platelet biology and biochemistry. Here, we present a review of the biochemistry and pharmacology of aspirin with particular emphasis on its cyclooxygenase-dependent and cyclooxygenase-independent effects in platelets. We also correlate the results of proteomic-based studies of aspirin acetylation in eukaryotic cells with recent developments in platelet proteomics to identify non-cyclooxygenase targets of aspirin-mediated acetylation in platelets that may play a role in its chemopreventive mechanism.
Collapse
Affiliation(s)
- Argentina Ornelas
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niki Zacharias-Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G Menter
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer S Davis
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lenard Lichtenberger
- McGovern Medical School, Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David Hawke
- Department of Systems Biology, Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ernest Hawk
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Wysokinski WE, Tafur A, Wu Y, Ammash N, Asirvatham SJ, Gosk-Bierska I, Grill DE, Slusser JP, Mruk J, McBane RD. Platelet-predominate gene expression and reticulated platelets in nonvalvular atrial fibrillation: Effect of pulmonary veins isolation. J Cardiovasc Electrophysiol 2018; 29:412-420. [PMID: 29377394 DOI: 10.1111/jce.13438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Reticulated platelet (RP) content is increased in nonvalvular atrial fibrillation (NVAF). The purpose of this study was to determine if platelet content, morphology, and RP proportion are modulated by platelet genes. METHODS AND RESULTS Expression of six platelet-predominate genes impacting platelet formation and release, platelet count, and RP content was assessed in NVAF patients before and 3-4 months after pulmonary veins isolation (PVI) and compared to normal sinus rhythm (NSR) controls. RNA from isolated platelets was reverse-transcribed assayed against selected genes utilizing real-time qPCR, and expressed as mean cycle threshold (ΔCt) using beta-2-microglobulin as endogenous control. RP content was assessed by flow cytometry. A fourfold lower expression of CFL1 gene coding for nonmuscle cofilin (7.8 ± 0.9 vs. 5.7 ± 1.6, P < 0.001) and twofold lower expression of four other genes were associated with similar platelet counts but fourfold higher (28.7+7.0 vs. 6.7+5.4, P < 0.001) RP content (%) in 97 NVAF cases compared to 51 NSR controls. Three to 4 months after PVI, RP decreased by 28%, while CFL1 gene expression increased over twofold but TUBA4A gene expression decreased almost twofold; NFE2 and MYL6 gene expression remained unchanged. CONCLUSIONS NVAF is associated with notable downregulation of genes directing platelet production and size but increased RP content. PVI impacts the expression of many of these genes, implying a direct relationship between atrial fibrillation and platelet biogenesis.
Collapse
Affiliation(s)
- Waldemar E Wysokinski
- Department of Cardiovascular Medicine, Mayo Clinic Foundation for Education and Research, Rochester, MN, USA
| | - Alfonso Tafur
- Department of Cardiovascular Medicine, Mayo Clinic Foundation for Education and Research, Rochester, MN, USA
| | - Yanhong Wu
- Department of Cardiovascular Medicine, Mayo Clinic Foundation for Education and Research, Rochester, MN, USA
| | - Naser Ammash
- Department of Cardiovascular Medicine, Mayo Clinic Foundation for Education and Research, Rochester, MN, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic Foundation for Education and Research, Rochester, MN, USA
| | - Izabela Gosk-Bierska
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | - Diane E Grill
- Department of Cardiovascular Medicine, Mayo Clinic Foundation for Education and Research, Rochester, MN, USA
| | - Joshua P Slusser
- Department of Cardiovascular Medicine, Mayo Clinic Foundation for Education and Research, Rochester, MN, USA
| | - Jozef Mruk
- Department of Internal Medicine, University of Kansas School of Medicine-Wichita, Witchita, KS, USA.,Wichita Clinic, Wichita, KS, USA
| | - Robert D McBane
- Department of Cardiovascular Medicine, Mayo Clinic Foundation for Education and Research, Rochester, MN, USA
| |
Collapse
|
42
|
Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, Malek L, Postula M. The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular Events in High-Risk Populations, Including Diabetic Patients: A Review. Front Endocrinol (Lausanne) 2018; 9:74. [PMID: 29615970 PMCID: PMC5869202 DOI: 10.3389/fendo.2018.00074] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a pivotal role in the development and progression of atherosclerosis, which often leads to potentially fatal ischemic events at later stages of the disease. Platelets and platelet microvesicles (PMVs) contain large amounts of microRNA (miRNA), which contributes largely to the pool of circulating miRNAs. Hence, they represent a promising option for the development of innovative diagnostic biomarkers, that can be specific for the underlying etiology. Circulating miRNAs can be responsible for intracellular communication and may have a biological effect on target cells. As miRNAs associated to both cardiovascular diseases (CVD) and diabetes mellitus can be measured by means of a wide array of techniques, they can be exploited as an innovative class of smart disease biomarkers. In this manuscript, we provide an outline of miRNAs associated with platelet function and reactivity (miR-223, miR-126, miR-197, miR-191, miR-21, miR-150, miR-155, miR-140, miR-96, miR-98) that should be evaluated as novel biomarkers to improve diagnostics and treatment of CVD.
Collapse
Affiliation(s)
- Justyna Pordzik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Pisarz
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Axel Dyve Jones
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- URT-CNR, Department of Medicine, Consiglio Nazionale delle Ricerche of IFC, Catanzaro, Italy
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postula,
| |
Collapse
|
43
|
Wong CC, Chen CH, Chan WP, Chiu LH, Ho WP, Hsieh FJ, Chen YT, Yang TL. Single-Stage Cartilage Repair Using Platelet-Rich Fibrin Scaffolds With Autologous Cartilaginous Grafts. Am J Sports Med 2017; 45:3128-3142. [PMID: 28892654 DOI: 10.1177/0363546517719876] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND To avoid complicated procedures requiring in vitro chondrocyte expansion for cartilage repair, the development of a culture-free, 1-stage approach combining platelet-rich fibrin (PRF) and autologous cartilage grafts may be the solution. PURPOSE To develop a feasible 1-step procedure to combine PRF and autologous cartilage grafts for articular chondral defects. STUDY DESIGN Controlled laboratory study Methods: The chemotactic effects of PRF on chondrocytes harvested from the primary culture of rabbit cartilage were evaluated in vitro and ex vivo. The rabbit chondrocytes were cultured with different concentrations of PRF media and evaluated for their cell proliferation, chondrogenic gene expression, cell viability, and extracellular matrix synthesis abilities. For the in vivo study, the chondral defects were created on established animal models of rabbits. The gross anatomy, histology, and objective scores were evaluated to validate the treatment results. RESULTS PRF improved the chemotaxis, proliferation, and viability of the cultured chondrocytes. The gene expression of the chondrogenic markers, including type II collagen and aggrecan, revealed that PRF induced the chondrogenic differentiation of cultured chondrocytes. PRF increased the formation and deposition of the cartilaginous matrix produced by cultured chondrocytes. The efficacy of PRF on cell viability was comparable with that of fetal bovine serum. In animal disease models, morphologic, histological, and objectively quantitative evaluation demonstrated that PRF combined with cartilage granules was feasible in facilitating chondral repair. CONCLUSION PRF enhances the migration, proliferation, viability, and differentiation of chondrocytes, thus showing an appealing capacity for cartilage repair. The data altogether provide evidence to confirm the feasibility of 1-stage, culture-free method of combining PRF and autologous cartilage graft for repairing articular chondral defects. CLINICAL RELEVANCE The single-stage, culture-free method of combining PRF and autologous cartilage is useful for repairing articular chondral defects. These advantages benefit clinical translation by simplifying and potentiating the efficacy of autologous cartilage transplantation.
Collapse
Affiliation(s)
- Chin-Chean Wong
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hwa Chen
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wing P Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsuan Chiu
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Center for Nano Tissue Engineering and Image Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Pin Ho
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fon-Jou Hsieh
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
44
|
Contursi A, Sacco A, Grande R, Dovizio M, Patrignani P. Platelets as crucial partners for tumor metastasis: from mechanistic aspects to pharmacological targeting. Cell Mol Life Sci 2017; 74:3491-3507. [PMID: 28488110 PMCID: PMC11107532 DOI: 10.1007/s00018-017-2536-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
Platelets are anucleated cells that circulate in the blood as sentinels of tissue integrity. In fact, they are rich in a plethora of proteins and other factors stored in different granules which they selectively release upon stimulation. Moreover, platelets synthesize a vast number of lipids and release various types of vesicles, including exosomes which are rich in genetic material. Platelets possess a central function to interact with other cell types, including inflammatory cells and cancer cells. Recent findings have enlightened the capacity of platelets to induce changes in the phenotype of cancer cells which acquire invasiveness thus enhancing their metastatic potential. Thus, it has been hypothesized that targeting the platelet may represent a novel strategy to prevent the development and progression of cancer. This is supported by the efficacy of the antiplatelet agent low-dose aspirin. Studies are ongoing to verify whether other antiplatelet agents share the anticancer effectiveness of aspirin.
Collapse
Affiliation(s)
- Annalisa Contursi
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Angela Sacco
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosalia Grande
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Melania Dovizio
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Paola Patrignani
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
45
|
Comprehensive comparison of neonate and adult human platelet transcriptomes. PLoS One 2017; 12:e0183042. [PMID: 28813466 PMCID: PMC5559076 DOI: 10.1371/journal.pone.0183042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/30/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding the underlying mechanisms of the well-substantiated platelet hyporeactivity in neonates is of interest given their implications for the clinical management of newborns, a population at higher bleeding risk than adults (especially sick and preterm infants), as well as for gaining insight into the regulatory mechanisms of platelet biology. Transcriptome analysis is useful in identifying mRNA signatures affecting platelet function. However, human fetal/neonatal platelet transcriptome analysis has never before been reported. We have used mRNA expression array for the first time to compare platelet transcriptome changes during development. Microarray analysis was performed in pure platelet RNA obtained from adult and cord blood, using the same platform in two independent laboratories. A high correlation was obtained between array results for both adult and neonate platelet samples. There was also good agreement between results in our adult samples and outcomes previously reported in three different studies. Gene enrichment analysis showed that immunity- and platelet function-related genes are highly expressed at both developmental stages. Remarkably, 201 genes were found to be differentially expressed throughout development. In particular, neonatal platelets contain higher levels of mRNA that are associated with protein synthesis and processing, while carrying significantly lower levels of genes involved in calcium transport/metabolism and cell signaling (including GNAZ). Overall, our results point to variations in platelet transcriptome as possibly underlining the hypo-functional phenotype of neonatal platelets and provide further support for the role of platelets in cellular immune response. Better characterization of the platelet transcriptome throughout development can contribute to elucidate how transcriptome changes impact different pathological conditions.
Collapse
|
46
|
Platelet-Rich Fibrin Facilitates Rabbit Meniscal Repair by Promoting Meniscocytes Proliferation, Migration, and Extracellular Matrix Synthesis. Int J Mol Sci 2017; 18:ijms18081722. [PMID: 28783120 PMCID: PMC5578112 DOI: 10.3390/ijms18081722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022] Open
Abstract
Although platelet-rich fibrin (PRF) has been used in clinical practice for some time, to date, few studies reveal its role as a bioactive scaffold in facilitating meniscal repair. Here, the positive anabolic effects of PRF on meniscocytes harvested from the primary culture of a rabbit meniscus were revealed. The rabbit meniscocytes were cultured with different concentrations of PRF-conditioned medium, and were evaluated for their ability to stimulate cell migration, proliferation, and extracellular matrix formation. In vivo, meniscal defects were created via an established rabbit animal model and were evaluated by a histology-based four-stage scoring system to validate the treatment outcome three months postoperatively. The in vitro results showed that PRF could induce cellular migration and promote proliferation and meniscocyte extracellular matrix (ECM) synthesis of cultured meniscocytes. In addition, PRF increased the formation and deposition of cartilaginous matrix produced by cultured meniscocytes. Morphological and histological evaluations demonstrated that PRF could facilitate rabbit meniscal repair. The data highlight the potential utility of using PRF in augmenting the healing of meniscal injuries. These advantages would benefit clinical translation, and are a potential new treatment strategy for meniscal repair.
Collapse
|
47
|
Zhang Q, Liu H, Zhu Q, Zhan P, Zhu S, Zhang J, Lv T, Song Y. Patterns and functional implications of platelets upon tumor "education". Int J Biochem Cell Biol 2017; 90:68-80. [PMID: 28754316 DOI: 10.1016/j.biocel.2017.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
While platelets are traditionally recognized to play a predominant role in hemostasis and thrombosis, increasing evidence verifies its involvement in malignancies. As a component of the tumor microenvironment, platelets influence carcinogenesis, tumor metastasis and chemotherapy efficiency. Platelets status is thus predictable as a hematological biomarker of cancer prognosis and a hot target for therapeutic intervention. On the other hand, the role of circulating tumor cells (CTCs) as an inducer of platelet activation and aggregation has been well acknowledged. The cross-talk between platelets and CTCs is reciprocal on that the CTCs activate platelets while platelets contribute to CTCs' survival and dissemination. This review covers some of the current issues related to the loop between platelets and tumor aggression, including the manners of tumor cells in "educating" platelets and biofunctional alterations of platelets upon tumor "education". We also highlight the potential clinical applications on the interplay between tumors and platelets. Further studies with well-designed prospective multicenter trials may contribute to clinical "liquid biopsy" diagnosis by evaluating the global changes of platelets.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| |
Collapse
|
48
|
Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost 2017; 15:1295-1306. [PMID: 28671345 DOI: 10.1111/jth.13720] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers.
Collapse
Affiliation(s)
- M G Best
- Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - A Vancura
- Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - T Wurdinger
- Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Deng G, Yu S, He Y, Sun T, Liang W, Yu L, Xu D, Li Q, Zhang R. MicroRNA profiling of platelets from immune thrombocytopenia and target gene prediction. Mol Med Rep 2017; 16:2835-2843. [PMID: 28677771 DOI: 10.3892/mmr.2017.6901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 04/24/2017] [Indexed: 01/28/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by a low platelet count and insufficient platelet production. Previous studies identified that microRNAs (miRNAs/miRs) are important for platelet function. However, the regulatory role of miRNAs in the pathogenesis of thrombocytopenia in ITP remains unclear. The aim of the present study is to isolate differentially expressed miRNAs, and identify their roles in platelets from ITP. A total of 5 ml blood from 22 patients with ITP and 8 healthy controls was isolated for platelet collection. A microarray assay was performed to analyze the differentially expressed miRNAs in the patients with ITP and healthy patients. Furthermore, the expression of differentially expressed miRNAs was verified by reverse transcription‑quantitative polymerase chain reaction. In addition, the target mRNAs of the differentially expressed miRNAs were predicted via miRWalk databases, and the target genes and miRNAs were classified by Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analyses. In the present study, 115 miRNAs were identified to be differentially expressed in platelets from patients with ITP compared with the healthy controls (>3‑fold alteration; P<0.05). Among them, 57 miRNAs were upregulated in ITP, while 58 miRNAs were downregulated. Bioinformatic prediction demonstrated that hsa‑miR‑548a‑5p, hsa‑miR‑1185‑2‑3p, hsa‑miR‑30a‑3p, hsa‑miR‑6867‑5p, hsa‑miR‑765 and hsa‑miR‑3125 were associated with platelet apoptosis and adhesion in ITP. The present study performed miRNA profiling of platelets from patients with ITP and the results may aid in the understanding of the regulatory mechanism of ITP.
Collapse
Affiliation(s)
- Gang Deng
- Department of Hematology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| | - Shifang Yu
- Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yunlei He
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Tao Sun
- Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Liang
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Lu Yu
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Deyi Xu
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Qiang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ri Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| |
Collapse
|
50
|
Wysokinski WE, Tafur A, Ammash N, Asirvatham SJ, Wu Y, Gosk-Bierska I, Grill DE, Slusser JP, Mruk J, McBane RD. Impact of atrial fibrillation on platelet gene expression. Eur J Haematol 2017; 98:615-621. [PMID: 28306170 DOI: 10.1111/ejh.12879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 02/01/2023]
Abstract
AIMS Platelets retain cytoplasmic messenger RNA and are capable of protein biosynthesis. Several diseases are known to impact the platelet transcriptome but the effect of non-valvular atrial fibrillation (NVAF) on platelet RNA transcript is essentially unknown. The aim of this study was to evaluate the impact of NVAF on platelet RNA transcript by measuring platelet genes expression in consecutive NVAF patients before and 3-4 months after pulmonary vein isolation (PVI) and compared to normal sinus rhythm controls (NSR). METHODS AND RESULTS RNA from isolated platelets were reverse transcribed, assayed against 15 genes using real-time qPCR, and expressed as mean cycle threshold (ΔCt) using beta-2-microglobulin as endogenous control. Expression of all evaluated genes, except cathepsin A gene, was significantly lower (higher ΔCt) in 103 NVAF patients compared to 55 NSR controls. Insulin-like growth factor binding protein acid labile subunit gene (IGFALS) had expression more than 16 fold-lower (17.0±2.8 vs 12.5±3.8, P<.001), follow by genes encoding for prostacyclin receptor, and for von Willebrand factor which had fourfold lower expression compared to NSR controls. Gender, type of atrial fibrillation, heart failure, hypertension, prior stroke, diabetes mellitus, and atherosclerosis were associated with different gene expression. Following PVI, expression of four genes significantly increased, particularly IGFALS gene (increased 256-fold) and ADAMT gene increased 16-fold); expression of three genes significantly decreased, and expression of eight genes has not changed. CONCLUSIONS Platelets are capable to respond to the circulatory environment of NVAF by altering transcript and changing prothrombotic status. This shows platelet potential for molecular "reprogramming" possibly induced by flow disturbances of NVAF.
Collapse
Affiliation(s)
| | - Alfonso Tafur
- Department of Cardiovascular Medicine, Vascular Surgery and Medicine Section, NorthShore University HealthSystem, Skokie, USA
| | - Naser Ammash
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| | | | - Yanhong Wu
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| | | | - Diane E Grill
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| | - Joshua P Slusser
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| | - Jozef Mruk
- Department of Internal Medicine, University of Kansas, School of Medicine-Wichita, Wichita, KS, USA
| | - Robert D McBane
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| |
Collapse
|