1
|
Kaushal S, Gupta S, Shefrin S, Vora DS, Kaul SC, Sundar D, Wadhwa R, Dhanjal JK. Synthetic and Natural Inhibitors of Mortalin for Cancer Therapy. Cancers (Basel) 2024; 16:3470. [PMID: 39456564 PMCID: PMC11506508 DOI: 10.3390/cancers16203470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Upregulation of stress chaperone Mortalin has been closely linked to the malignant transformation of cells, tumorigenesis, the progression of tumors to highly aggressive stages, metastasis, drug resistance, and relapse. Various in vitro and in vivo assays have provided evidence of the critical role of Mortalin upregulation in promoting cancer cell characteristics, including proliferation, migration, invasion, and the inhibition of apoptosis, a consistent feature of most cancers. Given its critical role in several steps in oncogenesis and multi-modes of action, Mortalin presents a promising target for cancer therapy. Consequently, Mortalin inhibitors are emerging as potential anti-cancer drugs. In this review, we discuss various inhibitors of Mortalin (peptides, small RNAs, natural and synthetic compounds, and antibodies), elucidating their anti-cancer potentials.
Collapse
Affiliation(s)
- Shruti Kaushal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Samriddhi Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
| | - Dhvani Sandip Vora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| |
Collapse
|
2
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
3
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
4
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
5
|
Chaiwijit P, Uppakara K, Asavapanumas N, Saengsawang W. The Effects of PP2A Disruption on ER-Mitochondria Contact and Mitochondrial Functions in Neuronal-like Cells. Biomedicines 2023; 11:biomedicines11041011. [PMID: 37189629 DOI: 10.3390/biomedicines11041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondria-associated membranes (MAMs) regulate several cellular processes, including calcium homeostasis and mitochondrial function, and dynamics. While MAMs are upregulated in Alzheimer’s disease (AD), the mechanisms underlying this increase remain unknown. A possible mechanism may include dysregulation of protein phosphatase 2A (PP2A), which is reduced in the AD brain. Furthermore, PP2A has been previously reported to modulate MAM formation in hepatocytes. However, it is unknown whether PP2A and MAMs are linked in neuronal cells. Here, to test the correlation between PP2A and MAMs, we inhibited the activity of PP2A to mimic its low levels in AD brains and observed MAM formation, function, and dynamics. MAMs were significantly increased after PP2A inhibition, which correlated with elevated mitochondrial Ca2+ influx and disrupted mitochondrial membrane potential and mitochondrial fission. This study highlights the essential role PP2A plays in regulating MAM formation and mitochondrial function and dynamics for the first time in neuronal-like cells.
Collapse
|
6
|
Parkinson's Disease, Parkinsonisms, and Mitochondria: the Role of Nuclear and Mitochondrial DNA. Curr Neurol Neurosci Rep 2023; 23:131-147. [PMID: 36881253 DOI: 10.1007/s11910-023-01260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in Parkinson's disease (PD) pathophysiology. This paper aims to review the latest literature published, focusing on genetic defects and expression alterations affecting mitochondria-associated genes, in support of their key role in PD pathogenesis. RECENT FINDINGS Thanks to the use of new omics approaches, a growing number of studies are discovering alterations affecting genes with mitochondrial functions in patients with PD and parkinsonisms. These genetic alterations include pathogenic single-nucleotide variants, polymorphisms acting as risk factors, and transcriptome modifications, affecting both nuclear and mitochondrial genes. We will focus on alterations of mitochondria-associated genes described by studies conducted on patients or on animal/cellular models of PD or parkinsonisms. We will comment how these findings can be taken into consideration for improving the diagnostic procedures or for deepening our knowledge on the role of mitochondrial dysfunctions in PD.
Collapse
|
7
|
Sohrabi T, Mirzaei-Behbahani B, Zadali R, Pirhaghi M, Morozova-Roche LA, Meratan AA. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease. J Mol Biol 2023:167992. [PMID: 36736886 DOI: 10.1016/j.jmb.2023.167992] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is the most common neurological movement disorder characterized by the selective and irreversible loss of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. While most cases are sporadic or environmental, about 10% of patients have a positive family history with a genetic cause. The misfolding and aggregation of α-synuclein (α-syn) as a casual factor in the pathogenesis of PD has been supported by a great deal of literature. Extensive studies of mechanisms underpinning degeneration of the dopaminergic neurons induced by α-syn dysfunction suggest a complex process that involves multiple pathways, including mitochondrial dysfunction and increased oxidative stress, impaired calcium homeostasis through membrane permeabilization, synaptic dysfunction, impairment of quality control systems, disruption of microtubule dynamics and axonal transport, endoplasmic reticulum/Golgi dysfunction, nucleus malfunction, and microglia activation leading to neuroinflammation. Among them mitochondrial dysfunction has been considered as the most primary target of α-syn-induced toxicity, leading to neuronal cell death in both sporadic and familial forms of PD. Despite reviewing many aspects of PD pathogenesis related to mitochondrial dysfunction, a systemic study on how α-syn malfunction/aggregation damages mitochondrial functionality and leads to neurodegeneration is missing in the literature. In this review, we give a detailed molecular overview of the proposed mechanisms by which α-syn, directly or indirectly, contributes to mitochondrial dysfunction. This may provide valuable insights for development of new therapeutic approaches in relation to PD. Antioxidant-based therapy as a potential strategy to protect mitochondria against oxidative damage, its challenges, and recent developments in the field are discussed.
Collapse
Affiliation(s)
- Tahereh Sohrabi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behnaz Mirzaei-Behbahani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ramin Zadali
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
8
|
Szelechowski M, Texier B, Prime M, Atamena D, Belenguer P. Mortalin/Hspa9 involvement and therapeutic perspective in Parkinson’s disease. Neural Regen Res 2023; 18:293-298. [PMID: 35900406 PMCID: PMC9396523 DOI: 10.4103/1673-5374.346487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intracellular calcium fluxes, Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity. However, its expression and stability are strongly modified in response to cellular stresses, in particular upon altered oxidative conditions during neurodegeneration. Here, we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson’s disease, as well as its therapeutic and prognostic potential in this still incurable pathology.
Collapse
|
9
|
Tonner H, Hunn S, Auler N, Schmelter C, Pfeiffer N, Grus FH. Dynamin-like Protein 1 (DNML1) as a Molecular Target for Antibody-Based Immunotherapy to Treat Glaucoma. Int J Mol Sci 2022; 23:ijms232113618. [PMID: 36362420 PMCID: PMC9654827 DOI: 10.3390/ijms232113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Slow and progressive loss of retinal ganglion cells (RGCs) is the main characteristic of glaucoma, the second leading cause of blindness worldwide. Previous studies have shown that impaired mitochondrial dynamics could facilitate retinal neurodegeneration. Mitochondrial dynamics are regulated directly (fission) or more indirectly (fusion) by dynamin-like protein 1 (DNML1). Therefore, DNM1L might be a promising target for an antibody-based approach to treat glaucoma. The consequences of targeting endogenous DNM1L by antibodies in a glaucoma animal model have not been investigated yet. Here, we show that the intravitreal application of an anti-DNM1L antibody showed protective effects regarding the survival of RGCs and their axons in the retinal nerve fiber layer (RNFL). Antibody treatment also improved retinal functionality, as observed by electroretinography (Ganzfeld ERG). Western blot analysis revealed altered DNM1L phosphorylation and altered expression of proteins related to apoptosis suggesting a decreased apoptosis rate. Mass spectrometry analysis revealed 28 up-regulated and 21 down-regulated proteins (p < 0.05) in both experimental groups. Protein pathway analysis showed that many proteins interacted directly with the target protein DNM1L and could be classified into three main protein clusters: Vesicle traffic-associated (NSF, SNCA, ARF1), mitochondrion-associated (HSP9A, SLC25A5/ANT2, GLUD1) and cytoskeleton-associated (MAP1A) signaling pathway. Our results demonstrate that DNM1L is a promising target for an antibody-based approach to glaucoma therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Franz H. Grus
- Correspondence: ; Tel.: +49-6131-17-3328; Fax: +49-6131-4970563
| |
Collapse
|
10
|
Suzuki M, Tezuka K, Handa T, Sato R, Takeuchi H, Takao M, Tano M, Uchida Y. Upregulation of ribosome complexes at the blood-brain barrier in Alzheimer's disease patients. J Cereb Blood Flow Metab 2022; 42:2134-2150. [PMID: 35766008 PMCID: PMC9580172 DOI: 10.1177/0271678x221111602] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cerebrovascular-specific molecular mechanism in Alzheimer's disease (AD) was investigated by employing comprehensive and accurate quantitative proteomics. Highly purified brain capillaries were isolated from cerebral gray and white matter of four AD and three control donors, and examined by SWATH (sequential window acquisition of all theoretical fragment ion spectra) proteomics. Of the 29 ribosomal proteins that were quantified, 28 (RPLP0, RPL4, RPL6, RPL7A, RPL8, RPL10A, RPL11, RPL12, RPL14, RPL15, RPL18, RPL23, RPL27, RPL27A, RPL31, RPL35A, RPS2, RPS3, RPS3A, RPS4X, RPS7, RPS8, RPS14, RPS16, RPS20, RPS24, RPS25, and RPSA) were significantly upregulated in AD patients. This upregulation of ribosomal protein expression occurred only in brain capillaries and not in brain parenchyma. The protein expression of protein processing and N-glycosylation-related proteins in the endoplasmic reticulum (DDOST, STT3A, MOGS, GANAB, RPN1, RPN2, SEC61B, UGGT1, LMAN2, and SSR4) were also upregulated in AD brain capillaries and was correlated with the expression of ribosomal proteins. The findings reported herein indicate that the ribosome complex, the subsequent protein processing and N-glycosylation-related processes are significantly and specifically upregulated in the brain capillaries of AD patients.
Collapse
Affiliation(s)
- Masayoshi Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kenta Tezuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takumi Handa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Risa Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hina Takeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masaki Takao
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan.,Department of Clinical Laboratory, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Japan
| | - Mitsutoshi Tano
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD. Acta Neuropathol 2022; 144:939-966. [PMID: 36121477 PMCID: PMC9547809 DOI: 10.1007/s00401-022-02494-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset.
Collapse
|
12
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
13
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
14
|
Vishwanathan V, D’Silva P. Loss of Function of mtHsp70 Chaperone Variants Leads to Mitochondrial Dysfunction in Congenital Sideroblastic Anemia. Front Cell Dev Biol 2022; 10:847045. [PMID: 35252210 PMCID: PMC8888832 DOI: 10.3389/fcell.2022.847045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital Sideroblastic Anemias (CSA) is a group of rare genetic disorders characterized by the abnormal accumulation of iron in erythrocyte precursors. A common hallmark underlying these pathological conditions is mitochondrial dysfunction due to altered protein homeostasis, heme biosynthesis, and oxidative phosphorylation. A clinical study on congenital sideroblastic anemia has identified mutations in mitochondrial Hsp70 (mtHsp70/Mortalin). Mitochondrial Hsp70 plays a critical role in maintaining mitochondrial function by regulating several pathways, including protein import and folding, and iron-sulfur cluster synthesis. Owing to the structural and functional homology between human and yeast mtHsp70, we have utilized the yeast system to delineate the role of mtHsp70 variants in the etiology of CSA’s. Analogous mutations in yeast mtHsp70 exhibited temperature-sensitive growth phenotypes under non-respiratory and respiratory conditions. In vivo analyses indicate a perturbation in mitochondrial mass and functionality accompanied by an alteration in the organelle network and cellular redox levels. Preliminary in vitro biochemical studies of mtHsp70 mutants suggest impaired import function, altered ATPase activity and substrate interaction. Together, our findings suggest the loss of chaperone activity to be a pivotal factor in the pathophysiology of congenital sideroblastic anemia.
Collapse
|
15
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Molecular chaperones and Parkinson's disease. Neurobiol Dis 2021; 160:105527. [PMID: 34626793 DOI: 10.1016/j.nbd.2021.105527] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs). Mutations in PD-related genes lead to neuronal pathogenesis through various mechanisms, with known examples including SNCA/α-synuclein (PAKR1), Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7), and LRRK2 (PARK8). Molecular chaperones/co-chaperones are proteins that aid the folding of other proteins into a functionally active conformation. It has been demonstrated that chaperones/co-chaperones interact with PD-related proteins and regulate their function in PD. HSP70, HSP90 and small heat shock proteins can prevent neurodegeneration by regulating α-syn misfolding, oligomerization and aggregation. The function of chaperones is regulated by co-chaperones such as HSP110, HSP40, HOP, CHIP, and BAG family proteins. Parkin, PINK1 and DJ-1 are PD-related proteins which are associated with mitochondrial function. Molecular chaperones regulate mitochondrial function and protein homeostasis by interacting with these PD-related proteins. This review discusses critical molecular chaperones/co-chaperones and PD-related proteins which contribute to the pathogenesis of PD, hoping to provide new molecular targets for therapeutic interventions to thwart the disease progression instead of only bringing symptomatic relief. Moreover, appreciating the critical role of chaperones in PD can also help us screen efficient biomarkers to identify PD at an early stage.
Collapse
|
17
|
HSPA9/Mortalin mediates axo-protection and modulates mitochondrial dynamics in neurons. Sci Rep 2021; 11:17705. [PMID: 34489498 PMCID: PMC8421332 DOI: 10.1038/s41598-021-97162-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.
Collapse
|
18
|
Mabanglo MF, Bhandari V, Houry WA. Substrates and interactors of the ClpP protease in the mitochondria. Curr Opin Chem Biol 2021; 66:102078. [PMID: 34446368 DOI: 10.1016/j.cbpa.2021.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
The ClpP protease is found across eukaryotic and prokaryotic organisms. It is well-characterized in bacteria where its function is important in maintaining protein homeostasis. Along with its ATPase partners, it has been shown to play critical roles in the regulation of enzymes involved in important cellular pathways. In eukaryotes, ClpP is found within cellular organelles. Proteomic studies have begun to characterize the role of this protease in the mitochondria through its interactions. Here, we discuss the proteomic techniques used to identify its interactors and present an atlas of mitochondrial ClpP substrates. The ClpP substrate pool is extensive and consists of proteins involved in essential mitochondrial processes such as the Krebs cycle, oxidative phosphorylation, translation, fatty acid metabolism, and amino acid metabolism. Discoveries of these associations have begun to illustrate the functional significance of ClpP in human health and disease.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
19
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
20
|
Critical Role of Mortalin/GRP75 in Endothelial Cell Dysfunction Associated with Acute Lung Injury. Shock 2021; 54:245-255. [PMID: 31490354 DOI: 10.1097/shk.0000000000001445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mortalin/GRP75 (glucose regulated protein 75), a member of heat shock protein 70 family of chaperones, is involved in several cellular processes including proliferation and signaling, and plays a pivotal role in cancer and neurodegenerative disorders. In this study, we sought to determine the role of mortalin/GRP75 in mediating vascular inflammation and permeability linked to the pathogenesis of acute lung injury (ALI). In an aerosolized bacterial lipopolysaccharide inhalation mouse model of ALI, we found that administration of mortalin/GRP75 inhibitor mean kinetic temperature-077, both prophylactically and therapeutically, protected against polymorphonuclear leukocytes influx into alveolar airspaces, microvascular leakage, and expression of pro-inflammatory mediators such as interleukin-1β, E-selectin, and tumor necrosis factor TNFα. Consistent with this, thrombin-induced inflammation in cultured human endothelial cells (EC) was also protected upon before and after treatment with mean kinetic temperature-077. Similar to pharmacological inhibition of mortalin/GRP75, siRNA-mediated depletion of mortalin/GRP75 also blocked thrombin-induced expression of proinflammatory mediators such as intercellular adhesion molecule-1 and vascular adhesion molecule-1. Mechanistic analysis in EC revealed that inactivation of mortalin/GRP75 interfered with the binding of the liberated NF-κB to the DNA, thereby leading to inhibition of downstream expression of adhesion molecules, cytokines, and chemokines. Importantly, thrombin-induced Ca signaling and EC permeability were also prevented upon mortalin/GRP75 inactivation/depletion. Thus, this study provides evidence for a novel role of mortalin/GRP75 in mediating EC inflammation and permeability associated with ALI.
Collapse
|
21
|
Petyuk VA, Yu L, Olson HM, Yu F, Clair G, Qian WJ, Shulman JM, Bennett DA. Proteomic Profiling of the Substantia Nigra to Identify Determinants of Lewy Body Pathology and Dopaminergic Neuronal Loss. J Proteome Res 2021; 20:2266-2282. [PMID: 33900085 PMCID: PMC9190253 DOI: 10.1021/acs.jproteome.0c00747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteinaceous aggregates containing α-synuclein protein called Lewy bodies in the substantia nigra is a hallmark of Parkinson's disease. The molecular mechanisms of Lewy body formation and associated neuronal loss remain largely unknown. To gain insights into proteins and pathways associated with Lewy body pathology, we performed quantitative profiling of the proteome. We analyzed substantia nigra tissue from 51 subjects arranged into three groups: cases with Lewy body pathology, Lewy body-negative controls with matching neuronal loss, and controls with no neuronal loss. Using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we characterized the proteome both in terms of protein abundances and peptide modifications. Statistical testing for differential abundance of the most abundant 2963 proteins, followed by pathway enrichment and Bayesian learning of the causal network structure, was performed to identify likely drivers of Lewy body formation and dopaminergic neuronal loss. The identified pathways include (1) Arp2/3 complex-mediated actin nucleation; (2) synaptic function; (3) poly(A) RNA binding; (4) basement membrane and endothelium; and (5) hydrogen peroxide metabolic process. According to the data, the endothelial/basement membrane pathway is tightly connected with both pathologies and likely to be one of the drivers of neuronal loss. The poly(A) RNA-binding proteins, including the ones relevant to other neurodegenerative disorders (e.g., TDP-43 and FUS), have a strong inverse correlation with Lewy bodies and may reflect an alternative mechanism of nigral neurodegeneration.
Collapse
Affiliation(s)
- Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Heather M Olson
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Joshua M Shulman
- Departments of Neurology, Molecular & Human Genetics, and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, United States
| |
Collapse
|
22
|
Chen Z, Huang L, Tso A, Wang S, Fang X, Ouyang K, Han Z. Mitochondrial Chaperones and Proteases in Cardiomyocytes and Heart Failure. Front Mol Biosci 2021; 8:630332. [PMID: 33937324 PMCID: PMC8082175 DOI: 10.3389/fmolb.2021.630332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure is one of the leading causes of morbidity and mortality worldwide. In cardiomyocytes, mitochondria are not only essential organelles providing more than 90% of the ATP necessary for contraction, but they also play critical roles in regulating intracellular Ca2+ signaling, lipid metabolism, production of reactive oxygen species (ROS), and apoptosis. Because mitochondrial DNA only encodes 13 proteins, most mitochondrial proteins are nuclear DNA-encoded, synthesized, and transported from the cytoplasm, refolded in the matrix to function alone or as a part of a complex, and degraded if damaged or incorrectly folded. Mitochondria possess a set of endogenous chaperones and proteases to maintain mitochondrial protein homeostasis. Perturbation of mitochondrial protein homeostasis usually precedes disruption of the whole mitochondrial quality control system and is recognized as one of the hallmarks of cardiomyocyte dysfunction and death. In this review, we focus on mitochondrial chaperones and proteases and summarize recent advances in understanding how these proteins are involved in the initiation and progression of heart failure.
Collapse
Affiliation(s)
- Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Alexandria Tso
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shijia Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhen Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
23
|
Modelling Parkinson's Disease: iPSCs towards Better Understanding of Human Pathology. Brain Sci 2021; 11:brainsci11030373. [PMID: 33799491 PMCID: PMC8000082 DOI: 10.3390/brainsci11030373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s Disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms, among which are bradykinesia, rigidity, tremor as well as mental symptoms such as dementia. The underlying cause of Parkinson disease is degeneration of dopaminergic neurons. It has been challenging to develop an efficient animal model to accurately represent the complex phenotypes found with PD. However, it has become possible to recapitulate the myriad of phenotypes underlying the PD pathology by using human induced pluripotent stem cell (iPSC) technology. Patient-specific iPSC-derived dopaminergic neurons are available and present an opportunity to study many aspects of the PD phenotypes in a dish. In this review, we report the available data on iPSC-derived neurons derived from PD patients with identified gene mutations. Specifically, we will report on the key phenotypes of the generated iPSC-derived neurons from PD patients with different genetic background. Furthermore, we discuss the relationship these cellular phenotypes have to PD pathology and future challenges and prospects for iPSC modelling and understanding of the pathogenesis of PD.
Collapse
|
24
|
Yeo AJ, Chong KL, Gatei M, Zou D, Stewart R, Withey S, Wolvetang E, Parton RG, Brown AD, Kastan MB, Coman D, Lavin MF. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. iScience 2021; 24:101972. [PMID: 33437944 PMCID: PMC7788243 DOI: 10.1016/j.isci.2020.101972] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is evidence that ATM mutated in ataxia-telangiectasia (A-T) plays a key role in protecting against mitochondrial dysfunction, the mechanism for which remains unresolved. We demonstrate here that ATM-deficient cells are exquisitely sensitive to nutrient deprivation, which can be explained by defective cross talk between the endoplasmic reticulum (ER) and the mitochondrion. Tethering between these two organelles in response to stress was reduced in cells lacking ATM, and consistent with this, Ca2+ release and transfer between ER and mitochondria was reduced dramatically when compared with control cells. The impact of this on mitochondrial function was evident from an increase in oxygen consumption rates and a defect in mitophagy in ATM-deficient cells. Our findings reveal that ER-mitochondrial connectivity through IP3R1-GRP75-VDAC1, to maintain Ca2+ homeostasis, as well as an abnormality in mitochondrial fusion defective in response to nutrient stress, can account for at least part of the mitochondrial dysfunction observed in A-T cells.
Collapse
Affiliation(s)
- Abrey J. Yeo
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Kok L. Chong
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Magtouf Gatei
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Dongxiu Zou
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | | | - Sarah Withey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane, Australia
| | | | | | - David Coman
- Queensland Children's Hospital, Brisbane, Australia
| | - Martin F. Lavin
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| |
Collapse
|
25
|
De Miranda BR, Rocha EM, Castro SL, Greenamyre JT. Protection from α-Synuclein induced dopaminergic neurodegeneration by overexpression of the mitochondrial import receptor TOM20. NPJ Parkinsons Dis 2020; 6:38. [PMID: 33293540 PMCID: PMC7722884 DOI: 10.1038/s41531-020-00139-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Dopaminergic neurons of the substantia nigra are selectively vulnerable to mitochondrial dysfunction, which is hypothesized to be an early and fundamental pathogenic mechanism in Parkinson's disease (PD). Mitochondrial function depends on the successful import of nuclear-encoded proteins, many of which are transported through the TOM20-TOM22 outer mitochondrial membrane import receptor machinery. Recent data suggests that post-translational modifications of α-synuclein promote its interaction with TOM20 at the outer mitochondrial membrane and thereby inhibit normal protein import, leading to dysfunction, and death of dopaminergic neurons. As such, preservation of mitochondrial import in the face of α-synuclein accumulation might be a strategy to prevent dopaminergic neurodegeneration, however, this is difficult to assess using current in vivo models of PD. To this end, we established an exogenous co-expression system, utilizing AAV2 vectors to overexpress human α-synuclein and TOM20, individually or together, in the adult Lewis rat substantia nigra to assess whether TOM20 overexpression attenuates α-synuclein-induced dopaminergic neurodegeneration. Twelve weeks after viral injection, we observed that AAV2-TOM20 expression was sufficient to prevent loss of nigral dopaminergic neurons caused by AAV2-αSyn overexpression. The observed TOM20-mediated dopaminergic neuron preservation appeared to be due, in part, to the rescued expression (and presumed import) of nuclear-encoded mitochondrial electron transport chain proteins that were inhibited by α-synuclein overexpression. In addition, TOM20 overexpression rescued the expression of the chaperone protein GRP75/mtHSP70/mortalin, a stress-response protein involved in α-synuclein-induced injury. Collectively, these data indicate that TOM20 expression prevents α-synuclein-induced mitochondrial dysfunction, which is sufficient to rescue dopaminergic neurons in the adult rat brain.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Genovese I, Giamogante F, Barazzuol L, Battista T, Fiorillo A, Vicario M, D'Alessandro G, Cipriani R, Limatola C, Rossi D, Sorrentino V, Poser E, Mosca L, Squitieri F, Perluigi M, Arena A, van Petegem F, Tito C, Fazi F, Giorgi C, Calì T, Ilari A, Colotti G. Sorcin is an early marker of neurodegeneration, Ca 2+ dysregulation and endoplasmic reticulum stress associated to neurodegenerative diseases. Cell Death Dis 2020; 11:861. [PMID: 33060591 PMCID: PMC7566454 DOI: 10.1038/s41419-020-03063-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulation of calcium signaling is emerging as a key feature in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), and targeting this process may be therapeutically beneficial. Under this perspective, it is important to study proteins that regulate calcium homeostasis in the cell. Sorcin is one of the most expressed calcium-binding proteins in the human brain; its overexpression increases endoplasmic reticulum (ER) calcium concentration and decreases ER stress in the heart and in other cellular types. Sorcin has been hypothesized to be involved in neurodegenerative diseases, since it may counteract the increased cytosolic calcium levels associated with neurodegeneration. In the present work, we show that Sorcin expression levels are strongly increased in cellular, animal, and human models of AD, PD, and HD, vs. normal cells. Sorcin partially colocalizes with RyRs in neurons and microglia cells; functional experiments with microsomes containing high amounts of RyR2 and RyR3, respectively, show that Sorcin is able to regulate these ER calcium channels. The molecular basis of the interaction of Sorcin with RyR2 and RyR3 is demonstrated by SPR. Sorcin also interacts with other ER proteins as SERCA2 and Sigma-1 receptor in a calcium-dependent fashion. We also show that Sorcin regulates ER calcium transients: Sorcin increases the velocity of ER calcium uptake (increasing SERCA activity). The data presented here demonstrate that Sorcin may represent both a novel early marker of neurodegenerative diseases and a response to cellular stress dependent on neurodegeneration.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technology of Advanced Therapies (LTTA) University of Ferrara, Ferrara, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Theo Battista
- Department of Biochemical Sciences "A. Rossi Fanelli", University Sapienza of Rome, Rome, Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", University Sapienza of Rome, Rome, Italy
| | - Mattia Vicario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Raffaela Cipriani
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Isernia, Italy.,Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia - Rome, Rome, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Elena Poser
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", University Sapienza of Rome, Rome, Italy
| | - Ferdinando Squitieri
- Huntington's and Rare Diseases Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", University Sapienza of Rome, Rome, Italy
| | - Andrea Arena
- Department of Biochemical Sciences "A. Rossi Fanelli", University Sapienza of Rome, Rome, Italy
| | - Filip van Petegem
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technology of Advanced Therapies (LTTA) University of Ferrara, Ferrara, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, Rome, Italy.
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, Rome, Italy.
| |
Collapse
|
27
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
28
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Bhuiyan MS. Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Front Physiol 2020; 11:1054. [PMID: 32982788 PMCID: PMC7481364 DOI: 10.3389/fphys.2020.01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the key to properly functioning energy generation in the metabolically demanding cardiomyocytes and thus essential to healthy heart contractility on a beat-to-beat basis. Mitochondria being the central organelle for cellular metabolism and signaling in the heart, its dysfunction leads to cardiovascular disease. The healthy mitochondrial functioning critical to maintaining cardiomyocyte viability and contractility is accomplished by adaptive changes in the dynamics, biogenesis, and degradation of the mitochondria to ensure cellular proteostasis. Recent compelling evidence suggests that the classical protein quality control system in cardiomyocytes is also under constant mitochondrial control, either directly or indirectly. Impairment of cytosolic protein quality control may affect the position of the mitochondria in relation to other organelles, as well as mitochondrial morphology and function, and could also activate mitochondrial proteostasis. Despite a growing interest in the mitochondrial quality control system, very little information is available about the molecular function of mitochondria in cardiac proteostasis. In this review, we bring together current understanding of the adaptations and role of the mitochondria in cardiac proteostasis and describe the adaptive/maladaptive changes observed in the mitochondrial network required to maintain proteomic integrity. We also highlight the key mitochondrial signaling pathways activated in response to proteotoxic stress as a cellular mechanism to protect the heart from proteotoxicity. A deeper understanding of the molecular mechanisms of mitochondrial adaptations and their role in cardiac proteostasis will help to develop future therapeutics to protect the heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
29
|
Molecular Regulation in Dopaminergic Neuron Development. Cues to Unveil Molecular Pathogenesis and Pharmacological Targets of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21113995. [PMID: 32503161 PMCID: PMC7312927 DOI: 10.3390/ijms21113995] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The relatively few dopaminergic neurons in the mammalian brain are mostly located in the midbrain and regulate many important neural functions, including motor integration, cognition, emotive behaviors and reward. Therefore, alteration of their function or degeneration leads to severe neurological and neuropsychiatric diseases. Unraveling the mechanisms of midbrain dopaminergic (mDA) phenotype induction and maturation and elucidating the role of the gene network involved in the development and maintenance of these neurons is of pivotal importance to rescue or substitute these cells in order to restore dopaminergic functions. Recently, in addition to morphogens and transcription factors, microRNAs have been identified as critical players to confer mDA identity. The elucidation of the gene network involved in mDA neuron development and function will be crucial to identify early changes of mDA neurons that occur in pre-symptomatic pathological conditions, such as Parkinson’s disease. In addition, it can help to identify targets for new therapies and for cell reprogramming into mDA neurons. In this essay, we review the cascade of transcriptional and posttranscriptional regulation that confers mDA identity and regulates their functions. Additionally, we highlight certain mechanisms that offer important clues to unveil molecular pathogenesis of mDA neuron dysfunction and potential pharmacological targets for the treatment of mDA neuron dysfunction.
Collapse
|
30
|
Battista T, Fiorillo A, Chiarini V, Genovese I, Ilari A, Colotti G. Roles of Sorcin in Drug Resistance in Cancer: One Protein, Many Mechanisms, for a Novel Potential Anticancer Drug Target. Cancers (Basel) 2020; 12:cancers12040887. [PMID: 32268494 PMCID: PMC7226229 DOI: 10.3390/cancers12040887] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The development of drug resistance is one of the main causes of failure in anti-cancer treatments. Tumor cells adopt many strategies to counteract the action of chemotherapeutic agents, e.g., enhanced DNA damage repair, inactivation of apoptotic pathways, alteration of drug targets, drug inactivation, and overexpression of ABC (Adenosine triphosphate-binding cassette, or ATP-binding cassette) transporters. These are broad substrate-specificity ATP-dependent efflux pumps able to export toxins or drugs out of cells; for instance, ABCB1 (MDR1, or P-glycoprotein 1), overexpressed in most cancer cells, confers them multidrug resistance (MDR). The gene coding for sorcin (SOluble Resistance-related Calcium-binding proteIN) is highly conserved among mammals and is located in the same chromosomal locus and amplicon as the ABC transporters ABCB1 and ABCB4, both in human and rodent genomes (two variants of ABCB1, i.e., ABCB1a and ABCB1b, are in rodent amplicon). Sorcin was initially characterized as a soluble protein overexpressed in multidrug (MD) resistant cells and named "resistance-related" because of its co-amplification with ABCB1. Although for years sorcin overexpression was thought to be only a by-product of the co-amplification with ABC transporter genes, many papers have recently demonstrated that sorcin plays an important part in MDR, indicating a possible role of sorcin as an oncoprotein. The present review illustrates sorcin roles in the generation of MDR via many mechanisms and points to sorcin as a novel potential target of different anticancer molecules.
Collapse
Affiliation(s)
- Theo Battista
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (T.B.); (A.F.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (T.B.); (A.F.)
| | - Valerio Chiarini
- Doctoral Programme in Integrative Life Science, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland;
| | - Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR), c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy
- Correspondence: (A.I.); (G.C.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR), c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy
- Correspondence: (A.I.); (G.C.)
| |
Collapse
|
31
|
Kiraly VTR, Dores-Silva PR, Serrão VHB, Cauvi DM, De Maio A, Borges JC. Thermal aggregates of human mortalin and Hsp70-1A behave as supramolecular assemblies. Int J Biol Macromol 2020; 146:320-331. [PMID: 31899237 PMCID: PMC7024674 DOI: 10.1016/j.ijbiomac.2019.12.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
The Hsp70 family of heat shock proteins plays a critical function in maintaining cellular homeostasis within various subcellular compartments. The human mitochondrial Hsp70 (HSPA9) has been associated with cellular death, senescence, cancer and neurodegenerative diseases, which is the rational for the name mortalin. It is well documented that mortalin, such as other Hsp70s, is prone to self-aggregation, which is related to mitochondria biogenesis failure. Here, we investigated the assembly, structure and function of thermic aggregates/oligomers of recombinant human mortalin and Hsp70-1A (HSPA1A). Summarily, both Hsp70 thermic aggregates have characteristics of supramolecular assemblies. They display characteristic organized structures and partial ATPase activity, despite their nanometric size. Indeed, we observed that the interaction of these aggregates/oligomers with liposomes is similar to monomeric Hsp70s and, finally, they were non-toxic over neuroblastoma cells. These findings revealed that high molecular mass oligomers of mortalin and Hsp70-1A preserved some of the fundamental functions of these proteins.
Collapse
Affiliation(s)
- Vanessa T R Kiraly
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Department of Surgery, School of Medicine University of California, La Jolla, USA
| | - Vitor H B Serrão
- Department Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David M Cauvi
- Department of Surgery, School of Medicine University of California, La Jolla, USA
| | - Antonio De Maio
- Department of Surgery, School of Medicine University of California, La Jolla, USA; Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, USA; Department of Neurosciences, School of Medicine, University of California, La Jolla, USA
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
32
|
Dhamad AE, Greene E, Sales M, Nguyen P, Beer L, Liyanage R, Dridi S. 75-kDa glucose-regulated protein (GRP75) is a novel molecular signature for heat stress response in avian species. Am J Physiol Cell Physiol 2020; 318:C289-C303. [DOI: 10.1152/ajpcell.00334.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-regulated protein 75 (GRP75) was first characterized in mammals as a heat shock protein-70 (HSP70) family stress chaperone based on its sequence homology. Extensive studies in mammals showed that GRP75 is induced by various stressors such as glucose deprivation, oxidative stress, and hypoxia, although it remained unresponsive to the heat shock. Such investigations are scarce in avian (nonmammalian) species. We here identified chicken GRP75 by using immunoprecipitation assay integrated with LC-MS/MS, and found that its amino acid sequence is conserved with high homology (52.5%) to the HSP70 family. Bioinformatics and 3D-structure prediction indicate that, like most HSPs, chicken GRP75 has two principal domains (the NH2-terminal ATPase and COOH-terminal region). Immunofluorescence staining shows that GRP75 is localized predominantly in the avian myoblast and hepatocyte mitochondria. Heat stress exposure upregulates GRP75 expression in a species-, genotype-, and tissue-specific manner. Overexpression of GRP75 reduces avian cell viability, and blockade of GRP75 by its small molecular inhibitor MKT-077 rescues avian cell viability during heat stress. Taken together, this is the first evidence showing that chicken GRP75, unlike its mammalian ortholog, is responsive to heat shock and plays a key role in cell survival/death pathways. Since modern avian species have high metabolic rates and are sensitive to high environmental temperature, GRP75 could open new vistas in mechanistic understanding of heat stress responses and thermotolerance in avian species.
Collapse
Affiliation(s)
- Ahmed Edan Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Marites Sales
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Phuong Nguyen
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Rohana Liyanage
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
33
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
34
|
Jo DS, Park SJ, Kim AK, Park NY, Kim JB, Bae JE, Park HJ, Shin JH, Chang JW, Kim PK, Jung YK, Koh JY, Choe SK, Lee KS, Cho DH. Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy. Autophagy 2020; 16:1989-2003. [PMID: 31964216 DOI: 10.1080/15548627.2020.1712812] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Quality control of peroxisomes is essential for cellular homeostasis. However, the mechanism underlying pexophagy is largely unknown. In this study, we identified HSPA9 as a novel pexophagy regulator. Downregulation of HSPA9 increased macroautophagy/autophagy but decreased the number of peroxisomes in vitro and in vivo. The loss of peroxisomes by HSPA9 depletion was attenuated in SQSTM1-deficient cells. In HSPA9-deficient cells, the level of peroxisomal reactive oxygen species (ROS) increased, while inhibition of ROS blocked pexophagy in HeLa and SH-SY5Y cells. Importantly, reconstitution of HSPA9 mutants found in Parkinson disease failed to rescue the loss of peroxisomes, whereas reconstitution with wild type inhibited pexophagy in HSPA9-depleted cells. Knockdown of Hsc70-5 decreased peroxisomes in Drosophila, and the HSPA9 mutants failed to rescue the loss of peroxisomes in Hsc70-5-depleted flies. Taken together, our findings suggest that the loss of HSPA9 enhances peroxisomal degradation by pexophagy.
Collapse
Affiliation(s)
- Doo Sin Jo
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge , Cambridge, UK
| | - Ae-Kyeong Kim
- Metabolism & Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology , Daejeon, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Ji-Eun Bae
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Hyun Jun Park
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Ji Hyun Shin
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge , Cambridge, UK
| | - Jong Wook Chang
- Cell and Regenerative Medicine Institute, Samsung Medical Center , Seoul, Republic of Korea
| | - Peter K Kim
- Department of Biochemistry, University of Toronto , Toronto, ON, Canada
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University , Seoul, Republic of Korea
| | - Jae-Young Koh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine , Iksan, Jeonbuk, Republic of Korea
| | - Kyu-Sun Lee
- Metabolism & Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology , Daejeon, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
35
|
Torre-Muruzabal T, Devoght J, Van den Haute C, Brône B, Van der Perren A, Baekelandt V. Chronic nigral neuromodulation aggravates behavioral deficits and synaptic changes in an α-synuclein based rat model for Parkinson's disease. Acta Neuropathol Commun 2019; 7:160. [PMID: 31640762 PMCID: PMC6805517 DOI: 10.1186/s40478-019-0814-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023] Open
Abstract
Aggregation of alpha-synuclein (α-SYN) is the pathological hallmark of several diseases named synucleinopathies, including Parkinson's disease (PD), which is the most common neurodegenerative motor disorder. Alpha-SYN has been linked to synaptic function both in physiological and pathological conditions. However, the exact link between neuronal activity, α-SYN toxicity and disease progression in PD is not clear. In this study, we aimed to investigate the effect of chronic neuromodulation in an α-SYN-based rat model for PD using chemogenetics. To do this, we expressed excitatory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) combined with mutant A53T α-SYN, using two different recombinant adeno-associated viral (rAAV) vectors (serotypes 2/7 and 2/8) in rat substantia nigra (SN) and investigated the effect on motor behavior, synapses and neuropathology. We found that chronic neuromodulation aggravates motor deficits induced by α-SYN, without altering dopaminergic neurodegeneration. In addition, neuronal activation led to changes in post-translational modification and subcellular localization of α-SYN, linking neuronal activity to the pathophysiological role of α-SYN in PD.
Collapse
Affiliation(s)
- Teresa Torre-Muruzabal
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | | | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- KU Leuven, Leuven Viral Vector Core, Leuven, Belgium
| | | | - Anke Van der Perren
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
36
|
Dixit A, Mehta R, Singh AK. Proteomics in Human Parkinson's Disease: Present Scenario and Future Directions. Cell Mol Neurobiol 2019; 39:901-915. [PMID: 31190159 DOI: 10.1007/s10571-019-00700-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is an age-related, threatening neurodegenerative disorder with no reliable treatment till date. Identification of specific and reliable biomarker is a major challenge for disease diagnosis and designing effective therapeutic strategy against it. PD pathology at molecular level involves abnormal expression and function of several proteins, including alpha-synuclein. These proteins affect the normal functioning of neurons through various post-translational modifications and interaction with other cellular components. The role of protein anomalies during PD pathogenesis can be better understood by the application of proteomics approach. A number of proteomic studies conducted on brain tissue, blood, and cerebrospinal fluid of PD patients have identified a wide array of protein alterations underlying disease pathogenesis. However, these studies are limited by the types of brain regions or biofluids utilized in the research. For a complete understanding of PD mechanism and discovery of reliable protein biomarkers, it is essential to analyze the proteome of different PD-associated brain regions and easily accessible biofluids such as saliva and urine. The present review summarizes the major advances in the field of PD research in humans utilizing proteomic techniques. Moreover, potential samples for proteomic analysis and limitations associated with the analyses of different types of samples have also been discussed.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Rachna Mehta
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
37
|
Ramalingam M, Huh YJ, Lee YI. The Impairments of α-Synuclein and Mechanistic Target of Rapamycin in Rotenone-Induced SH-SY5Y Cells and Mice Model of Parkinson's Disease. Front Neurosci 2019; 13:1028. [PMID: 31611767 PMCID: PMC6769080 DOI: 10.3389/fnins.2019.01028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). α-synuclein (α-syn) is known to regulate mitochondrial function and both PINK1 and Parkin have been shown to eliminate damaged mitochondria in PD. Mechanistic target of rapamycin (mTOR) is expressed in several distinct subcellular compartments and mediates the effects of nutrients, growth factors, and stress on cell growth. However, the contributions of these various regulators to DAergic cell death have been demonstrated mainly in culture with serum, which is known to dramatically influence endogenous growth rate and toxin susceptibility through nutrient and growth factor signaling. Therefore, we compared neurotoxicity induced by the mitochondrial inhibitor rotenone (ROT, 5 or 10 μM for 24 h) in SH-SY5Y cells cultured with 10% fetal bovine serum (FBS), 1% FBS, or 1% bovine serum albumin (BSA, serum-free). In addition, C57BL/6J mice were injected with 12 μg ROT into the right striatum, and brains examined by histology and Western blotting 2 weeks later for evidence of DAergic cell death and the underlying signaling mechanisms. ROT dose-dependently reduced SH-SY5Y cell viability in all serum groups without a significant effect of serum concentration. ROT injection also significantly reduced immunoreactivity for the DAergic cell marker tyrosine hydroxylase (TH) in both the mouse striatum and SNpc. Western blotting revealed that ROT inhibited TH and Parkin expression while increasing α-syn and PINK1 expression in both SH-SY5Y cells and injected mice, consistent with disruption of mitochondrial function. Moreover, expression levels of the mTOR signaling pathway components mTORC, AMP-activated protein kinase (AMPK), ULK1, and ATG13 were altered in ROT-induced PD. Further, serum level influenced mTOR signaling in the absence of ROT and the changes in response to ROT. Signs of endoplasmic reticulum (ER) stress and altered expression of tethering proteins mediating mitochondria-associated ER contacts (MAMs) were also altered concomitant with ROT-induced neurodegeneration. Taken together, this study demonstrates that complex mechanism involving mitochondrial dysfunction, altered mTOR nutrient-sensing pathways, ER stress, and disrupted MAM protein dynamics are involved in DAergic neurodegeneration in response to ROT.
Collapse
Affiliation(s)
| | | | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, South Korea
| |
Collapse
|
38
|
Zilocchi M, Fasano M, Alberio T. Mitochondrial Proteins in the Development of Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:17-44. [DOI: 10.1007/978-981-13-8367-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Bogetofte H, Jensen P, Ryding M, Schmidt SI, Okarmus J, Ritter L, Worm CS, Hohnholt MC, Azevedo C, Roybon L, Bak LK, Waagepetersen H, Ryan BJ, Wade-Martins R, Larsen MR, Meyer M. PARK2 Mutation Causes Metabolic Disturbances and Impaired Survival of Human iPSC-Derived Neurons. Front Cell Neurosci 2019; 13:297. [PMID: 31333417 PMCID: PMC6624735 DOI: 10.3389/fncel.2019.00297] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
The protein parkin, encoded by the PARK2 gene, is vital for mitochondrial homeostasis, and although it has been implicated in Parkinson’s disease (PD), the disease mechanisms remain unclear. We have applied mass spectrometry-based proteomics to investigate the effects of parkin dysfunction on the mitochondrial proteome in human isogenic induced pluripotent stem cell-derived neurons with and without PARK2 knockout (KO). The proteomic analysis quantified nearly 60% of all mitochondrial proteins, 119 of which were dysregulated in neurons with PARK2 KO. The protein changes indicated disturbances in oxidative stress defense, mitochondrial respiration and morphology, cell cycle control, and cell viability. Structural and functional analyses revealed an increase in mitochondrial area and the presence of elongated mitochondria as well as impaired glycolysis and lactate-supported respiration, leading to an impaired cell survival in PARK2 KO neurons. This adds valuable insight into the effect of parkin dysfunction in human neurons and provides knowledge of disease-related pathways that can potentially be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Helle Bogetofte
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Oxford Parkinson's Disease Centre, Medical Sciences Division, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sissel I Schmidt
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Louise Ritter
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina S Worm
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Michaela C Hohnholt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carla Azevedo
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Laurent Roybon
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brent J Ryan
- Oxford Parkinson's Disease Centre, Medical Sciences Division, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Medical Sciences Division, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
40
|
Dong YN, McMillan E, Clark EM, Lin H, Lynch DR. GRP75 overexpression rescues frataxin deficiency and mitochondrial phenotypes in Friedreich ataxia cellular models. Hum Mol Genet 2019; 28:1594-1607. [PMID: 30590615 PMCID: PMC6494971 DOI: 10.1093/hmg/ddy448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein crucial for iron-sulfur cluster biogenesis and adenosine triphosphate (ATP) production. Currently, there is no therapy to slow down the progression of FRDA. Recent evidence indicates that posttranslational regulation of residual frataxin levels can rescue some of the functional deficit of FRDA, raising the possibility of enhancing levels of residual frataxin as a treatment for FRDA. Here, we present evidence that mitochondrial molecular chaperone GRP75, also known as mortalin/mthsp70/PBP74, directly interacts with frataxin both in vivo in mouse cortex and in vitro in cortical neurons. Overexpressing GRP75 increases the levels of both wild-type frataxin and clinically relevant missense frataxin variants in human embryonic kidney 293 cells, while clinical GRP75 variants such as R126W, A476T and P509S impair the binding of GRP75 with frataxin and the effect of GRP75 on frataxin levels. In addition, GRP75 overexpression rescues frataxin deficiency and abnormal cellular phenotypes such as the abnormal mitochondrial network and decreased ATP levels in FRDA patient-derived cells. The effect of GRP75 on frataxin might be in part mediated by the physical interaction between GRP75 and mitochondrial processing peptidase (MPP), which makes frataxin more accessible to MPP. As GRP75 levels are decreased in multiple cell types of FRDA patients, restoring GRP75 might be effective in treating both typical FRDA patients with two guanine-adenine-adenine repeat expansions and compound heterozygous patients with point mutations.
Collapse
Affiliation(s)
- Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily McMillan
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisia M Clark
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Lin
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Trigo D, Goncalves MB, Corcoran JPT. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling. FASEB J 2019; 33:7225-7235. [PMID: 30857414 PMCID: PMC6529336 DOI: 10.1096/fj.201802097r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal regeneration is a highly energy-demanding process that greatly relies on axonal mitochondrial transport to meet the enhanced metabolic requirements. Mature neurons typically fail to regenerate after injury, partly because of mitochondrial motility and energy deficits in injured axons. Retinoic acid receptor (RAR)-β signaling is involved in axonal and neurite regeneration. Here we investigate the effect of RAR-β signaling on mitochondrial trafficking during neurite outgrowth and find that it enhances their proliferation, speed, and movement toward the growing end of the neuron via hypoxia-inducible factor 1α signaling. We also show that RAR-β signaling promotes the binding of the mitochondria to the anchoring protein, glucose-related protein 75, at the growing tip of neurite, thus allowing them to provide energy and metabolic roles required for neurite outgrowth.—Trigo, D., Goncalves, M. B., Corcoran, J. P. T. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling.
Collapse
Affiliation(s)
- Diogo Trigo
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Maria B Goncalves
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Jonathan P T Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
42
|
A novel variant of the human mitochondrial DnaJ protein, Tid1, associates with a human disease exhibiting developmental delay and polyneuropathy. Eur J Hum Genet 2019; 27:1072-1080. [PMID: 30770860 DOI: 10.1038/s41431-019-0358-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we describe a single patient from a consanguineous family, who suffers from developmental delay, intellectual disability, hypermetropia, moderate alternating esotropia, unsteady gait, and peripheral polyneuropathy. Brain MRI revealed basal ganglia disease. Exome analysis disclosed a homozygous variant, c.452G>C (p.(Arg151Thr)), in TID1, encoding a mitochondrial J-protein chaperone that is known for its function in assisting the Hsp70 chaperone, mortalin, in mediating the refolding of denatured protein and dissolving protein aggregates. Results from in vitro import assays showed that both wild type and c.452G>C (p.(Arg151Thr)) are efficiently imported into isolated mitochondria. However, the import rate of the c.452G>C (p.(Arg151Thr)) variant was less than that of the wild-type protein. In the second part of this study, we demonstrated, in vitro, that the disaggregation function of the mortalin/Tid1 team is compromised in the TID1 c.452G>C (p.(Arg151Thr)) variant, as its chaperone activity has a level similar to that of the non-functional H→Q HPD domain variant. The results shed light on the essential function played by Tid1 during neuronal development.
Collapse
|
43
|
Cilento EM, Jin L, Stewart T, Shi M, Sheng L, Zhang J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. J Neurochem 2019; 151:397-416. [PMID: 30474862 DOI: 10.1111/jnc.14635] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Accurate, reliable, and objective biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and related age-associated neurodegenerative disorders are urgently needed to assist in both diagnosis, particularly at early stages, and monitoring of disease progression. Technological advancements in protein detection platforms over the last few decades have resulted in a plethora of reported molecular biomarker candidates for both AD and PD; however, very few of these candidates are developed beyond the discovery phase of the biomarker development pipeline, a reflection of the current bottleneck within the field. In this review, the expanded use of selected reaction monitoring (SRM) targeted mass spectrometry will be discussed in detail as a platform for systematic verification of large panels of protein biomarker candidates prior to costly validation testing. We also advocate for the coupling of discovery-based proteomics with modern targeted MS-based approaches (e.g., SRM) within a single study in future workflows to expedite biomarker development and validation for AD and PD. It is our hope that improving the efficiency within the biomarker development process by use of an SRM pipeline may ultimately hasten the development of biomarkers that both decrease misdiagnosis of AD and PD and ultimately lead to detection at early stages of disease and objective assessment of disease progression. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Eugene M Cilento
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lorrain Jin
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Min Shi
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA.,Department of Pathology, School of Basic Medicine, Peking University Health Science Center, Peking University Third Hospital and Peking Key Laboratory for Early Diagnosis of Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
44
|
Unveiling the olfactory proteostatic disarrangement in Parkinson's disease by proteome-wide profiling. Neurobiol Aging 2018; 73:123-134. [PMID: 30342273 DOI: 10.1016/j.neurobiolaging.2018.09.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/03/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023]
Abstract
Olfactory dysfunction is one of the earliest features in Lewy-type alpha-synucleinopathies (LTSs) such as Parkinson's disease (PD). However, the underlying molecular mechanisms associated to smell impairment are poorly understood. Applying mass spectrometry-based quantitative proteomics in postmortem olfactory bulbs across limbic, early-neocortical, and neocortical LTS stages of parkinsonian patients, a proteostasis impairment, was observed, identifying 268 differentially expressed proteins between controls and PD phenotypes. In addition, network-driven proteomics revealed a modulation in ERK1/2, MKK3/6, and PDK1/PKC signaling axes. Moreover, a cross-disease study of selected olfactory molecules in sporadic Alzheimer's disease (AD) cases revealed different protein derangements in the modulation of secretagogin (SCGN), calcyclin-binding protein (CACYBP), and glucosamine 6 phosphate isomerase 2 (GNPDA2) between PD and AD. An inverse correlation between GNPDA2 and α-synuclein protein levels was also reflected in PD cerebrospinal fluid. Interestingly, PD patients exhibited significantly lower serum GNPDA2 levels than controls (n = 82/group). Our study provides important avenues for understanding the olfactory bulb proteostasis imbalance in PD, deciphering mechanistic clues to the equivalent smell deficits observed in AD and PD pathologies.
Collapse
|
45
|
Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell Tissue Res 2018; 373:21-37. [PMID: 29372317 PMCID: PMC6015629 DOI: 10.1007/s00441-017-2768-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial impairment is a well-established pathological pathway implicated in Parkinson's disease (PD). Defects of the complex I of the mitochondrial respiratory chain have been found in post-mortem brains from sporadic PD patients. Furthermore, several disease-related genes are linked to mitochondrial pathways, such as PRKN, PINK1, DJ-1 and HTRA2 and are associated with mitochondrial impairment. This phenotype can be caused by the dysfunction of mitochondrial quality control machinery at different levels: molecular, organellar or cellular. Mitochondrial unfolded protein response represents the molecular level and implicates various chaperones and proteases. If the molecular level of quality control is not sufficient, the organellar level is required and involves mitophagy and mitochondrial-derived vesicles to sequester whole dysfunctional organelle or parts of it. Only when the impairment is too severe, does it lead to cell death via apoptosis, which defines the cellular level of quality control. Here, we review how currently known PD-linked genetic variants interfere with different levels of mitochondrial quality control. We discuss the graded risk concept of the most recently identified PARK loci (PARK 17-23) and some susceptibility variants in GBA, LRRK2 and SNCA. Finally, the emerging concept of rare genetic variants in candidates genes for PD, such as HSPA9, TRAP1 and RHOT1, complete the picture of the complex genetic architecture of PD that will direct future precision medicine approaches.
Collapse
Affiliation(s)
- S B Larsen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Z Hanss
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - R Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg City, Luxembourg
| |
Collapse
|
46
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|
47
|
Zilocchi M, Finzi G, Lualdi M, Sessa F, Fasano M, Alberio T. Mitochondrial alterations in Parkinson's disease human samples and cellular models. Neurochem Int 2018; 118:61-72. [PMID: 29704589 DOI: 10.1016/j.neuint.2018.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
Mitochondrial impairment is one of the most important hallmarks of Parkinson's disease (PD) pathogenesis. In this work, we wanted to verify the molecular basis of altered mitochondrial dynamics and disposal in Substantia nigra specimens of sporadic PD patients, by the comparison with two cellular models of PD. Indeed, SH-SY5Y cells were treated with either dopamine or 1-methyl-4-phenylpyridinium (MPP+) in order to highlight the effect of altered dopamine homeostasis and of complex I inhibition, respectively. As a result, we found that fusion impairment of the inner mitochondrial membrane is a common feature of both PD human samples and cellular models. However, the effects of dopamine and MPP+ treatments resulted to be different in terms of the mitochondrial damage induced. Opposite changes in the levels of two mitochondrial protein markers (voltage-dependent anion channels (VDACs) and cytochrome c oxidase subunit 5β (COX5β)) were observed. In this case, dopamine treatment better recapitulated the molecular picture of patients' samples. Moreover, the accumulation of PTEN-induced putative kinase 1 (PINK1), a mitophagy marker, was not observed in both PD patients samples and cellular models. Eventually, in transmission electron microscopy images, small electron dense deposits were observed in mitochondria of PD subjects, which are uniquely reproduced in dopamine-treated cells. In conclusion, our study suggests that the mitochondrial molecular landscape of Substantia nigra specimens of PD patients can be mirrored by the impaired dopamine homeostasis cellular model, thus supporting the hypothesis that alterations in this process could be a crucial pathogenetic event in PD.
Collapse
Affiliation(s)
- Mara Zilocchi
- Department of Science and High Technology, Center of Neuroscience, University of Insubria, Busto Arsizio, 21052, Italy
| | - Giovanna Finzi
- Department of Pathology, University Hospital ASST-Settelaghi, Varese, 21100, Italy
| | - Marta Lualdi
- Department of Science and High Technology, Center of Neuroscience, University of Insubria, Busto Arsizio, 21052, Italy
| | - Fausto Sessa
- Department of Pathology, University Hospital ASST-Settelaghi, Varese, 21100, Italy
| | - Mauro Fasano
- Department of Science and High Technology, Center of Neuroscience, University of Insubria, Busto Arsizio, 21052, Italy
| | - Tiziana Alberio
- Department of Science and High Technology, Center of Neuroscience, University of Insubria, Busto Arsizio, 21052, Italy.
| |
Collapse
|
48
|
Olive JA, Cowan JA. Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5. J Inorg Biochem 2018; 184:100-107. [PMID: 29689452 DOI: 10.1016/j.jinorgbio.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Iron‑sulfur clusters are essential cofactors found across all domains of life. Their assembly and transfer are accomplished by highly conserved protein complexes and partners. In eukaryotes a [2Fe-2S] cluster is first assembled in the mitochondria on the iron‑sulfur cluster scaffold protein ISCU in tandem with iron, sulfide, and electron donors. Current models suggest that a chaperone pair interacts with a cluster-bound ISCU to facilitate cluster transfer to a monothiol glutaredoxin. In humans this protein is glutaredoxin 5 (GLRX5) and the cluster can then be exchanged with a variety of target apo proteins. By use of circular dichroism spectroscopy, the kinetics of cluster exchange reactivity has been evaluated for human GLRX5 with a variety of cluster donor and acceptor partners, and the role of chaperones determined for several of these. In contrast to the prokaryotic model, where heat-shock type chaperone proteins HscA and HscB are required for successful and efficient transfer of a [2Fe-2S] cluster from the ISCU scaffold to a monothiol glutaredoxin. However, in the human system the chaperone homologs, HSPA9 and HSC20, are not necessary for human ISCU to promote cluster transfer to GLRX5, and appear to promote the reverse transfer. Cluster exchange with the human iron‑sulfur cluster carrier protein NFU1 and ferredoxins (FDX's), and the role of chaperones, has also been evaluated, demonstrating in certain cases control over the directionality of cluster transfer. In contrast to other prokaryotic and eukaryotic organisms, NFU1 is identified as a more likely physiological donor of [2Fe-2S] cluster to human GLRX5 than ISCU.
Collapse
Affiliation(s)
- Joshua A Olive
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
49
|
Moehle EA, Shen K, Dillin A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem 2018; 294:5396-5407. [PMID: 29622680 DOI: 10.1074/jbc.tm117.000893] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As a central hub of cellular metabolism and signaling, the mitochondrion is a crucial organelle whose dysfunction can cause disease and whose activity is intimately connected to aging. We review how the mitochondrial network maintains proteomic integrity, how mitochondrial proteotoxic stress is communicated and resolved in the context of the entire cell, and how mitochondrial systems function in the context of organismal health and aging. A deeper understanding of how mitochondrial protein quality control mechanisms are coordinated across these distinct biological levels should help explain why these mechanisms fail with age and, ultimately, how routes to intervention might be attained.
Collapse
Affiliation(s)
- Erica A Moehle
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Koning Shen
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Andrew Dillin
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
50
|
Honrath B, Culmsee C, Dolga AM. One protein, different cell fate: the differential outcome of depleting GRP75 during oxidative stress in neurons. Cell Death Dis 2018; 9:32. [PMID: 29348426 PMCID: PMC5833832 DOI: 10.1038/s41419-017-0148-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany.
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany.
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|