1
|
Ullah A, Huang Y, Zhao K, Hua Y, Ullah S, Rahman MU, Wang J, Wang Q, Hu X, Zheng L. Characteristics and potential clinical applications of the extracellular vesicles of human pathogenic Fungi. BMC Microbiol 2023; 23:227. [PMID: 37598156 PMCID: PMC10439556 DOI: 10.1186/s12866-023-02945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Collapse
Affiliation(s)
- Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kening Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shafi Ullah
- Department of pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
2
|
Characterization of the Secretome of Pathogenic Candida glabrata and Their Effectiveness against Systemic Candidiasis in BALB/c Mice for Vaccine Development. Pharmaceutics 2022; 14:pharmaceutics14101989. [PMID: 36297425 PMCID: PMC9612021 DOI: 10.3390/pharmaceutics14101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Infections by non-albicans Candida species have increased drastically in the past few decades. Candida glabrata is one of the most common opportunistic fungal pathogens in immunocompromised individuals, owing to its capability to attach to various human cell types and medical devices and being intrinsically weakly susceptible to azoles. Immunotherapy, including the development of antifungal vaccines, has been recognized as an alternative approach for preventing and treating fungal infections. Secretory proteins play a crucial role in establishing host–pathogen interactions and are also responsible for eliciting an immune response in the host during candidiasis. Therefore, fungal secretomes can provide promising protein candidates for antifungal vaccine development. This study attempts to uncover the presence of immunodominant antigenic proteins in the C. glabrata secretome and delineate their role in various biological processes and their potency in the development of antifungal vaccines. LC–MS/MS results uncovered that C. glabrata secretome consisted of 583 proteins, among which 33 were identified as antigenic proteins. The protection ability of secretory proteins against hematogenously disseminated infection caused by C. glabrata was evaluated in BALB/c mice. After immunization and booster doses, all the animals were challenged with a lethal dose of C. glabrata. All the mice showing signs of distress were sacrificed post-infection, and target organs were collected, followed by histopathology and C. glabrata (CFU/mg) estimation. Our results showed a lower fungal burden in target organs and increased survival in immunized mice compared to the infection control group, thus revealing the immunogenic property of secreted proteins. Thus, identified secretome proteins of C. glabrata have the potential to act as antigenic proteins, which can serve as potential candidates for the development of antifungal vaccines. This study also emphasizes the importance of a mass-spectrometry approach to identifying the antigenic proteins in C. glabrata secretome.
Collapse
|
3
|
Zhang X, Dong S, Huang Y, Shi H, Chen X, Wang Y, Li Y, Cao D, Wang L. A scFv phage targeting the C. albicans cell wall screened from a bacteriophage-based library of induced immune protection in mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105303. [PMID: 35577227 DOI: 10.1016/j.meegid.2022.105303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
C. albicans is the most prevalent opportunistic fungal and can cause life-threatening systemic infections under certain circumstances. The inefficiency and resistance of traditional therapy make the development of novel techniques indispensable. The main components, proteins and glycoproteins, of the C. albicans cell wall are highly immunogenic and very different from those of the host, making it an ideal source of targets for antifungal drug development. This study aimed to screen and identify specific peptides that bind to the C. albicans cell wall using a phage-display peptide library, and to develop a peptide-based therapy targeted to C. albicans. After four rounds of screening, JC-1 ScFv was found to bind to the C. albicans cell wall specifically, inhibit C. albicans growth and viability in vitro, and protect mice from C. albicans infection in vivo. Further study showed that JC-1 could provoke an immune response in C. albicans-infected mice. These results indicated that JC-1 ScFv screened from a phage-display peptide library had the potential to be developed as a vector for targeting C. albicans.
Collapse
Affiliation(s)
- Xintong Zhang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China.; The Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Shuai Dong
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China.; Department of obstetrics and gynecology, The First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Yuanyuan Huang
- Department of pediatric outpatient, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Hongxi Shi
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Xi Chen
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Yicun Wang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Yan Li
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Donghui Cao
- Division of Clinical Research, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China..
| | - Li Wang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China..
| |
Collapse
|
4
|
He Z, Piao J, Qiu Y, Lei D, Yang Y, Shi L, Wang F. Investigation of the location and secretion features of Candida albicans enolase with monoclonal antibodies. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The glycolytic enzyme enolase plays important role in the pathogenesis of Candida albicans infection and has been also considered as a promising molecular marker for the diagnosis of invasive candidiasis. This study aimed to investigate the location and secretion features of Candida albicans enolase (CaEno) with a couple of specific monoclonal antibodies (mAbs).
Methods
Two mAbs named 9H8 and 10H8 against CaEno were generated by fusing SP2/0 myeloma cell with the spleen lymphocytes from CaEno immunized mice. The specificity of the mAbs was then validated by Western blot and liquid chromatography-mass spectrometry (LC–MS/MS). A diverse set of experiments were conducted based on the pair of mAbs which involved immunohistochemical staining analysis, whole cell enzyme-linked immunosorbent assay (ELISA), double antibody sandwich ELISA, and confocal microscopy to analyze the possible location and secretion features of CaEno.
Results
CaEno is abundantly expressed in the cytoplasm of C. albicans blastospores and is distributed in a ring-shaped pattern along the cell wall. CaEno appeared in the hyphal C. albicans as just a “mushroom” form. CaEno was found to be weakly expressed on the surface of blastospores but constantly expressed at various stages of growth. CaEno concentrations in C. albicans blastospores culture supernatant are considerably higher than in C. albicans hyphae culture supernatant. The dynamic changes of supernatant CaEno concentration in blastospores and hyphal C. albicans exhibit distinct features, although both appear to be associated with the C. albicans growth state. When cultivated under normal circumstances, however, no apparent CaEno degradation was seen in the cell-free supernatant.
Conclusion
Our results implied that CaEno was constantly expressed on the cell surface and its secretion features varied according to the growth stage of C. albicans. However, further experimental and theoretical studies are needed in future to identify the specific mechanisms by which this phenomenon can arise.
Collapse
|
5
|
Jungnickel B, Jacobsen ID. Systemic Candidiasis in Mice: New Insights From an Old Model. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:940884. [PMID: 37746206 PMCID: PMC10512337 DOI: 10.3389/ffunb.2022.940884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 09/26/2023]
Abstract
Animal models are essential to understand the pathophysiology of infections, to test novel antifungal compounds, and to determine the potential of adjunctive therapies, e.g. immune modulation. The murine model of systemic candidiasis induced by intravenous infection is technically straightforward, highly reproducible, and well-characterized. However, intravenous inoculation circumvents the necessity for the fungus to translocate across mucosal barriers, and the use of SPF mice that are immunologically naïve to Candida does not reflect the situation in human patients, in whom adaptive immune responses have been induced by mucosal colonization prior to infection. Therefore, mouse models that combine intestinal colonization and systemic infection have been developed, resulting in novel insights into host-fungal interactions and immunity. In this review, we summarize the main findings, current questions, and discuss how these might impact the translatability of results from mice to humans.
Collapse
Affiliation(s)
- Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| |
Collapse
|
6
|
Satala D, Gonzalez-Gonzalez M, Smolarz M, Surowiec M, Kulig K, Wronowska E, Zawrotniak M, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Role of Candida albicans Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens. Front Cell Infect Microbiol 2022; 11:765942. [PMID: 35071033 PMCID: PMC8766842 DOI: 10.3389/fcimb.2021.765942] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the “red complex” species. In particular, we discuss the involvement of candidal cell surface proteins—typical fungal adhesins as well as originally cytosolic “moonlighting” proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.,Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Smolarz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
7
|
Hydrolytic Enzymes from PGPR Against Plant Fungal Pathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Ibe C, Oladele RO, Alamir O. Our pursuit for effective antifungal agents targeting fungal cell wall components, where are we? Int J Antimicrob Agents 2021; 59:106477. [PMID: 34798234 DOI: 10.1016/j.ijantimicag.2021.106477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023]
Abstract
Invasive mycotic infections account for an unacceptably high mortality rates in humans. These infections are initiated by the fungal cell wall which mediates host-fungi interactions. The cell wall is fused to the physiology of fungi, and it is involved in essential functions in the entire cell functionality. Components of the cell wall are synthesised and modified in the cell wall space by the activities of cell wall proteins through a range of signalling pathways that have only been described in many fungi, therefore making them suitable drug targets. The echinocandins class of cell wall-active drugs block cell wall β-1,3-glucan biosynthesis through inhibiting the catalytic subunit of the synthetic protein complex. Resistance to echinocandins can be through the acquisition of single nucleotide polymorphisms and/or through activation of cell wall signalling pathways resulting in altered cell wall proteome and elevated chitin content in the cell wall. Countering the cell wall remodelling process will enhance the effectiveness of β-1,3-glucan-active antifungal agents. Cell surface proteins are also important antifungal targets which can be used to develop rapid and robust diagnostics and more effective therapeutics. The cell wall remains a crucial target in fungi that needs to be harnessed to combat mycotic infections.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Abia State University, PMB 2000 Uturu, Abia State, Nigeria.
| | - Rita O Oladele
- Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Omran Alamir
- Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Al Asimah, Kuwait
| |
Collapse
|
9
|
Biomarkers for the diagnosis of invasive candidiasis in immunocompetent and immunocompromised patients. Diagn Microbiol Infect Dis 2021; 101:115509. [PMID: 34384954 DOI: 10.1016/j.diagmicrobio.2021.115509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 01/05/2023]
Abstract
Blood culture methods show low sensitivity, so reliable non-culture diagnostic tests are needed to help clinicians with the introduction, de-escalation, and discontinuation of antifungal therapy in patients with suspected invasive candidiasis (IC). We evaluated different biomarkers for the diagnosis of IC in immunocompetent and immunocompromised patients at risk for developing invasive fungal diseases. The specificity of Candida albicans germ-tube antibodies (CAGTA) detection was high (89%-100%), but sensitivity did not exceed 61% even after raising the cut-off from 1/160 to 1/80. We developed enzyme-linked immunoassays detecting antibodies against C. albicans proteins (Als3-N, Hwp1-N, or Met6) that resulted more sensitive (66%-92%) but less specific than CAGTA assay. The combination of 1,3-beta-D-glucan (BDG) detection and CAGTA results provided the highest diagnostic usefulness in immunocompetent patients. However, in immunocompromised patients, anti-Met6 antibodies was the best biomarker, both, alone or in combination with BDG.
Collapse
|
10
|
Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis. J Fungi (Basel) 2021; 7:jof7070501. [PMID: 34201883 PMCID: PMC8306665 DOI: 10.3390/jof7070501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.
Collapse
|
11
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
12
|
Immunoproteomic analysis of Clostridium botulinum type B secretome for identification of immunogenic proteins against botulism. Biotechnol Lett 2021; 43:1019-1036. [PMID: 33629143 PMCID: PMC7904509 DOI: 10.1007/s10529-021-03091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022]
Abstract
Objectives To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. Results In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. Conclusions Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03091-4.
Collapse
|
13
|
Freeman Weiss Z, Leon A, Koo S. The Evolving Landscape of Fungal Diagnostics, Current and Emerging Microbiological Approaches. J Fungi (Basel) 2021; 7:jof7020127. [PMID: 33572400 PMCID: PMC7916227 DOI: 10.3390/jof7020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal infections are increasingly recognized in immunocompromised hosts. Current diagnostic techniques are limited by low sensitivity and prolonged turnaround times. We review emerging diagnostic technologies and platforms for diagnosing the clinically invasive disease caused by Candida, Aspergillus, and Mucorales.
Collapse
Affiliation(s)
- Zoe Freeman Weiss
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
- Massachusetts General Hospital, Division of Infectious Diseases, Boston, MA 02115, USA
- Correspondence:
| | - Armando Leon
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| | - Sophia Koo
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| |
Collapse
|
14
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
15
|
Park YJ, Jang MJ. Blue Light Induced Edible Mushroom ( Lentinula edodes) Proteomic Analysis. J Fungi (Basel) 2020; 6:jof6030127. [PMID: 32781608 PMCID: PMC7558539 DOI: 10.3390/jof6030127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Blue light is an important environmental factor that induces mushroom growth and morphological changes. In this study, after confirming the morphological difference between Lentinula edodes (LE) under blue light condition (BL) and lightless condition (LL), the increase and decrease in LE protein and the expression of RNA of each protein were confirmed under each condition. LE specimens grown in BL and LL were identified by 253 spots in BL through 2D electrophoresis and LC-MSMS analysis, and 22 types of proteins were identified. It was confirmed that 14 types of proteins showed reduced expression in BL compared to LL. On the other hand, eight kinds of proteins with increased expression in blue light compared to LL were identified. As a result of confirming the difference from the expression pattern in 2D electrophoresis through Quantitative Real-Time PCR, it was confirmed that the expression pattern of the two proteins showed a difference. Therefore, this study will be a key study on the changes in mushroom morphology induced by blue light and the proteins that induce it.
Collapse
|
16
|
Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020; 8:microorganisms8071046. [PMID: 32674422 PMCID: PMC7409194 DOI: 10.3390/microorganisms8071046] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of “moonlighting proteins” that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.
Collapse
|
17
|
Pitarch A, Gil C, Blanco G. Vultures from different trophic guilds show distinct oral pathogenic yeast signatures and co-occurrence networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138166. [PMID: 32224410 DOI: 10.1016/j.scitotenv.2020.138166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
Vultures have evolved adaptive mechanisms to prevent infections associated with their scavenging lifestyle. However, food-borne exposure to antimicrobial pharmaceuticals can promote opportunistic infections with adverse outcomes. Here, we used multivariate and network analyses to increase understanding of the behavior of the yeast communities causing oral mycosis outbreaks recently reported in wild nestling cinereous (Aegypius monachus), griffon (Gyps fulvus) and Egyptian (Neophron percnopterus) vultures (CV, GV and EV, respectively) exposed to antibiotics from livestock farming. Common and unique yeast signatures (of Candida, Debaromyces, Diutina, Meyerozyma, Naganishia, Pichia, Rhodotorula, Trichosporon and Yarrowia species) associated with oral mycoses were identified in the three vulture species. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) highlighted that oral lesions from CV and GV shared similar yeast signatures (of major causative pathogens of opportunistic mycoses, such as Candida albicans, Candida parapsilosis and Candida tropicalis), while EV had a distinct yeast signature (of uncommon pathogenic species, such as Candida dubliniensis, Candida zeylanoides, Pichia fermentans and Rhodotorula spp.). Synergistic interactions between yeast species from distinct fungal phyla were found in lesions from CV and GV, but not in EV. These formed co-occurrence subnetworks with partially or fully connected topology. This study reveals that the composition, assembly and co-occurrence patterns of the yeast communities causing oral mycoses differ between vulture species with distinct feeding habits and scavenging lifestyles. Yeast species widely pathogenic to humans and animals, and yeast co-occurrence relationships, are distinctive hallmarks of oral mycoses in CV and GV. These vulture species are more exposed to antibiotics from intensively medicated livestock carcasses provided in supplementary feeding stations and show higher incidence of thrush-like oral lesions than EV. These findings may be useful for development of new initiatives or changes in the conservation of these avian scavengers affected by anthropogenic activities.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology and Parasitology, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Spain; Ramón y Cajal University Hospital (HURC) Foundation for Biomedical Research, Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain.
| | - Concha Gil
- Department of Microbiology and Parasitology, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Spain; Ramón y Cajal University Hospital (HURC) Foundation for Biomedical Research, Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Guillermo Blanco
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Spanish Research Council (CSIC), Madrid, Spain
| |
Collapse
|
18
|
Abstract
Mucormycosis, caused by Rhizopus species, is a life-threatening fungal infection that occurs in patients immunocompromised by diabetic ketoacidosis (DKA), cytotoxic chemotherapy, immunosuppressive therapy, hematologic malignancies, or severe trauma. Inhaled Rhizopus spores cause pulmonary infections in patients with hematologic malignancies, while patients with DKA are much more prone to rhinoorbital/cerebral mucormycosis. Here, we show that Rhizopus delemar interacts with glucose-regulated protein 78 (GRP78) on nasal epithelial cells via its spore coat protein CotH3 to invade and damage the nasal epithelial cells. Expression of the two proteins is significantly enhanced by high glucose, iron, and ketone body levels (hallmark features of DKA), potentially leading to frequently lethal rhinoorbital/cerebral mucormycosis. In contrast, R. delemar CotH7 recognizes integrin β1 as a receptor on alveolar epithelial cells, causing the activation of epidermal growth factor receptor (EGFR) and leading to host cell invasion. Anti-integrin β1 antibodies inhibit R. delemar invasion of alveolar epithelial cells and protect mice from pulmonary mucormycosis. Our results show that R. delemar interacts with different mammalian receptors depending on the host cell type. Susceptibility of patients with DKA primarily to rhinoorbital/cerebral disease can be explained by host factors typically present in DKA and known to upregulate CotH3 and nasal GRP78, thereby trapping the fungal cells within the rhinoorbital milieu, leading to subsequent invasion and damage. Our studies highlight that mucormycosis pathogenesis can potentially be overcome by the development of novel customized therapies targeting niche-specific host receptors or their respective fungal ligands.IMPORTANCE Mucormycosis caused by Rhizopus species is a fungal infection with often fatal prognosis. Inhalation of spores is the major route of entry, with nasal and alveolar epithelial cells among the first cells that encounter the fungi. In patients with hematologic malignancies or those undergoing cytotoxic chemotherapy, Rhizopus causes pulmonary infections. On the other hand, DKA patients predominantly suffer from rhinoorbital/cerebral mucormycosis. The reason for such disparity in disease types by the same fungus is not known. Here, we show that the unique susceptibility of DKA subjects to rhinoorbital/cerebral mucormycosis is likely due to specific interaction between nasal epithelial cell GRP78 and fungal CotH3, the expression of which increases in the presence of host factors present in DKA. In contrast, pulmonary mucormycosis is initiated via interaction of inhaled spores expressing CotH7 with integrin β1 receptor, which activates EGFR to induce fungal invasion of host cells. These results introduce a plausible explanation for disparate disease manifestations in DKA versus those in hematologic malignancy patients and provide a foundation for development of therapeutic interventions against these lethal forms of mucormycosis.
Collapse
|
19
|
Dawson CS, Garcia-Ceron D, Rajapaksha H, Faou P, Bleackley MR, Anderson MA. Protein markers for Candida albicans EVs include claudin-like Sur7 family proteins. J Extracell Vesicles 2020; 9:1750810. [PMID: 32363014 PMCID: PMC7178836 DOI: 10.1080/20013078.2020.1750810] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Fungal extracellular vesicles (EVs) have been implicated in host-pathogen and pathogen-pathogen communication in some fungal diseases. In depth research into fungal EVs has been hindered by the lack of specific protein markers such as those found in mammalian EVs that have enabled sophisticated isolation and analysis techniques. Despite their role in fungal EV biogenesis, ESCRT proteins such as Vps23 (Tsg101) and Bro1 (ALIX) are not present as fungal EV cargo. Furthermore, tetraspanin homologs are yet to be identified in many fungi including the model yeast S. cerevisiae. Objective: We performed de novo identification of EV protein markers for the major human fungal pathogen Candida albicans with adherence to MISEV2018 guidelines. Materials and methods: EVs were isolated by differential ultracentrifugation from DAY286, ATCC90028 and ATCC10231 yeast cells, as well as DAY286 biofilms. Whole cell lysates (WCL) were also obtained from the EV-releasing cells. Label-free quantitative proteomics was performed to determine the set of proteins consistently enriched in EVs compared to WCL. Results: 47 proteins were consistently enriched in C. albicans EVs. We refined these to 22 putative C. albicans EV protein markers including the claudin-like Sur7 family (Pfam: PF06687) proteins Sur7 and Evp1 (orf19.6741). A complementary set of 62 EV depleted proteins was selected as potential negative markers. Conclusions: The marker proteins for C. albicans EVs identified in this study will be useful tools for studies on EV biogenesis and cargo loading in C. albicans and potentially other fungal species and will also assist in elucidating the role of EVs in C. albicans pathogenesis. Many of the proteins identified as putative markers are fungal specific proteins indicating that the pathways of EV biogenesis and cargo loading may be specific to fungi, and that assumptions made based on studies in mammalian cells could be misleading. Abbreviations: A1 - ATCC10231; A9 - ATCC90028; DAY B - DAY286 biofilm; DAY Y - DAY286 yeast; EV - extracellular vesicle; Evp1 - extracellular vesicle protein 1 (orf19.6741); GO - gene ontology; Log2(FC) - log2(fold change); MCC - membrane compartment of Can1; MDS - multidimensional scaling; MISEV - minimal information for studies of EVs; sEVs - small EVs; SP - signal peptide; TEMs - tetraspanin enriched microdomains; TM - transmembrane; VDM - vesicle-depleted medium; WCL - whole cell lysate.
Collapse
Affiliation(s)
- Charlotte S Dawson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science. La Trobe University, Australia
- Department of Biochemistry, Cambridge Centre for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Donovan Garcia-Ceron
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science. La Trobe University, Australia
| | - Harinda Rajapaksha
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science. La Trobe University, Australia
| | - Pierre Faou
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science. La Trobe University, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science. La Trobe University, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science. La Trobe University, Australia
| |
Collapse
|
20
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
21
|
|
22
|
Abstract
The release of extracellular vesicles (EVs) by fungi is a fundamental cellular process. EVs carry several biomolecules, including pigments, proteins, enzymes, lipids, nucleic acids, and carbohydrates, and are involved in physiological and pathological processes. EVs may play a pivotal role in the establishment of fungal infections, as they can interact with the host immune system to elicit multiple outcomes. The release of extracellular vesicles (EVs) by fungi is a fundamental cellular process. EVs carry several biomolecules, including pigments, proteins, enzymes, lipids, nucleic acids, and carbohydrates, and are involved in physiological and pathological processes. EVs may play a pivotal role in the establishment of fungal infections, as they can interact with the host immune system to elicit multiple outcomes. It has been observed that, depending on the fungal pathogen, EVs can exacerbate or attenuate fungal infections. The study of the interaction between fungal EVs and the host immune system and understanding of the mechanisms that regulate those interactions might be useful for the development of new adjuvants as well as the improvement of protective immune responses against infectious or noninfectious diseases. In this review, we describe the immunomodulatory properties of EVs produced by pathogenic fungi and discuss their potential as adjuvants for prophylactic or therapeutic strategies.
Collapse
|
23
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
24
|
Honarvar B, Bagheri Lankarani K, Taghavi M, Vahedi G, Mortaz E. Biomarker-guided antifungal stewardship policies for patients with invasive candidiasis. Curr Med Mycol 2018; 4:37-44. [PMID: 30815616 PMCID: PMC6386506 DOI: 10.18502/cmm.4.4.385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/10/2018] [Accepted: 01/02/2018] [Indexed: 02/05/2023] Open
Abstract
Invasive fungal infections (IFIs) are among the life-threatening issues in patients with impaired immune system. High administration of antifungals in these patients imposes a heavy economic burden on the national health system. In addition, despite the usually expensive antifungal regimens, the mortality rate due to fungal infections is still high, resulting in the loss of hundreds of lives per year. Survival rate is an indicator of the success of national healthcare policies. Early diagnosis of IFI is critical because any delays may be fatal. The weakness of the old-fashioned culture-based diagnostic methods lies in their time-consuming laboratory procedures. To overcome this problem, several diagnostic approaches have been developed to facilitate the early diagnosis of invasive candidiasis as the most prevalent IFI. These methods are based on the detection of serologic and molecular footprints. However, nowadays, antibiotic resistance and proper and cost-effective use of antibiotics are given special attention in national healthcare policies. The instructions for controlling these indices have been collected under the name of antibiotic stewardship. The present review study was targeted toward providing insight into novel diagnostic biomarkers and antifungal stewardship programs. The simultaneous investigation of these two issues facilitates the achievement of a novel health policy for the treatment of systemic candidiasis in immunocompromised patients.
Collapse
Affiliation(s)
- Behnam Honarvar
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Taghavi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghasem Vahedi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
25
|
Uppuluri P, Lin L, Alqarihi A, Luo G, Youssef EG, Alkhazraji S, Yount NY, Ibrahim BA, Bolaris MA, Edwards JE, Swidergall M, Filler SG, Yeaman MR, Ibrahim AS. The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathog 2018; 14:e1007056. [PMID: 29746596 PMCID: PMC5963808 DOI: 10.1371/journal.ppat.1007056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/22/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022] Open
Abstract
Different pathogens share similar medical settings and rely on similar virulence strategies to cause infections. We have previously applied 3-D computational modeling and bioinformatics to discover novel antigens that target more than one human pathogen. Active and passive immunization with the recombinant N-terminus of Candida albicans Hyr1 (rHyr1p-N) protect mice against lethal candidemia. Here we determine that Hyr1p shares homology with cell surface proteins of the multidrug resistant Gram negative bacterium, Acinetobacter baumannii including hemagglutinin (FhaB) and outer membrane protein A (OmpA). The A. baumannii OmpA binds to C. albicans Hyr1p, leading to a mixed species biofilm. Deletion of HYR1, or blocking of Hyr1p using polyclonal antibodies, significantly reduce A. baumannii binding to C. albicans hyphae. Furthermore, active vaccination with rHyr1p-N or passive immunization with polyclonal antibodies raised against specific peptide motifs of rHyr1p-N markedly improve survival of diabetic or neutropenic mice infected with A. baumannii bacteremia or pneumonia. Antibody raised against one particular peptide of the rHyr1p-N sequence (peptide 5) confers majority of the protection through blocking A. baumannii invasion of host cells and inducing death of the bacterium by a putative iron starvation mechanism. Anti-Hyr1 peptide 5 antibodies also mitigate A. baumannii /C. albicans mixed biofilm formation in vitro. Consistent with our bioinformatic analysis and structural modeling of Hyr1p, anti-Hyr1p peptide 5 antibodies bound to A. baumannii FhaB, OmpA, and an outer membrane siderophore binding protein. Our studies highlight the concept of cross-kingdom vaccine protection against high priority human pathogens such as A. baumannii and C. albicans that share similar ecological niches in immunocompromised patients.
Collapse
Affiliation(s)
- Priya Uppuluri
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lin Lin
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Abdullah Alqarihi
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Guanpingsheng Luo
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Eman G. Youssef
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Sondus Alkhazraji
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Nannette Y. Yount
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Belal A. Ibrahim
- Portola High School, Irvine, California, United States of America
| | - Michael Anthony Bolaris
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - John E. Edwards
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Marc Swidergall
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Scott G. Filler
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Michael R. Yeaman
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ashraf S. Ibrahim
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
26
|
Gil-Bona A, Amador-García A, Gil C, Monteoliva L. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment. J Proteomics 2017; 180:70-79. [PMID: 29223801 DOI: 10.1016/j.jprot.2017.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
Abstract
The cell surface and secreted proteins are the initial points of contact between Candida albicans and the host. Improvements in protein extraction approaches and mass spectrometers have allowed researchers to obtain a comprehensive knowledge of these external subproteomes. In this paper, we review the published proteomic studies that have examined C. albicans extracellular proteins, including the cell surface proteins or surfome and the secreted proteins or secretome. The use of different approaches to isolate cell wall and cell surface proteins, such as fractionation approaches or cell shaving, have resulted in different outcomes. Proteins with N-terminal signal peptide, known as classically secreted proteins, and those that lack the signal peptide, known as unconventionally secreted proteins, have been consistently identified. Existing studies on C. albicans extracellular vesicles reveal that they are relevant as an unconventional pathway of protein secretion and can help explain the presence of proteins without a signal peptide, including some moonlighting proteins, in the cell wall and the extracellular environment. According to the global view presented in this review, cell wall proteins, virulence factors such as adhesins or hydrolytic enzymes, metabolic enzymes and stress related-proteins are important groups of proteins in C. albicans surfome and secretome. BIOLOGICAL SIGNIFICANCE Candida albicans extracellular proteins are involved in biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Furthermore, these proteins include virulence factors and immunogenic proteins. This review is of outstanding interest, not only because it extends knowledge of the C. albicans surface and extracellular proteins that could be related with pathogenesis, but also because it presents insights that may facilitate the future development of new antifungal drugs and vaccines and contributes to efforts to identify new biomarkers that can be employed to diagnose candidiasis. Here, we list more than 570 C. albicans proteins that have been identified in extracellular locations to deliver the most extensive catalogue of this type of proteins to date. Moreover, we describe 16 proteins detected at all locations analysed in the works revised. These proteins include the glycophosphatidylinositol (GPI)-anchored proteins Ecm33, Pga4 and Phr2 and unconventional secretory proteins such as Eft2, Eno1, Hsp70, Pdc11, Pgk1 and Tdh3. Furthermore, 13 of these 16 proteins are immunogenic and could represent a set of interesting candidates for biomarker discovery.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Ahinara Amador-García
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| | - Lucia Monteoliva
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| |
Collapse
|
27
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
|
28
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
29
|
Huertas B, Prieto D, Pitarch A, Gil C, Pla J, Díez-Orejas R. Serum Antibody Profile during Colonization of the Mouse Gut by Candida albicans: Relevance for Protection during Systemic Infection. J Proteome Res 2016; 16:335-345. [PMID: 27539120 DOI: 10.1021/acs.jproteome.6b00383] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Candida albicans is a commensal microorganism in the oral cavity and gastrointestinal and urogenital tracts of most individuals that acts as an opportunistic pathogen when the host immune response is reduced. Here, we established different immunocompetent murine models to analyze the antibody responses to the C. albicans proteome during commensalism, commensalism followed by infection, and infection (C, C+I, and I models, respectively). Serum anti-C. albicans IgG antibody levels were higher in colonized mice than in infected mice. The antibody responses during gut commensalism (up to 55 days of colonization) mainly focused on C. albicans proteins involved in stress response and metabolism and differed in both models of commensalism. Different serum IgG antibody-reactivity profiles were also found over time among the three murine models. C. albicans gut colonization protected mice from an intravenous lethal fungal challenge, emphasizing the benefits of fungal gut colonization. This work highlights the importance of fungal gut colonization for future immune prophylactic therapies.
Collapse
Affiliation(s)
- Blanca Huertas
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Prieto
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Concha Gil
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jesús Pla
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rosalía Díez-Orejas
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
30
|
He ZX, Shi LC, Ran XY, Li W, Wang XL, Wang FK. Development of a Lateral Flow Immunoassay for the Rapid Diagnosis of Invasive Candidiasis. Front Microbiol 2016; 7:1451. [PMID: 27679622 PMCID: PMC5020066 DOI: 10.3389/fmicb.2016.01451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Early and accurate diagnosis of invasive candidiasis (IC) is very important. In this study, a lateral flow immunoassay (LFIA) was developed to detect antibody against Candida albicans enolase (Eno). Colloidal gold particle labeled mouse anti human IgG (1.0 mg/L) was used as the detector reagent. Recombinant enolase (rEno, 1.0 mg/L) and goat anti IgG (1.0 mg/L) were immobilized in test and control lines, respectively, of a nitrocellulose membrane, acting as the capture reagents. The LFIA was used to detect anti Eno in 38 sera from clinically proven IC patients, as well as in 50 healthy control subjects. Compared with an indirect ELISA designed as a reference test, the specificity and sensitivity of the LFIA were 98.2 and 84.8%, respectively. Excellent agreement between the results obtained by ELISA and the LFIA (κ = 0.851) was observed in this study. In addition, the agreement between the blood culture results and LFIA test is strong (κ = 0.658). The data presented in the study indicate that the LFIA test is a suitable tool for the serological surveillance of IC in the field or in poorly equipped laboratories.
Collapse
Affiliation(s)
- Zheng-Xin He
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Lan-Chun Shi
- Department of Biochemistry, Bethune Medical NCO School of PLA Shijiazhuang, China
| | - Xiang-Yang Ran
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Wei Li
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Xian-Ling Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Fu-Kun Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| |
Collapse
|
31
|
Luo T, Krüger T, Knüpfer U, Kasper L, Wielsch N, Hube B, Kortgen A, Bauer M, Giamarellos-Bourboulis EJ, Dimopoulos G, Brakhage AA, Kniemeyer O. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition. J Proteome Res 2016; 15:2394-406. [PMID: 27386892 DOI: 10.1021/acs.jproteome.5b01065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Wielsch
- Department of Mass spectrometry/Proteomics, Max-Planck-Institute for Chemical Ecology , 07745 Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | | | | | | | | | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | - Olaf Kniemeyer
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| |
Collapse
|
32
|
Identification of Immunoreactive Leishmania infantum Protein Antigens to Asymptomatic Dog Sera through Combined Immunoproteomics and Bioinformatics Analysis. PLoS One 2016; 11:e0149894. [PMID: 26906226 PMCID: PMC4764335 DOI: 10.1371/journal.pone.0149894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
Leishmania infantum is the etiologic agent of zoonotic visceral leishmaniasis (VL) in countries in the Mediterranean basin, where dogs are the domestic reservoirs and represent important elements in the transmission of the disease. Since the major focal areas of human VL exhibit a high prevalence of seropositive dogs, the control of canine VL could reduce the infection rate in humans. Efforts toward this have focused on the improvement of diagnostic tools, as well as on vaccine development. The identification of parasite antigens including suitable major histocompatibility complex (MHC) class I- and/or II-restricted epitopes is very important since disease protection is characterized by strong and long-lasting CD8+ T and CD4+ Th1 cell-dominated immunity. In the present study, total protein extract from late-log phase L. infantum promastigotes was analyzed by two-dimensional western blots and probed with sera from asymptomatic and symptomatic dogs. A total of 42 protein spots were found to differentially react with IgG from asymptomatic dogs, while 17 of these identified by Coommasie stain were extracted and analyzed. Of these, 21 proteins were identified by mass spectrometry; they were mainly involved in metabolism and stress responses. An in silico analysis predicted that the chaperonin HSP60, dihydrolipoamide dehydrogenase, enolase, cyclophilin 2, cyclophilin 40, and one hypothetical protein contain promiscuous MHCI and/or MHCII epitopes. Our results suggest that the combination of immunoproteomics and bioinformatics analyses is a promising method for the identification of novel candidate antigens for vaccine development or with potential use in the development of sensitive diagnostic tests.
Collapse
|
33
|
Gil-Bona A, Reales-Calderon JA, Parra-Giraldo CM, Martinez-Lopez R, Monteoliva L, Gil C. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction. Front Microbiol 2016; 7:64. [PMID: 26870022 PMCID: PMC4735633 DOI: 10.3389/fmicb.2016.00064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/14/2016] [Indexed: 11/24/2022] Open
Abstract
Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| | - Jose A Reales-Calderon
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| | - Claudia M Parra-Giraldo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Raquel Martinez-Lopez
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Lucia Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| |
Collapse
|
34
|
Pellon A, Ramirez-Garcia A, Buldain I, Antoran A, Rementeria A, Hernando FL. Immunoproteomics-Based Analysis of the Immunocompetent Serological Response to Lomentospora prolificans. J Proteome Res 2016; 15:595-607. [PMID: 26732945 DOI: 10.1021/acs.jproteome.5b00978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The filamentous fungus Lomentospora prolificans is an emerging pathogen causing severe infections mainly among the immunocompromised population. These diseases course with high mortality rates due to great virulence of the fungus, its inherent resistance to available antifungals, and absence of specific diagnostic tools. Despite being widespread in humanized environments, L. prolificans rarely causes infections in immunocompetent individuals likely due to their developed protective immune response. In this study, conidial and hyphal immunomes against healthy human serum IgG were analyzed, identifying immunodominant antigens and establishing their prevalence among the immunocompetent population. Thirteen protein spots from each morph were detected as reactive against at least 70% of serum samples, and identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Hence, the most seroprevalent antigens were WD40 repeat 2 protein, malate dehydrogenase, and DHN1, in conidia, and heat shock protein (Hsp) 70, Hsp90, ATP synthase β subunit, and glyceraldehyde-3-phosphate dehydrogenase, in hyphae. More interestingly, the presence of some of these seroprevalent antigens was determined on the cell surface, as Hsp70, enolase, or Hsp90. Thus, we have identified a diverse set of antigenic proteins, both in the entire proteome and cell surface subproteome, which may be used as targets to develop innovative therapeutic or diagnostic tools.
Collapse
Affiliation(s)
- Aize Pellon
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| |
Collapse
|
35
|
Marengo E, Robotti E, Demartini M. The Use of Legendre and Zernike Moment Functions for the Comparison of 2-D PAGE Maps. Methods Mol Biol 2016; 1384:271-288. [PMID: 26611420 DOI: 10.1007/978-1-4939-3255-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The comparison of 2-D maps is not trivial, the main difficulties being the high complexity of the sample and the large experimental variability characterizing 2-D gel electrophoresis. The comparison of maps from control and treated samples is usually performed by specific software, providing the so-called spot volume dataset where each spot of a specific map is matched to its analogous in other maps, and they are described by their optical density, which is supposed to be related to the underlying protein amount. Here, a different approach is presented, based on the direct comparison of 2-D map images: each map is decomposed in terms of moment functions, successively applying the multivariate tools usually adopted in image analysis problems. The moments calculated are then treated with multivariate classification techniques. Here, two types of moment functions are presented (Legendre and Zernike moments), while linear discriminant analysis and partial least squares discriminant analysis are exploited as classification tools to provide the classification of the samples. The procedure is applied to a sample dataset to prove its effectiveness.
Collapse
Affiliation(s)
- Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piedmont Orientale, Viale Michel 11, 15121, Alessandria, Italy.
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piedmont Orientale, Viale Michel 11, 15121, Alessandria, Italy.
| | - Marco Demartini
- Department of Sciences and Technological Innovation, University of Piedmont Orientale, Viale Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
36
|
Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes 2015; 3:467-495. [PMID: 28248281 PMCID: PMC5217390 DOI: 10.3390/proteomes3040467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Collapse
|
37
|
Marín E, Parra-Giraldo CM, Hernández-Haro C, Hernáez ML, Nombela C, Monteoliva L, Gil C. Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface. Front Microbiol 2015; 6:1343. [PMID: 26696967 PMCID: PMC4672057 DOI: 10.3389/fmicb.2015.01343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/16/2015] [Indexed: 01/11/2023] Open
Abstract
Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence.
Collapse
Affiliation(s)
- Elvira Marín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Claudia M Parra-Giraldo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Carolina Hernández-Haro
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - María L Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| |
Collapse
|
38
|
Vialas V, Sun Z, Reales-Calderón JA, Hernáez ML, Casas V, Carrascal M, Abián J, Monteoliva L, Deutsch EW, Moritz RL, Gil C. A comprehensive Candida albicans PeptideAtlas build enables deep proteome coverage. J Proteomics 2015; 131:122-130. [PMID: 26493587 DOI: 10.1016/j.jprot.2015.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 12/29/2022]
Abstract
To provide new and expanded proteome documentation of the opportunistically pathogen Candida albicans, we have developed new protein extraction and analysis routines to provide a new, extended and enhanced version of the C. albicans PeptideAtlas. Two new datasets, resulting from experiments consisting of exhaustive subcellular fractionations and different growing conditions, plus two additional datasets from previous experiments on the surface and the secreted proteomes, have been incorporated to increase the coverage of the proteome. High resolution precursor mass spectrometry (MS) and ion trap tandem MS spectra were analyzed with three different search engines using a database containing allele-specific sequences. This approach, novel for a large-scale C. albicans proteomics project, was combined with the post-processing and filtering implemented in the Trans Proteomic Pipeline consistently used in the PeptideAtlas project and resulted in 49,372 additional peptides (3-fold increase) and 1630 more proteins (1.6-fold increase) identified in the new C. albicans PeptideAtlas with respect to the previous build. A total of 71,310 peptides and 4174 canonical (minimal non-redundant set) proteins (4115 if one protein per pair of alleles is considered) were identified representing 66% of the 6218 proteins in the predicted proteome. This makes the new PeptideAtlas build the most comprehensive C. albicans proteomics resource available and the only large-scale one with detections of individual alleles.
Collapse
Affiliation(s)
- Vital Vialas
- Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Zhi Sun
- Institute for Systems Biology, 401, Terry Ave North, Seattle, WA 98109, USA
| | - Jose A Reales-Calderón
- Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María L Hernáez
- Unidad de Proteómica, Universidad Complutense de Madrid-Parque Científico de Madrid (UCM-PCM), Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | | | - Joaquín Abián
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eric W Deutsch
- Institute for Systems Biology, 401, Terry Ave North, Seattle, WA 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401, Terry Ave North, Seattle, WA 98109, USA
| | - Concha Gil
- Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Corresponding author at: Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Facultad de Farmacia, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
39
|
Pitarch A, Nombela C, Gil C. Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia. J Proteomics 2015; 134:144-162. [PMID: 26485298 DOI: 10.1016/j.jprot.2015.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 12/01/2022]
Abstract
Serum antibodies to specific Candida proteins have been reported as potential diagnostic biomarkers for candidemia. However, their diagnostic usefulness at the protein species level has hardly been examined. Using serological proteome analysis, we explored the IgG-antibody responses to Candida albicans protein species in candidemia and control patients. We found that 87 discrete protein species derived from 34 unique proteins were IgG-targets, although only 43 of them were differentially recognized by candidemia and control sera. An increase in the speciation of the immunome, connectivity and modularity of antigenic species co-recognition networks, and heterogeneity of antigenic species recognition patterns was associated with candidemia. IgG antibodies to certain discrete protein species were better predictors of candidemia than those to their corresponding proteins. A molecular discriminator delineated from the combined fingerprints of IgG antibodies to two distinct species of phosphoglycerate kinase and enolase accurately classified candidemia and control patients. These results provide new insight into the anti-Candida IgG-antibody response development in candidemia, and demonstrate that an immunoproteomic signature at the molecular level may be useful for its diagnosis. Our study further highlights the importance of defining pathogen-specific antigens at the chemical and molecular level for their potential application as immunodiagnostic reagents or even vaccine candidates.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain.
| | - César Nombela
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| | - Concha Gil
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| |
Collapse
|
40
|
He ZX, Chen J, Li W, Cheng Y, Zhang HP, Zhang LN, Hou TW. Serological response and diagnostic value of recombinant candida cell wall protein enolase, phosphoglycerate kinase, and β-glucosidase. Front Microbiol 2015; 6:920. [PMID: 26441862 PMCID: PMC4564733 DOI: 10.3389/fmicb.2015.00920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
There are no specific signs and symtoms for invasive candidiasis (IC), which makes its diagnosis a challenge. Efforts have been made for decades to establish serological assays for rapid diagnosis of IC, but none of them have found widespread clinical use. Using a systemic candiasis murine model, serological response to recombinant proteins of enolase (rEno1), phosphoglycerate kinase (rPgk1), and β-glucosidase (rBgl2) were evaluated and rEno1 was found to possess the strongest immunoreactivity, followed by rPgk1 and rBgl2. Likewise, IgG antibody titers to rEno1, rPgk1, and rBgl2 in the positive sera of proven IC patients were determined by ELISA. Results show anti-rEno1 antibody possesses the highest titer, followed by rPgk1 and rBgl2. Antibodies against rEno1, rPgk1, and rBgl2 were detected by ELISA tests in a group of 52 proven IC patients or 50 healthy subjects, The sensitivity, specificity, positive and negative predictive values were 88.5, 90.0, 90.2, and 88.2% for anti-rEno1 detection, 86.5, 92.0, 91.8, and 86.8% for anti-rPgk1 detection, and 80.8, 90.0, 89.4, and 81.8% for anti-rBgl2 detection, respectively. The data clearly demonstrate that the recombinant proteins of Eno1, Pgk1, and Bgl2 are promising candidates for IC serodiagnosis. There's great possibility that the recombinant Eno1 will be more applicable in serodiagnosis and vaccine research on account of its strong serological response.
Collapse
Affiliation(s)
- Zheng-Xin He
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Jing Chen
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Wei Li
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Yan Cheng
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Hai-Pu Zhang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Li-Na Zhang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Tian-Wen Hou
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| |
Collapse
|
41
|
Gil-Bona A, Parra-Giraldo CM, Hernáez ML, Reales-Calderon JA, Solis NV, Filler SG, Monteoliva L, Gil C. Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction. J Proteomics 2015; 127:340-351. [PMID: 26087349 DOI: 10.1016/j.jprot.2015.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023]
Abstract
The ability to switch from yeast to hyphal growth is essential for virulence in Candida albicans. The cell surface is the initial point of contact between the fungus and the host. In this work, a free-gel proteomic strategy based on tryptic digestion of live yeast and hyphae cells and protein identification using LC-MS/MS methodology was used to identify cell surface proteins. Using this strategy, a total of 943 proteins were identified, of which 438 were in yeast and 928 were in hyphae. Of these proteins, 79 were closely related to the organization and biogenesis of the cell wall, including 28 GPI-anchored proteins, such as Hyr1 and Sod5 which were detected exclusively in hyphae, and Als2 and Sap10which were detected only in yeast. A group of 17 proteins of unknown function were subsequently studied by analysis of the corresponding deletion mutants. We found that four new proteins, Pst3, Tos1, Orf19.3060 and Orf19.5352 are involved in cell wall integrity and in C. albicans' engulfment by macrophages. Moreover, the putative NADH-ubiquinone-related proteins, Ali1, Mci4, Orf19.287 and Orf19.7590, are also involved in osmotic and oxidative resistance, yeast to hypha transition and the ability to damage and invade oral epithelial cells. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Claudia Marcela Parra-Giraldo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - María Luisa Hernáez
- Unidad de Proteómica, Universidad Complutense de Madrid-Parque Científico de Madrid (UCM-PCM), Spain
| | - Jose Antonio Reales-Calderon
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Norma V Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Scott G Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lucia Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| |
Collapse
|
42
|
Kaba HEJ, Maier N, Schliebe-Ohler N, Mayer Y, Müller PP, van den Heuvel J, Schuchhardt J, Hanack K, Bilitewski U. Identification of whole pathogenic cells by monoclonal antibodies generated against a specific peptide from an immunogenic cell wall protein. J Microbiol Methods 2014; 108:61-9. [PMID: 25451457 DOI: 10.1016/j.mimet.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 11/29/2022]
Abstract
We selected the immunogenic cell wall ß-(1,3)-glucosyltransferase Bgl2p from Candida albicans as a target protein for the production of antibodies. We identified a unique peptide sequence in the protein and generated monoclonal anti- C. albicans Bgl2p antibodies, which bound in particular to whole C. albicans cells.
Collapse
Affiliation(s)
- Hani E J Kaba
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Natalia Maier
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Golm, Germany
| | - Nicole Schliebe-Ohler
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Golm, Germany
| | - Yvonne Mayer
- MicroDiscovery GmbH, Marienburger Str., 1, 10405 Berlin, Germany
| | - Peter P Müller
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | | | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Golm, Germany
| | - Ursula Bilitewski
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany.
| |
Collapse
|
43
|
Vargas G, Rocha JDB, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes AMO, Medeiros LCAS, Miranda K, Sobreira TJP, Nakayasu ES, Arigi EA, Casadevall A, Guimaraes AJ, Rodrigues ML, Freire-de-Lima CG, Almeida IC, Nimrichter L. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 2014; 17:389-407. [PMID: 25287304 DOI: 10.1111/cmi.12374] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Abstract
The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans-cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow-derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin-layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)-12, transforming growth factor-beta (TGF-β) and IL-10. Similarly, EV-treated DC produced IL-12p40, IL-10 and tumour necrosis factor-alpha. In addition, EV treatment induced the up-regulation of CD86 and major histocompatibility complex class-II (MHC-II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ardizzoni A, Posteraro B, Baschieri MC, Bugli F, Sáez-Rosòn A, Manca L, Cacaci M, Paroni Sterbini F, De Waure C, Sevilla MJ, Peppoloni S, Sanguinetti M, Moragues MD, Blasi E. An antibody reactivity-based assay for diagnosis of invasive candidiasis using protein array. Int J Immunopathol Pharmacol 2014; 27:403-12. [PMID: 25280031 DOI: 10.1177/039463201402700310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increased incidence of invasive candidiasis and of patients at risk requires early diagnosis and treatment to improve prognosis and survival. The aim of this study was to set up a ten-protein array-based immunoassay to assess the IgG antibody responses against ten well-known immunogenic C. albicans proteins (Bgl2, Eno1, Pgk1, Pdc11, Fba1, Adh1, Als3, Hwp1, Hsp90 and Grp2) in 51 patients with invasive candidiasis (IC) and in 38 culture-negative controls (non-IC). Antibody levels were higher against Bgl2, Eno1, Pgk1, Als3, Hwp1 and Grp2, than against Adh1, Pdc11, Fba1 and Hsp90, irrespectively of the patient group considered. Moreover, the IgG levels against Bgl2, Eno1, Pgk1 and Grp2 were significantly higher in IC than in non-IC patients. Furthermore, the ROC curves generated by the analysis of the antibody responses against Bgl2, Grp2 and Pgk1 displayed AUC values above 0.7, thus discriminating IC and non-IC patients. According to these results, the employment of the microarray immunoassay (a rapid, sensitive and multiparametric system), in parallel with conventional diagnostics, can help to spot IC patients. This ultimately will allow to initiate an early, focused and optimized antifungal therapy.
Collapse
Affiliation(s)
- A Ardizzoni
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - B Posteraro
- Institute of Public Health, Catholic University of the Sacred Heart, Rome Italy
| | - M C Baschieri
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - F Bugli
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - A Sáez-Rosòn
- Infirmary I, País Vasco/Euskal Herriko Universiy, Leioa, Spain
| | - L Manca
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M Cacaci
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - F Paroni Sterbini
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - C De Waure
- Institute of Public Health, Catholic University of the Sacred Heart, Rome Italy
| | - M J Sevilla
- Department of Immunology, Microbiology and Parasitology, País Vasco/Euskal Herriko University, Leioa, Spain
| | - S Peppoloni
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M Sanguinetti
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - M D Moragues
- Infirmary I, País Vasco/Euskal Herriko Universiy, Leioa, Spain
| | - E Blasi
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
45
|
Gil-Bona A, Llama-Palacios A, Parra CM, Vivanco F, Nombela C, Monteoliva L, Gil C. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J Proteome Res 2014; 14:142-53. [PMID: 25367658 DOI: 10.1021/pr5007944] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The commensal fungus Candida albicans secretes a considerable number of proteins and, as in different fungal pathogens, extracellular vesicles (EVs) have also been observed. Our report contains the first proteomic analysis of EVs in C. albicans and a comparative proteomic study of the soluble secreted proteins. With this purpose, cell-free culture supernatants from C. albicans were separated into EVs and EV-free supernatant and analyzed by LC-MS/MS. A total of 96 proteins were identified including 75 and 61 proteins in EVs and EV-free supernatant, respectively. Out of these, 40 proteins were found in secretome by proteomic analysis for the first time. The soluble proteins were enriched in cell wall and secreted pathogenesis related proteins. Interestingly, more than 90% of these EV-free supernatant proteins were classical secretory proteins with predicted N-terminal signal peptide, whereas all the leaderless proteins involved in metabolism, including some moonlighting proteins, or in the exocytosis and endocytosis process were exclusively cargo of the EVs. We propose a model of the different mechanisms used by C. albicans secreted proteins to reach the extracellular medium. Furthermore, we tested the potential of the Bgl2 protein, identified in vesicles and EV-free supernatant, to protect against a systemic candidiasis in a murine model.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Mishra NN, Ali S, Shukla PK. A monoclonal antibody against 47.2 kDa cell surface antigen prevents adherence and affects biofilm formation of Candida albicans. World J Microbiol Biotechnol 2014; 31:11-21. [PMID: 25325986 DOI: 10.1007/s11274-014-1760-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/14/2014] [Indexed: 01/19/2023]
Abstract
Candida albicans is an opportunistic dimorphic pathogen that exists in both planktonic and biofilm phases causing deep-rooted infections in mainly immunocompromised patients. Antibodies are believed to play anti-Candida activity by different mechanisms, like inhibition of adhesion and neutralization of virulence-related antigens. Inhibition of adhesion is one of the important strategies to prevent Candida infections and biofilm formation. In this study, monoclonal antibody (MAb 7D7) against C. albicans biofilm cell surface antigen (47.2 kDa) was generated to determine the changes in adherence and viability of C. albicans. In this regard XTT assay was carried out in 30, 60, 90 min and 48 h (maturation time) time points using MAb 7D7 and it (MAb 7D7) was found to be effective against adhesion and the formation of C. albicans biofilm on polystyrene as well as monolayer of human epithelial cells (HeLa). This result may also prove to be a valuable addition to the reagents available to study C. albicans cell surface dynamics and interaction of the fungus with host cells.
Collapse
Affiliation(s)
- Nripendra Nath Mishra
- Medical Mycology Lab, Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, India
| | | | | |
Collapse
|
47
|
Pitarch A, Nombela C, Gil C. Serum antibody signature directed against Candida albicans Hsp90 and enolase detects invasive candidiasis in non-neutropenic patients. J Proteome Res 2014; 13:5165-84. [PMID: 25377742 DOI: 10.1021/pr500681x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Invasive candidiasis (IC) adds significantly to the morbidity and mortality of non-neutropenic patients if not diagnosed and treated early. To uncover serologic biomarkers that alone or in combination could reliably detect IC in this population, IgG antibody-reactivity profiles to the Candida albicans intracellular proteome were examined by serological proteome analysis (SERPA) and data mining procedures in a training set of 24 non-neutropenic patients. Despite the high interindividual molecular heterogeneity, unsupervised clustering analyses revealed that serum 22-IgG antibody-reactivity patterns differentiated IC from non-IC patients. Univariate analyses further highlighted that 15 out of the 22 SERPA-identified IgG antibodies could be useful candidate IC biomarkers. The diagnostic performance of one of these candidates (anti-Hsp90 IgG antibodies) was validated using an ELISA prototype in a test set of 59 non-neutropenic patients. We then formulated an IC discriminator based on the combined immunoproteomic fingerprints of this and another SERPA-detected and previously validated IC biomarker (anti-Eno1 IgG antibodies) in the training set. Its consistency was substantiated using their ELISA prototypes in the test set. Receiver-operating-characteristic curve analyses showed that this two-biomarker signature accurately identified IC in non-neutropenic patients and provided better IC diagnostic accuracy than the individual biomarkers alone. We conclude that this serum IgG antibody signature directed against C. albicans Hsp90 and Eno1, if confirmed prospectively, may be useful for IC diagnosis in non-neutropenic patients.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
48
|
Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model. J Proteomics 2014; 112:14-26. [PMID: 25173100 DOI: 10.1016/j.jprot.2014.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023]
Abstract
UNLABELLED Saccharomyces cerevisiae is considered a safe microorganism widely used as a dietary supplement. However, in the latest decades several cases of S. cerevisiae infections have been reported. Recent studies in a murine model of systemic infection have also revealed the virulence of some S. cerevisiae dietary strains. Here we use an immunoproteomic approach based on protein separation by 2D-PAGE followed by Western-blotting to compare the serological response against a virulent dietary and a non-virulent laboratory strains leading to the identification of highly different patterns of antigenic proteins. Thirty-six proteins that elicit a serological response in mice have been identified. Most of them are involved in stress responses and metabolic pathways. Their selectivity as putative biomarkers for S. cerevisiae infections was assessed by testing sera from S. cerevisiae-infected mice against Candida albicans and C. glabrata proteins. Some chaperones and metabolic proteins showed cross-reactivity. We also compare the S. cerevisiae immunodetected proteins with previously described C. albicans antigens. The results point to the stress-related proteins Ahp1, Yhb1 and Oye2, as well as the glutamine synthetase Gln1 and the oxysosterol binding protein Kes1 as putative candidates for being evaluated as biomarkers for diagnostic assays of S. cerevisiae infections. BIOLOGICAL SIGNIFICANCE S. cerevisiae can cause opportunistic infections, and therefore, a precise diagnosis of fungal infections is necessary. This immunoproteomic analysis of sera from a model murine infection with a virulent dietary S. cerevisiae strain has been shown to be a source of candidate proteins for being evaluated as biomarkers to develop assays for diagnosis of S. cerevisiae infections. To our knowledge, this is the first study devoted to the identification of S. cerevisiae immunogenic proteins and the results allowed the proposal of five antigens to be further investigated.
Collapse
|
49
|
Virginio ED, Kubitschek-Barreira PH, Batista MV, Schirmer MR, Abdelhay E, Shikanai-Yasuda MA, Lopes-Bezerra LM. Immunoproteome of Aspergillus fumigatus using sera of patients with invasive aspergillosis. Int J Mol Sci 2014; 15:14505-30. [PMID: 25141105 PMCID: PMC4159865 DOI: 10.3390/ijms150814505] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 01/31/2023] Open
Abstract
Invasive aspergillosis is a life-threatening lung or systemic infection caused by the opportunistic mold Aspergillus fumigatus. The disease affects mainly immunocompromised hosts, and patients with hematological malignances or who have been submitted to stem cell transplantation are at high risk. Despite the current use of Platelia™ Aspergillus as a diagnostic test, the early diagnosis of invasive aspergillosis remains a major challenge in improving the prognosis of the disease. In this study, we used an immunoproteomic approach to identify proteins that could be putative candidates for the early diagnosis of invasive aspergillosis. Antigenic proteins expressed in the first steps of A. fumigatus germination occurring in a human host were revealed using 2-D Western immunoblots with the serum of patients who had previously been classified as probable and proven for invasive aspergillosis. Forty antigenic proteins were identified using mass spectrometry (MS/MS). A BLAST analysis revealed that two of these proteins showed low homology with proteins of either the human host or etiological agents of other invasive fungal infections. To our knowledge, this is the first report describing specific antigenic proteins of A. fumigatus germlings that are recognized by sera of patients with confirmed invasive aspergillosis who were from two separate hospital units.
Collapse
Affiliation(s)
- Emylli D Virginio
- Laboratory of Cellular Mycology and Proteomics, Biology Institute, University of Rio de Janeiro State (UERJ), Rio de Janeiro 20550-013, Brazil.
| | - Paula H Kubitschek-Barreira
- Laboratory of Cellular Mycology and Proteomics, Biology Institute, University of Rio de Janeiro State (UERJ), Rio de Janeiro 20550-013, Brazil.
| | - Marjorie Vieira Batista
- Laboratory of Immunology (LIM 48), Clinics Hospital and Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil.
| | - Marcelo R Schirmer
- National Cancer Institute, Center for Bone Marrow Transplants, Rio de Janeiro 20230-130, Brazil.
| | - Eliana Abdelhay
- National Cancer Institute, Center for Bone Marrow Transplants, Rio de Janeiro 20230-130, Brazil.
| | - Maria A Shikanai-Yasuda
- Laboratory of Immunology (LIM 48), Clinics Hospital and Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil.
| | - Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Biology Institute, University of Rio de Janeiro State (UERJ), Rio de Janeiro 20550-013, Brazil.
| |
Collapse
|
50
|
Lee P, Gam L, Yong V, Rosli R, Ng K, Chong P. Immunoproteomic analysis of antibody response to cell wall-associated proteins of Candida tropicalis. J Appl Microbiol 2014; 117:854-65. [DOI: 10.1111/jam.12562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/20/2014] [Accepted: 06/03/2014] [Indexed: 01/10/2023]
Affiliation(s)
- P.Y. Lee
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Selangor Malaysia
| | - L.H. Gam
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang Malaysia
| | - V.C. Yong
- School of Biosciences; Taylor's University (Lakeside Campus); Subang Jaya Selangor Malaysia
| | - R. Rosli
- Department of Obstetrics and Gynaecology; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Selangor Malaysia
| | - K.P. Ng
- Department of Medical Microbiology; Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - P.P. Chong
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Selangor Malaysia
- Translational Infectious Diseases Program; Centre for Translational Medicine; National University of Singapore; Singapore City Singapore
| |
Collapse
|