1
|
Jung W, Yoo I, Han J, Kim M, Lee S, Cheon Y, Hong M, Jeon BY, Ka H. Expression of Caspases in the Pig Endometrium Throughout the Estrous Cycle and at the Maternal-Conceptus Interface During Pregnancy and Regulation by Steroid Hormones and Cytokines. Front Vet Sci 2021; 8:641916. [PMID: 33644157 PMCID: PMC7907442 DOI: 10.3389/fvets.2021.641916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Caspases, a family of cysteine protease enzymes, are a critical component of apoptotic cell death, but they are also involved in cellular differentiation. The expression of caspases during apoptotic processes in reproductive tissues has been shown in some species; however, the expression and regulation of caspases in the endometrium and placental tissues of pigs has not been fully understood. Therefore, we determined the expression of caspases CASP3, CASP6, CASP7, CASP8, CASP9, and CASP10 in the endometrium throughout the estrous cycle and pregnancy. During the estrous cycle, the expression of all caspases and during pregnancy, the expression of CASP3, CASP6, and CASP7 in the endometrium changed in a stage-specific manner. Conceptus and chorioallantoic tissues also expressed caspases during pregnancy. CASP3, cleaved-CASP3, and CASP7 proteins were localized to endometrial cells, with increased levels in luminal and glandular epithelial cells during early pregnancy, whereas apoptotic cells in the endometrium were limited to some scattered stromal cells with increased numbers on Day 15 of pregnancy. In endometrial explant cultures, the expression of some caspases was affected by steroid hormones (estradiol-17β and/or progesterone), and the cytokines interleukin-1β and interferon-γ induced the expression of CASP3 and CASP7, respectively. These results indicate that caspases are dynamically expressed in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy in response to steroid hormones and conceptus signals. Thus, caspase action could be important in regulating endometrial and placental function and epithelial cell function during the implantation period in pigs.
Collapse
Affiliation(s)
- Wonchul Jung
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Inkyu Yoo
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Jisoo Han
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Minjeong Kim
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Soohyung Lee
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Yugeong Cheon
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Minsun Hong
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Hakhyun Ka
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| |
Collapse
|
2
|
Han J, Yoo I, Lee S, Jung W, Kim HJ, Hyun SH, Lee E, Ka H. Atypical chemokine receptors 1, 2, 3 and 4: Expression and regulation in the endometrium during the estrous cycle and pregnancy and with somatic cell nucleus transfer-cloned embryos in pigs. Theriogenology 2019; 129:121-129. [PMID: 30844653 DOI: 10.1016/j.theriogenology.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/03/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Atypical chemokine receptor (ACKR) 1, ACKR2, ACKR3, and ACKR4, chemokine decoy receptors that lack G-protein-mediated signaling pathways, internalize and degrade chemokines to control their availability and function. Chemokines play important roles in the endometrium during the estrous cycle and pregnancy, but the expression and regulation of ACKRs have not been determined in pigs. Therefore, we examined the expression of ACKRs in the endometrium throughout the estrous cycle and pregnancy and in conceptus tissues in pigs. ACKR1, ACKR2, ACKR3, and ACKR4 mRNA was expressed in the endometrium, with higher levels of ACKR3 on day 12 of the estrous cycle than in pregnancy and higher levels of ACKR4 on day 15 of pregnancy than in the estrous cycle. ACKR1, ACKR2, and ACKR3, but not ACKR4, mRNA was detected in conceptus and chorioallantoic tissues during pregnancy. ACKR2 and ACKR3 mRNA and ACKR4 protein were mainly localized to luminal epithelial cells and weakly to glandular epithelial cells in the endometrium. Increasing doses of progesterone increased the expression of ACKR2 and ACKR4 and decreased the expression of ACKR3 in endometrial tissues. On day 12 of pregnancy, the expression of ACKR4 mRNA was lower in the endometria of gilts with somatic cell nucleus transfer-derived conceptuses than in the endometria of gilts carrying conceptuses derived from natural mating. These results indicate that the expression of ACKRs is dynamically regulated at the maternal-conceptus interface, suggesting that ACKR proteins might play critical roles in regulating endometrial chemokines to support the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Wonchul Jung
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hyun Jong Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Eunsong Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Gangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
3
|
Ao Z, Li Z, Wang X, Zhao C, Gan Y, Wu X, Zeng F, Shi J, Gu T, Hong L, Zheng E, Liu D, Xu Z, Wu Z, Cai G. Identification of amniotic fluid metabolomic and placental transcriptomic changes associated with abnormal development of cloned pig fetuses. Mol Reprod Dev 2019; 86:278-291. [PMID: 30618166 DOI: 10.1002/mrd.23102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/19/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
Abstract
Piglets cloned by somatic cell nuclear transfer (SCNT) show a high incidence of malformations and a high death rate during the perinatal period. To investigate the underlying mechanisms for abnormal development of cloned pig fetuses, we compared body weight, amniotic fluid (AF) metabolome, and placental transcriptome between SCNT- and artificial insemination (AI)-derived pig fetuses. Results showed that the body weight of SCNT pig fetuses was significantly lower than that of AI pig fetuses. The identified differential metabolites between the two groups of AF were mainly involved in bile acids and steroid hormones. The levels of all detected bile acids in SCNT AF were significantly higher than those in AI AF. The increase in the AF bile acid levels in SCNT fetuses was linked with the downregulation of placental bile acid transporter expression and the abnormal development of placental folds (PFs), both of which negatively affected the transfer of bile acids from AF across the placenta into the mother's circulation. Alteration in the AF steroid hormone levels in cloned fetuses was associated with decreased expression of enzymes responsible for steroid hormone biosynthesis in the placenta. In conclusion, cloned pig fetuses undergo abnormal intrauterine development associated with alteration of bile acid and steroid hormone levels in AF, which may be due to the poor development of PFs and the erroneous expression of bile acid transporters and enzymes responsible for steroid hormone biosynthesis in the placentas.
Collapse
Affiliation(s)
- Zheng Ao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xingwang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chengfa Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanmin Gan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fang Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junsong Shi
- Wen's Research Institute, Guangdong Wen's Foodstuff Group Ltd., Yunfu, Guangdong, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Analysis of stage-specific expression of the toll-like receptor family in the porcine endometrium throughout the estrous cycle and pregnancy. Theriogenology 2018; 125:173-183. [PMID: 30448720 DOI: 10.1016/j.theriogenology.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) play critical roles in innate immunity by regulating antimicrobial responses in mucosal tissues. The expression and function of TLRs in female reproductive tissues have been studied in several species, but the expression and function of TLRs and MYD88, an adaptor molecule in the TLR signaling pathway, at the maternal-conceptus interface are not well understood in pigs. Thus, we determined the expression of TLR1 - TLR10 and MYD88 in the endometrium, conceptus, and chorioallantoic tissues of pigs. TLR1 - TLR10 and MYD88 mRNAs were expressed in the endometrium during the estrous cycle and pregnancy in a stage-dependent manner. TLR and MYD88 mRNAs were also detected in early stage conceptuses and chorioallantoic tissues from Day 30 to term pregnancy. The expression of TLR2, TLR4, TLR5, and TLR7 was localized to epithelial and stromal cells in endometrial and chorioallantoic tissues. Increasing doses of P4, but not E2, induced the expression of TLR4, TLR5, TLR6, TLR7, and TLR8, while interferon-γ increased the expression of TLR2 and TLR7 in endometrial explant tissues. Expression of TLR3, TLR5, TLR6, TLR7, and MYD88 was higher in the endometrium with somatic cell nucleus transfer-derived conceptuses than conceptuses derived from natural mating on Day 12. These results indicate that the expression of TLR1 - TLR10 and MYD88 is dynamically regulated at the maternal-conceptus interface in pigs, suggesting that TLRs expressed in the endometrium and the placenta may play a critical role in regulating mucosal immune responses to support the establishment and maintenance of pregnancy.
Collapse
|
5
|
Analysis of Apoptosis on the Somatic Cell Nuclear Transfer embryos in porcine. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
Ao Z, Liu D, Zhao C, Yue Z, Shi J, Zhou R, Cai G, Zheng E, Li Z, Wu Z. Birth weight, umbilical and placental traits in relation to neonatal loss in cloned pigs. Placenta 2017; 57:94-101. [DOI: 10.1016/j.placenta.2017.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 06/14/2017] [Indexed: 12/16/2022]
|
7
|
Preliminary study on plasma proteins in pregnant and non-pregnant female dogs. Theriogenology 2017; 97:1-8. [DOI: 10.1016/j.theriogenology.2017.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 11/22/2022]
|
8
|
Gonçalves RF, Ferreira MS, de Oliveira DN, Canevarolo R, Achilles MA, D'Ercole DL, Bols PE, Visintin JA, Killian GJ, Catharino RR. Analysis and characterisation of bovine oocyte and embryo biomarkers by matrix-assisted desorption ionisation mass spectrometry imaging. Reprod Fertil Dev 2017; 28:293-301. [PMID: 25228254 DOI: 10.1071/rd14047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/22/2014] [Indexed: 12/13/2022] Open
Abstract
In the field of 'single cell analysis', many classical strategies like immunofluorescence and electron microscopy are the primary techniques of choice. However, these methodologies are time consuming and do not permit direct identification of specific molecular classes, such as lipids. In the present study, a novel mass spectrometry-based analytical approach was applied to bovine oocytes and embryos. This new metabolomics-based application uses mass spectrometry imaging (MSI), efficient data processing and multivariate data analysis. Metabolic fingerprinting (MF) was applied to the analysis of unfertilised oocytes, 2-, 4- and 8-cell embryos and blastocysts. A semiquantitative strategy for sphingomyelin [SM (16:0)+Na](+) (m/z 725) and phosphatidylcholine [PC (32:0)+Na](+) (m/z 756) was developed, showing that lipid concentration was useful for selecting the best metabolic biomarkers. This study demonstrates that a combination of MF, MSI features and chemometric analysis can be applied to discriminate cell stages, characterising specific biomarkers and relating them to developmental pathways. This information furthers our understanding of fertilisation and preimplantation events during bovine embryo development.
Collapse
Affiliation(s)
- Roseli F Gonçalves
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, São Paulo University, Av. Prof. Dr. Orlando Marques de Paiva, 87 - Cidade Universitária, 05508-270, São Paulo, SP, Brazil
| | - Mónica S Ferreira
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Rua Cinco de Junho, 350 - Barão Geraldo, 13083-877, Campinas, SP, Brazil
| | - Diogo N de Oliveira
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Rua Cinco de Junho, 350 - Barão Geraldo, 13083-877, Campinas, SP, Brazil
| | - Rafael Canevarolo
- Brazilian Biosciences National Laboratory, National Energy and Material Research Center, Post Office box: 6192, 13083-877, Campinas, SP, Brazil
| | - Marcos A Achilles
- Achilles Genetics Ltda, Rua Padre de Toledo Leite, 20 - Centro, 17400-000, Garça, SP, Brazil
| | - Daniela L D'Ercole
- Achilles Genetics Ltda, Rua Padre de Toledo Leite, 20 - Centro, 17400-000, Garça, SP, Brazil
| | - Peter E Bols
- Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 Gebouw U 0.09, B-2610, Wilrijk, Belgium
| | - Jose A Visintin
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, São Paulo University, Av. Prof. Dr. Orlando Marques de Paiva, 87 - Cidade Universitária, 05508-270, São Paulo, SP, Brazil
| | - Gary J Killian
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building University Park, PA, 16802, USA
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Rua Cinco de Junho, 350 - Barão Geraldo, 13083-877, Campinas, SP, Brazil
| |
Collapse
|
9
|
Ye TM, Pang RT, Leung CO, Chiu JF, Yeung WS. Two-dimensional liquid chromatography with tandem mass spectrometry–based proteomic characterization of endometrial luminal epithelial surface proteins responsible for embryo implantation. Fertil Steril 2015; 103:853-61.e3. [DOI: 10.1016/j.fertnstert.2014.12.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
|
10
|
Ko YG, Hwang S, Kim SW, Kim H, Seong HH, Kim JH, Song Y, Yang BS, Song YM, Cho JH. Proteomic analysis of the extraembryonic tissues from cloned porcine fetus at day 35 of pregnancy. BMC Res Notes 2014; 7:861. [PMID: 25433481 PMCID: PMC4289280 DOI: 10.1186/1756-0500-7-861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Somatic cell cloning by nuclear transfer (SCNT) in pig is clearly of great benefit for basic research and biomedical applications. Even though cloned offspring have been successfully produced in pig, SCNT is struggling with the low efficiency. RESULTS In the present study, we investigated differentially expressed proteins of the extraembryonic tissue from pig SCNT fetus compared to control (normal) fetus. We obtained the extraembryonic tissue from embryos at day 35 of pregnancy and examined the protein expression profiles using two-dimensional electrophoresis (2-D) and Western blotting. The extraembryonic tissue of fetus in control pregnancy was compared to the extraembryonic tissue of SCNT fetus, which showed an abnormally small size and shape as well as exhibited abnormal placental morphology compared to control fetus. A proteomic analysis showed that the expression of 33 proteins was significantly increased or decreased in the extraembryonic tissue of SCNT fetus compared to control fetus. The differentially expressed proteins in the extraembryonic tissue of SCNT fetus included ATP or lipid binding proteins, antioxidant proteins, translation elongation factors, and transcription factors. Western blotting analysis indicated that antioxidant enzymes and anti-apoptotic proteins were down-regulated; however, the expression levels of apoptotic proteins, Bax and Hsp27, were increased in the extraembryonic tissue of SCNT fetus. Moreover, immunohistochemical analysis also showed that the expression of the catalase or GPX genes was decreased in the extraembryonic tissue with SCNT fetus compared to those with control fetus. In addition, we observed a significant decrease in DNA methytransferase1 (Dnmt1) expression in SCNT extraembryonic tissue, and the expression levels of Dnmt3a and Dnmt3b were abnormally higher in SCNT fetus compared to control fetus. Moreover, a marked increase in the frequency of TUNEL-positive cells was observed in the extraembryonic tissue in SCNT fetus. CONCLUSION These results demonstrated that pig SCNT fetus showed abnormal protein expression in the extraembryonic tissue, and extensive apoptosis occurred in the extraembryonic tissue of the SCNT fetus due to an increase in apoptotic protein expression or a decrease in antioxidant protein expression.
Collapse
Affiliation(s)
- Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon 590-832, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jeon YJ, Kim J, Lee DS, Shim JH, Seo KS, Chae JI. Phosphorylation of PrxII promotes JNK-dependent apoptosis in adult cloned pig kidney. Int J Biochem Cell Biol 2014; 53:352-60. [DOI: 10.1016/j.biocel.2014.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
|
12
|
Choi Y, Seo H, Shim J, Kim M, Ka H. Regulation of S100G Expression in the Uterine Endometrium during Early Pregnancy in Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:44-51. [PMID: 25049477 PMCID: PMC4092914 DOI: 10.5713/ajas.2011.11305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/13/2011] [Indexed: 11/27/2022]
Abstract
Calcium ions play an important role in the establishment and maintenance of pregnancy, but molecular and cellular regulatory mechanisms of calcium ion action in the uterine endometrium are not fully understood in pigs. Previously, we have shown that calcium regulatory molecules, transient receptor potential vanilloid type 5 (TRPV6) and calbindin-D9k (S100G), are expressed in the uterine endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-specific manner, and that estrogen of conceptus origin increases endometrial TRPV6 expression. However, regulation of S100G expression in the uterine endometrium and conceptus expression of S100G has been not determined during early pregnancy. Thus, we investigated regulation of S100G expression by estrogen and interleukin-1β (IL1B) in the uterine endometrium and conceptus expression of S100G during early pregnancy in pigs. We obtained uterine endometrial tissues from day (D) 12 of the estrous cycle and treated with combinations of steroid hormones, estradiol-17β (E2) and progesterone (P4), and increasing doses of IL1B. Real-time RT-PCR analysis showed that E2 and IL1B increased S100G mRNA levels in the uterine endometrium, and conceptuses expressed S100G mRNA during early pregnancy, as determined by RT-PCR analysis. To determine if endometrial expression of S100G mRNA during the implantation period was affected by the somatic cell nuclear transfer (SCNT) procedure, we compared S100G mRNA levels in the uterine endometrium from gilts with SCNT-derived conceptuses with those from gilts with conceptuses derived from natural mating on D12 of pregnancy. Real-time RT-PCR analysis showed that levels of S100G mRNA in the uterine endometrium from gilts carrying SCNT-derived conceptuses was significantly lower than those from gilts carrying conceptuses derived from natural mating. These results showed that S100G expression in the uterine endometrium was regulated by estrogen and IL1B of conceptus origin, and affected by the SCNT procedure during early pregnancy. These suggest that conceptus signals regulate S100G, an intracellular calcium transport protein, for the establishment of pregnancy in pigs.
Collapse
|
13
|
Seo H, Choi Y, Yu I, Shim J, Lee CK, Hyun SH, Lee E, Ka H. Analysis of ENPP2 in the Uterine Endometrium of Pigs Carrying Somatic Cell Nuclear Transfer Cloned Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1255-61. [PMID: 25049907 PMCID: PMC4093402 DOI: 10.5713/ajas.2013.13158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/04/2013] [Accepted: 05/11/2013] [Indexed: 12/03/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is a useful tool for animal cloning, but the efficiency of producing viable offspring by SCNT is very low. To improve this efficiency in the production of cloned pigs, it is critical to understand the interactions between uterine function and cloned embryos during implantation. Lysophosphatidic acid (LPA) is a lipid mediator that plays an important role in the establishment of pregnancy in pigs; however, LPA production in the uterine endometrium of pigs carrying SCNT-cloned conceptuses has not been determined. Therefore, we investigated expression of ENPP2, an LPA-generating enzyme, in the uterine endometrium of gilts with conceptuses derived from SCNT during the implantation period. Uterine endometrial tissue and uterine flushing were obtained from gilts carrying SCNT-derived conceptuses and from gilts carrying conceptuses resulting from natural mating on d 12 of pregnancy. Our results demonstrated no difference in the level of ENPP2 mRNA expression in the uterine endometrium between gilts carrying SCNT-derived conceptuses and gilts carrying naturally-conceived conceptuses, but secretion of ENPP2 protein into the uterine lumen did decrease significantly in pigs with SCNT-derived conceptuses. These results indicate that expression and secretion of ENPP2, which are critical for appropriate LPA production and successful pregnancy, are dysregulated in the uterine endometrium of pigs carrying SCNT-derived conceptuses.
Collapse
Affiliation(s)
- Heewon Seo
- Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University, Wonju, 220-710, Korea
| | - Yohan Choi
- Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University, Wonju, 220-710, Korea
| | - Inkyu Yu
- Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University, Wonju, 220-710, Korea
| | - Jangsoo Shim
- Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University, Wonju, 220-710, Korea
| | - Chang-Kyu Lee
- Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University, Wonju, 220-710, Korea
| | - Sang-Hwan Hyun
- Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University, Wonju, 220-710, Korea
| | - Eunsong Lee
- Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University, Wonju, 220-710, Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University, Wonju, 220-710, Korea
| |
Collapse
|
14
|
Comparative proteomic analysis of hearts of adult SCNT Bama miniature pigs (Sus scrofa). Theriogenology 2014; 81:901-5. [PMID: 24560549 DOI: 10.1016/j.theriogenology.2014.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 01/01/2023]
Abstract
This study aims to determine the effects of SCNT on cardiac development of SCNT pigs through proteomic methods. Heart proteins from three adult SCNTs and two normal reproductive Bama miniature pigs were extracted, separated, and identified via comparative proteomic methods, including two-dimensional gel electrophoresis, mass spectrometry, and Western blot. Eleven differentially expressed spots were identified as differentially expressed proteins, of which five spots were upregulated proteins such as cardiac myosin heavy chain, cathepsin D, and heat shock protein beta-1 (HSP27). By contrast, six spots were downregulated proteins such as alpha skeletal muscle and actin. The results also demonstrated that nuclear transfer might result in abnormal expression of some important proteins in hearts from SCNT pigs, and affect the cardiac development in SCNT pigs' survival.
Collapse
|
15
|
Proteomic analysis of cloned porcine conceptuses during the implantation period. Biotechnol Lett 2013; 35:2021-30. [PMID: 23974496 DOI: 10.1007/s10529-013-1315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Differentially regulated proteins within porcine somatic cell nuclear transfer (SCNT)-derived conceptuses were compared with conceptuses that were derived from natural matings on day 14 of pregnancy. Proteins that were expressed prominently on day 14 were identified in SCNT-derived conceptuses using 2-D PAGE and MALDI-TOF MS. Sixty eight proteins were identified as being differentially regulated in the SCNT-derived conceptuses. Among these, 62 were down-regulated whereas the other six proteins were up-regulated. Glycolytic proteins, such as pyruvate dehydrogenase, malate dehydrogenase and lactate dehydrogenase, were down-regulated in the SCNT-derived conceptuses whereas apoptosis-related genes as annexin V, Hsp60, and lamin A were up-regulated. Thus, apoptosis-related genes are expressed at significantly higher levels in the SCNT-derived conceptuses than in the control conceptuses, whereas metabolism-related genes are significantly reduced.
Collapse
|
16
|
Shim J, Seo H, Choi Y, Yoo I, Lee CK, Hyun SH, Lee E, Ka H. Analysis of legumain and cystatin 6 expression at the maternal-fetal interface in pigs. Mol Reprod Dev 2013; 80:570-80. [PMID: 23686917 DOI: 10.1002/mrd.22192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/08/2013] [Indexed: 11/06/2022]
Abstract
Cathepsins (CTSs), a family of lysosomal cysteine proteases, and their inhibitors, cystatins (CSTs), play a critical role in endometrial and placental tissue remodeling during the establishment and maintenance of pregnancy in many species including rodents, sheep, cow, and pigs. In this study, we determined expression of legumain (LGMN), a cathepsinmember, and its inhibitor, CST6, at the maternal-fetal interface in pigs. Expression of both LGMN and CST6 mRNAs increased during mid- to late pregnancy in the uterine endometrium. LGMN and CST6 mRNAs localized to luminal epithelial cells (LE) and glandular epithelial cells (GE) and to the chorionic membrane (CM), with a strong intensity in GE and the CM for LGMN and in the CM for CST6 during pregnancy. LGMN protein was detected at molecular weights (MW) of approximately 50,000 and 37,000, and the abundance of the37,000-MW LGMN protein increased during mid- to latepregnancy. CST6 protein was also highly expressed in the uterine endometrium in mid- to latepregnancy. LGMN protein localized to LE, GE, and the CM during pregnancy. LGMN and CST6 were aberrantly expressed in the uterine endometrium from gilts with somatic cell nuclear transfer-derived conceptuses at term compared to those of gilts carrying conceptuses derived from natural mating. These results demonstrated that LGMN and CST6 were expressed in the uterine endometrium in a cell-type and stage-specific manner, suggesting that the LGMN and CST6 system at the maternal-fetal interface may play an important role in the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Jangsoo Shim
- Division of Biological Science and Technology, IPAID and Institute of Biomaterials, Yonsei University, Wonju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Seo JW, Kim Y, Hur J, Park KS, Cho YW. Proteomic Analysis of Primary Cultured Rat Cortical Neurons in Chemical Ischemia. Neurochem Res 2013; 38:1648-60. [DOI: 10.1007/s11064-013-1067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 01/15/2023]
|
18
|
Bang JI, Lee HS, Deb GK, Ha AN, Kwon YS, Cho SK, Kim BW, Cho KW, Kong IK. Proteomic identification of abnormally expressed proteins in early-stage placenta derived from cloned cat embryos. Theriogenology 2013; 79:358-66.e1. [DOI: 10.1016/j.theriogenology.2012.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 08/15/2012] [Accepted: 10/12/2012] [Indexed: 11/26/2022]
|
19
|
Yang H, Sun C, Fan Z, Tian X, Yan L, Du L, Liu Y, Chen C, Liang XJ, Anderson GJ, Keelan JA, Zhao Y, Nie G. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci Rep 2012; 2:847. [PMID: 23150793 PMCID: PMC3496197 DOI: 10.1038/srep00847] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/29/2012] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle exposure in pregnancy may result in placental damage and fetotoxicity; however, the factors that determine fetal nanoparticle exposure are unclear. Here we have assessed the effect of gestational age and nanoparticle composition on fetal accumulation of maternally-administered nanomaterials in mice. We determined the placental and fetal uptake of 13 nm gold nanoparticles with different surface modifications (ferritin, PEG and citrate) following intravenous administration at E5.5-15.5. We showed that prior to E11.5, all tested nanoparticles could be visualized and detected in fetal tissues in significant amounts; however, fetal gold levels declined dramatically post-E11.5. In contrast, Au-nanoparticle accumulation in the extraembryonic tissues (EET) increased 6–15 fold with gestational age. Fetal and EET accumulation of ferritin- and PEG-modified nanoparticles was considerably greater than citrate-capped nanoparticles. No signs of toxicity were observed. Fetal exposure to nanoparticles in murine pregnancy is, therefore, influenced by both stage of embryonic/placental maturation and nanoparticle surface composition.
Collapse
Affiliation(s)
- Hui Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Park JY, Park MR, Bui HT, Kwon DN, Kang MH, Oh M, Han JW, Cho SG, Park C, Shim H, Kim HM, Kang MJ, Park JK, Lee JW, Lee KK, Kim JH. α1,3-galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation. Cell Reprogram 2012; 14:353-63. [PMID: 22775484 DOI: 10.1089/cell.2011.0083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we examined whether Hanganutziu-Deicher (H-D) antigens are important as an immunogenic non-α1,3-galactose (Gal) epitope in pigs with a disrupted α1,3-galactosyltransferase gene. The targeting efficiency of the AO blood genotype was achieved (2.2%) in pig fibroblast cells. A total of 1800 somatic cell nuclear transfer (SCNT) embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. The α1,3-galactosyltransferase activity in lung, liver, spleen, and testis of heterozygote α1,3-galactosyltransferase gene knockout (GalT-KO) pigs was significantly decreased, whereas brain and heart showed very low decreasing levels of α1,3-galactosyltransferase activity when compared to those of control. Enzyme-linked lectinosorbent assay showed that the heterozygote GalT-KO pig had more sialylα2,6- and sialylα2,3-linked glycan than the control. Furthermore, the heart, liver, and kidney of the heterozygote GalT-KO pig had a higher N-glycolylneuraminic acid (Neu5Gc) content than the control, whereas the lung of the heterozygote GalT-KO pig had Neu5Gc content similar to the control. Collectively, the data strongly indicated that Neu5Gc is a more critical xenoantigen to overcoming the next acute immune rejection in pig to human xenotransplantation.
Collapse
Affiliation(s)
- Jong-Yi Park
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bang JI, Bae DW, Lee HS, Deb GK, Kim MO, Sohn SH, Han CH, Kong IK. Proteomic analysis of placentas from cloned cat embryos identifies a set of differentially expressed proteins related to oxidative damage, senescence and apoptosis. Proteomics 2011; 11:4454-67. [DOI: 10.1002/pmic.201000772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 12/16/2022]
|
22
|
Chae JI, Kim J, Lee SG, Jeon YJ, Kim DW, Soh Y, Seo KS, Lee HK, Choi NJ, Ryu J, Kang S, Cho SK, Lee DS, Chung HM, Koo ADB. Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy. Proteome Sci 2011; 9:41. [PMID: 21791079 PMCID: PMC3162492 DOI: 10.1186/1477-5956-9-41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/26/2011] [Indexed: 01/11/2023] Open
Abstract
Many important molecular events associated with implantation and development occur within the female reproductive tract, especially within the uterus endometrium, during pregnancy periods. The endometrium includes the mucosal lining of the uterus, which provides a suitable site for implantation and development of a fertilized egg and fetus. To date, the molecular cascades in the uterus endometrium during pregnancy periods in pigs have not been elucidated fully. In this study, we compared the functional regulated proteins in the endometrium during pregnancy periods with those in non-pregnant conditions and investigated changes in expression patterns during pregnancy (days 40, 70, and 93) using two-dimensional gel electrophoresis (2-DE) and western blotting. The functional regulated proteins were identified and discovered from differentially expressed proteins in the uterus endometrium during pregnancy. We discovered 820 protein spots in a proteomic analysis of uterus endometrium tissues with 2-DE gels. We identified 63 of the 98 proteins regulated differentially among non-pregnant and pregnant tissues (matched and unmatched spots). Interestingly, 10 of these 63 proteins are development-, cytoskeleton- and chaperon-related proteins such as transferrin, protein DJ-1, transgelin, galectin-1, septin 2, stathmin 1, cofilin 1, fascin 1, heat shock protein (HSP) 90β and HSP 27. The specific expression patterns of these proteins in the endometrium during pregnancy were confirmed by western blotting. Our results suggest that the expressions of these genes involved in endometrium function and endometrium development from early to late gestation are associated with the regulation of endometrium development for maintaining pregnancy.
Collapse
Affiliation(s)
- Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 project, Chonbuk National University, Jeonju (651-756), Korea
| | - Jumi Kim
- Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University, 605-21 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea
| | - Seong G Lee
- Department of Obstetrics and Gynecology, College of Medicine, Yeungnam University, Daegu 705-717, Korea
| | - Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 project, Chonbuk National University, Jeonju (651-756), Korea
| | - Dong-Wook Kim
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 project, Chonbuk National University, Jeonju (651-756), Korea
| | - Yunjo Soh
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 project, Chonbuk National University, Jeonju (651-756), Korea
| | - Kang S Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Hak K Lee
- Genomic Informatics Center, Hankyong National University, 67 Sukjong-dong, Ansung-city, Kyongi-do, 456-749, Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural & Life Science, Chonbuk National University, Jeonju, Korea
| | - Joohyun Ryu
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Sunghyun Kang
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seong-Keun Cho
- Depart. of Animal Science, College of National Resources and Life Science, Pusan National University, Miryang-si, Gyeongnam 627-706, Korea
| | - Dong-Seok Lee
- College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Hyung M Chung
- CHA Bio & Diostech Co., Ltd. 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea.,Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University, 605-21 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea
| | - And Deog-Bon Koo
- Department of Biotechnology, College of Engineering Daegu University, 15 Jillyang Gyeongsan, Gyeongbuk 712-714, Korea
| |
Collapse
|
23
|
Seo HW, Ka HH. Expression of Lysophosphatidic Acid Receptor 3 in the Uterine Endometrium of Pigs with Somatic Cell Nuclear Transfer Cloned Conceptuses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5187/jast.2011.53.3.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Kim JH, Park JY, Park MR, Hwang KC, Park KK, Park C, Cho SK, Lee HC, Song H, Park SB, Kim T, Kim JH. Developmental arrest of scNT-derived fetuses by disruption of the developing endometrial gland as a result of impaired trophoblast migration and invasiveness. Dev Dyn 2011; 240:627-39. [PMID: 21305651 DOI: 10.1002/dvdy.22568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2010] [Indexed: 11/10/2022] Open
Abstract
Somatic cell nuclear transfer (scNT)-derived pig placenta tissues of gestational day 30 displayed avascularization and hypovascularization. Most of the cytotrophoblast-like cells of the developing scNT-derived placenta villi were improperly localized or exhibited impaired migration to their targeting loci. Id-2, Met, MMP-9, and MCM-7 were barely detectable in the cytotrophoblast cells of the scNT-derived placenta villi. Active MMP-2 and MMP-9 expression was significantly down-regulated in the scNT-embryo transferred recipient uteri. scNT clones exhibited a hypermethylated pattern within the pig MMP-9 promoter region and the significance of GC box in the regulation of MMP-9 promoter activity. Marked apoptosis was observed in the developing endometrial gland of scNT-embryo transferred recipient uteri. Collectively, our data strongly indicated that early gestational death of scNT clones is caused, at least in part, by disruption of the developing endometrial gland as a result of impaired trophoblast migration and invasiveness due to the down-regulation of active MMP-9 expression.
Collapse
|
25
|
Park JY, Park MR, Hwang KC, Chung JS, Bui HT, Kim T, Cho SK, Kim JH, Hwang S, Park SB, Nguyen VT, Kim JH. Comparative Gene Expression Analysis of Somatic Cell Nuclear Transfer-Derived Cloned Pigs with Normal and Abnormal Umbilical Cords1. Biol Reprod 2011; 84:189-99. [DOI: 10.1095/biolreprod.110.085779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
26
|
Koch JM, Ramadoss J, Magness RR. Proteomic profile of uterine luminal fluid from early pregnant ewes. J Proteome Res 2010; 9:3878-85. [PMID: 20578732 DOI: 10.1021/pr100096b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Embryonic development is a time-sensitive period that requires a synchronized uterine environment, which is created by the secretion of proteins from both the embryo and uterus. Numerous studies have identified uterine luminal proteins and related these to specific adaptations during early pregnancy (EP). However, no study has yet utilized LC-MS/MS to identify the signature profile of proteins in the uterine lumen during EP. In this study, uterine luminal fluid from nonpregnant (NP; n = 3) and EP (n = 3; gestational day 16) ewes were analyzed by LC-MS/MS and validated by Western immunoblotting. We identified a unique signature profile for EP luminal fluid; 15 proteins related to specific aspects of embryonic development including growth and remodeling, immune system regulation, oxidative stress balance, and nutrition were significantly altered (up to 65-fold of NP) in EP profile. Specific uterine remodeling proteins such as transgelin (P = 0.008) and placental proteins like PP9 (P = 0.02) were present in EP luminal fluid but were barely detectable in the NP flushings. Direct correlations (R(2) = 0.84, P = 0.01) were observed between proteomics and immunoblotting. These data provide information on dynamic physiological processes associated with EP at the level of the uterus and conceptus and may potentially demonstrate a signature profile associated with embryonic well-being.
Collapse
Affiliation(s)
- Jill M Koch
- Department of Ob/Gyn Perinatal Research Laboratories, University of Wisconsin, Madison, Wisconsin 53715, USA
| | | | | |
Collapse
|
27
|
Whitworth KM, Spate LD, Li R, Rieke A, Sutovsky P, Green JA, Prather RS. Activation method does not alter abnormal placental gene expression and development in cloned pigs. Mol Reprod Dev 2010; 77:1016-30. [PMID: 20925087 DOI: 10.1002/mrd.21235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/23/2010] [Indexed: 12/15/2022]
Abstract
Nuclear transfer efficiency is low and is thought to be caused by inadequate placental development. The objective of this study was to identify differentially expressed transcripts in pig placentas derived from in vivo fertilization, in vitro fertilization or nuclear transfer at Day 30 of gestation. Three activation methods were compared: electrical fusion/activation, electrical fusion/activation followed by treatment with reversible proteasomal inhibitor, MG132 or electrical fusion followed by activation with Thimerosal/DTT. Extraembryonic membranes were collected 30 days after artificial insemination (IVV) or embryo transfer (IVF and NT). Extraembryonic membrane cDNAs labeled with Cy5 and a reference cDNA labeled with Cy3 were hybridized to a pig reproductive tissue-specific 19,968 spot cDNA microarray. Images acquired and assessed by using Genepix Pro 4.0 were analyzed by Genespring 7.3.1. ANOVA (P < 0.05) identified 227 differentially expressed transcripts between the five treatments and 0 between the three activation methods. The nuclear transfer groups were pooled and compared to in vivo samples, identifying 34 up- and 19 down-regulated transcripts (>2-fold change, P < 0.05). Ten transcripts were validated by real-time PCR. UPTI, PAG2, and GLUD1 protein was quantified by Western blot and densitometry verified that UPTI and PAG2 proteins had an expression pattern that mirrored mRNA abundance (P < 0.05). Localization patterns were also determined for UPTI, PAG2, GLUD2 and 14-3-3 gamma in Day 35 extraembryonic membranes. Observed differences in gene and protein expression in nuclear transfer extraembryonic membranes indicate that an impaired fetal-maternal interface, and not the activation method, may be causing defects observed in cloned pigs.
Collapse
Affiliation(s)
- Kristin M Whitworth
- Division of Animal Sciences Research Center, University of Missouri, E125 Animal Science Research Center, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sugimura S, Yokoo M, Yamanaka KI, Kawahara M, Moriyasu S, Wakai T, Nagai T, Abe H, Sato E. Anomalous Oxygen Consumption in Porcine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2010; 12:463-74. [DOI: 10.1089/cell.2009.0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Satoshi Sugimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaki Yokoo
- Laboratory of Animal Reproduction, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Ken-ichi Yamanaka
- National Agricultural Research Center for Kyushu Okinawa Region, Kumamoto, Japan
| | - Manabu Kawahara
- Laboratory of Animal Resource Development Faculty of Agriculture, Saga University, Saga, Japan
| | | | - Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Takashi Nagai
- National Institute of Livestock and Grassland Science, Tsukuba 305-0901, Japan
| | - Hiroyuki Abe
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Eimei Sato
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Al-Gubory KH, Garrel C, Delatouche L, Heyman Y, Chavatte-Palmer P. Antioxidant adaptive responses of extraembryonic tissues from cloned and non-cloned bovine conceptuses to oxidative stress during early pregnancy. Reproduction 2010; 140:175-81. [DOI: 10.1530/rep-10-0172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractPlacental oxidative stress has been suggested as a key factor in early pregnancy failure. Abnormal placental development limits success in pregnancies obtained by somatic cell nuclear transfer (SCNT). Malondialdehyde (MDA) content, an index of oxidative stress, and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined in bovine extraembryonic tissues of SCNT or artificial insemination (AI) conceptuses. Chorionic tissues of SCNT and AI conceptuses show no difference in MDA content at day 32 of pregnancy. MDA content in chorionic tissues of SCNT and AI conceptuses decreased from day 32 to 62 of pregnancy. MDA content was lower in chorionic tissues of SCNT conceptuses than that in chorionic tissues of AI conceptuses at day 62 of pregnancy. SOD1, SOD2 and GPX activities in chorionic tissues of SCNT conceptuses were not different from those in chorionic tissues of AI conceptuses at both gestational ages. CAT activity in chorionic tissues of SCNT conceptuses was lower at day 32, and it was higher at day 62 of pregnancy than that in chorionic tissues of AI conceptuses. CAT and GPX activities increased in chorionic tissues of SCNT conceptuses with gestational age. SOD1 activity decreased while that of SOD2 and GPX increased in chorionic tissues of AI conceptuses with gestational age. At day 62 of pregnancy, MDA content and enzyme activities in cotyledonary tissues were not different between AI and SCNT conceptuses. Different antioxidant mechanisms may operate within the chorion of AI and SCNT conceptuses. Further experiments are required to elucidate this point.
Collapse
|
30
|
Talbot NC, Powell AM, Caperna TJ, Garrett WM. Proteomic analysis of the major cellular proteins of bovine trophectoderm cell lines derived from IVP, parthenogenetic and nuclear transfer embryos: Reduced expression of annexins I and II in nuclear transfer-derived cell lines. Anim Reprod Sci 2010; 120:187-202. [PMID: 20400246 DOI: 10.1016/j.anireprosci.2010.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/11/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Trophectoderm cell lines were established from 8-day in vitro-cultured embryos of cattle derived from fertilization (IVF), somatic cell nuclear transfer (NT), or parthenogenetic activation (P) of in vitro-matured oocytes and from five 8-day-old in vivo (V) embryos. The most abundant cellular proteins of 5 V-, 16 NT-, 12 P-, and 16 IVF-derived cell lines were compared by 2D-gel electrophoresis and mass spectrometry; that is, the unaltered thiourea/urea extract of each cell culture was analyzed. Common protein spots (n=118) were examined, and 95% were identified with significant scores from protein and gene database searches. Of the proteins detected and identified, actin and cytokeratin-8 were found to be the most abundant. Other prominent cellular proteins were metabolic enzymes such as aldose reductase, phosphoglycerate mutase, enolase, triosephosphate isomerase, cytoskeletal interacting proteins transgelin and stratifin, anti-oxidant proteins peroxiredoxin 1 and anti-oxidant protein 2, and the calcium-dependent lipid-binding proteins annexins I and II. In comparative analysis of the 2D-gels, the NT-derived trophectoderm had less annexins I and II in comparison to the IVF- and P-derived trophectoderm. Because annexins I and II are abundant in the placenta and have functions important to the maintenance of placentation, the down-regulation of the annexin genes in the cultured NT trophectoderm may be related to the frequent failures of NT pregnancies.
Collapse
Affiliation(s)
- Neil C Talbot
- U.S. Department of Agriculture, Agricultural Research Service USDA, ARS, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, United States.
| | | | | | | |
Collapse
|
31
|
Postactivation treatment with nocodazole maintains normal nuclear ploidy of cloned pig embryos by increasing nuclear retention and formation of single pronucleus. Theriogenology 2010; 73:429-36. [DOI: 10.1016/j.theriogenology.2009.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 08/04/2009] [Accepted: 09/30/2009] [Indexed: 11/22/2022]
|
32
|
Park JY, Kim JH, Choi YJ, Hwang KC, Cho SK, Park HH, Paik SS, Kim T, Park C, Lee HT, Seo HG, Park SB, Hwang S, Kim JH. Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death. BMC Genomics 2009; 10:511. [PMID: 19889237 PMCID: PMC2783166 DOI: 10.1186/1471-2164-10-511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/05/2009] [Indexed: 02/02/2023] Open
Abstract
Background Somatic cell nuclear transfer (scNT)-derived piglets have high rates of mortality, including stillbirth and postnatal death. Here, we examined severe malformed umbilical cords (MUC), as well as other organs, from nine scNT-derived term piglets. Results Microscopic analysis revealed complete occlusive thrombi and the absence of columnar epithelial layers in MUC (scNT-MUC) derived from scNT piglets. scNT-MUC had significantly lower expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and angiogenesis-related genes than umbilical cords of normal scNT piglets (scNT-N) that survived into adulthood. Endothelial cells derived from scNT-MUC migrated and formed tubules more slowly than endothelial cells from control umbilical cords or scNT-N. Proteomic analysis of scNT-MUC revealed significant down-regulation of proteins involved in the prevention of oxidative stress and the regulation of glycolysis and cell motility, while molecules involved in apoptosis were significantly up-regulated. Histomorphometric analysis revealed severe calcification in the kidneys and placenta, peliosis in the liver sinusoidal space, abnormal stromal cell proliferation in the lungs, and tubular degeneration in the kidneys in scNT piglets with MUC. Increased levels of apoptosis were also detected in organs derived from all scNT piglets with MUC. Conclusion These results suggest that MUC contribute to fetal malformations, preterm birth and low birth weight due to underlying molecular defects that result in hypoplastic umbilical arteries and/or placental insufficiency. The results of the current study demonstrate the effects of MUC on fetal growth and organ development in scNT-derived pigs, and provide important insight into the molecular mechanisms underlying angiogenesis during umbilical cord development.
Collapse
Affiliation(s)
- Jong-Yi Park
- Animal Resource Research Center, College of Animal Bioscience and Technology, KonKuk University, Seoul, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Degrelle SA, Blomberg LA, Garrett WM, Li RW, Talbot NC. Comparative proteomic and regulatory network analyses of the elongating pig conceptus. Proteomics 2009; 9:2678-94. [PMID: 19391182 DOI: 10.1002/pmic.200800776] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Embryo loss during peri-implantation can approach 20% in swine following artificial insemination or natural mating and coincides with rapid conceptus elongation. The objective of the present study was to establish a comprehensive profile of the abundant proteins of the pig conceptus at the time prior to implantation and identify stage-specific changes during elongation. The abundant proteins of a homogenous population of gestational day-11 ovoid (0.7-1 cm) and gestational day-12 filamentous (15-20 cm) porcine concepti were compared by extracting proteins from three independent conceptus pools and separating the proteins by 2-DE. Proteins in 305 spots were analyzed by MALDI-TOF or additionally by LC-MS/MS and 275 were positively identified representing 174 distinct proteins. The proteins could be classified into the following functional categories: cell proliferation/differentiation, cytoskeleton, metabolism, and stress response. Based on spot density, 35 proteins associated with cell proliferation, differentiation, apoptosis, and embryo/maternal signaling, were found to be differentially expressed between ovoid and filamentous concepti. A comparison of the protein expression profile with transcriptomic data from pig concepti of the same developmental stages identified similarities and dissimilarities between protein and mRNA expression profiles. This proteomic study helps to elucidate the biological mechanisms underlying the early embryonic development of the pig.
Collapse
Affiliation(s)
- Séverine A Degrelle
- USDA Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, USA
| | | | | | | | | |
Collapse
|
34
|
Gupta MK, Jang JM, Jung JW, Uhm SJ, Kim KP, Lee HT. Proteomic analysis of parthenogenetic and in vitro fertilized porcine embryos. Proteomics 2009; 9:2846-60. [PMID: 19405025 DOI: 10.1002/pmic.200800700] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic data from embryos are essential for the completion of whole proteome catalog due to embryo-specific expression of certain proteins. In this study, using reverse phase LC-MS/MS combined with 1-D SDS-PAGE, we identified 1625 mammalian and 735 Sus scrofa proteins from porcine zygotes that included both cytosolic and membranous proteins. We also found that the global protein profiles of parthenogenetically activated (PA) and in vitro fertilized (IVF) zygotes were similar but differences in expression of individual proteins were also evident. These differences were not due to culture conditions, polyspermy or non-activation of oocytes, as the same culture method was used in both groups, the frequency of polyspermy was 24.3+/-3.0% and the rates of oocyte activation did not differ (p>0.05) between PA and IVF embryos. Consistent with proteomic data, fluorescent Hoechst 33 342 staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay also revealed that PA embryos were of poor quality as they contained less cells per blastocyst and were more predisposed to apoptosis (p<0.05), although their in vitro development rates were similar. To our knowledge, this is the first report on global peptide sequencing and quantification of protein in PA and IVF embryos by LC-MS/MS that may be useful as a reference map for future studies.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
35
|
Kim M, Seo H, Choi Y, Hwang W, Lee CK, Ka H. Aberrant expression of retinol-binding protein, osteopontin and fibroblast growth factor 7 in the porcine uterine endometrium of pregnant recipients carrying embryos produced by somatic cell nuclear transfer. Anim Reprod Sci 2009; 112:172-81. [DOI: 10.1016/j.anireprosci.2008.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 04/11/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
36
|
Uhm SJ, Gupta MK, Das ZC, Kim JH, Park C, Kim T, Lee HT. Effect of Transgene Introduction and Recloning on Efficiency of Porcine Transgenic Cloned Embryo ProductionIn Vitro. Reprod Domest Anim 2009; 44:106-15. [DOI: 10.1111/j.1439-0531.2007.01005.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Chae J, Lee K, Kim D, Han Y, Lee D, Lee K, Koo D. Abnormal gene expression in extraembryonic tissue from cloned porcine embryos. Theriogenology 2009; 71:323-33. [DOI: 10.1016/j.theriogenology.2008.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 06/25/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
|
38
|
CHO SK, HWANG KC, CHOI YJ, BUI HT, NGUYEN VT, PARK C, KIM JH, KIM JH. Production of Transgenic Pigs Harboring the Human Erythropoietin (hEPO) Gene Using Somatic Cell Nuclear Transfer. J Reprod Dev 2009; 55:128-36. [DOI: 10.1262/jrd.20102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Seong-Keun CHO
- CHO-A Biotechnology Research Institute, CHO-A Pharmaceutical Co., Ltd
| | - Kyu-Chan HWANG
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University
| | - Yun-Jung CHOI
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University
| | - Hong-Thuy BUI
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University
| | - Van Thuan NGUYEN
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University
| | - ChangKyu PARK
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University
| | - Jae-Hwan KIM
- CHA Stem Cell Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University
| | - Jin-Hoi KIM
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University
| |
Collapse
|
39
|
Ka H, Seo H, Kim M, Moon S, Kim H, Lee CK. Gene expression profiling of the uterus with embryos cloned by somatic cell nuclear transfer on day 30 of pregnancy. Anim Reprod Sci 2008; 108:79-91. [PMID: 17768018 DOI: 10.1016/j.anireprosci.2007.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 07/03/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
Cloning by somatic cell nuclear transfer (SCNT) in pigs has great value for research and biomedical applications. However, cloning pigs is inefficient, and cloning procedures often lead to the birth of abnormal offspring because of the inadequate nuclear remodeling of donor cells as well as inadequate subsequent development. To understand the problems of the cloning process, it is necessary to understand how the uterus interacts with cloned embryo during pregnancy and supports placentation and fetal development. In this study, we compared gene expression profiles of the uterus with SCNT embryos to those of the uterus with normal embryos by natural mating. We obtained the uterine endometrial tissues on day 30 of pregnancy and conducted gene expression profiling using the Platinum Pig 13K oligonucleotide microarrays. Of the 13,610 genes analyzed, expression of 351 genes significantly increased or decreased in the uterine tissues with SCNT embryos compared to those with normal embryos. The differentially regulated genes included enzymes involved in steroidogenesis and extracellular matrix remodeling and uterine secretory proteins. Analyses of real-time reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization of selected genes confirmed the validity of the gene expression patterns observed in the microarray analysis. Results of this study showed that the transcriptional profile of the genes in the uterus with SCNT embryos was regulated differently indicating that the maternal responsiveness to the SCNT embryos was impaired, resulting in the altered gene expression in the uterus and, in turn, abnormal placental and fetal development and increased embryonic loss.
Collapse
Affiliation(s)
- Hakhyun Ka
- Department of Biological Resources and Technology, Yonsei University, Wonju 220-710, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
40
|
Chae J, Yu K, Cho S, Kim J, Koo D, Lee K, Han Y. Aberrant expression of developmentally important signaling molecules in cloned porcine extraembryonic tissues. Proteomics 2008; 8:2724-34. [DOI: 10.1002/pmic.200701134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Cho SK, Kim JH, Park JY, Choi YJ, Bang JI, Hwang KC, Cho EJ, Sohn SH, Uhm SJ, Koo DB, Lee KK, Kim T, Kim JH. Serial cloning of pigs by somatic cell nuclear transfer: restoration of phenotypic normality during serial cloning. Dev Dyn 2008; 236:3369-82. [PMID: 17849457 DOI: 10.1002/dvdy.21308] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Somatic cell nuclear transfer (scNT) is a useful way to create cloned animals. However, scNT clones exhibit high levels of phenotypic instability. This instability may be due to epigenetic reprogramming and/or genomic damage in the donor cells. To test this, we produced transgenic pig fibroblasts harboring the truncated human thrombopoietin (hTPO) gene and used them as donor cells in scNT to produce first-generation (G1) cloned piglets. In this study, 2,818 scNT embryos were transferred to 11 recipients and five G1 piglets were obtained. Among them, a clone had a dimorphic facial appearance with severe hypertelorism and a broad prominent nasal bridge. The other clones looked normal. Second-generation (G2) scNT piglets were then produced using ear cells from a G1 piglet that had an abnormal nose phenotype. We reasoned that, if the phenotypic abnormality of the G1 clone was not present in the G2 and third-generation (G3) clones, or was absent in the G2 clones but reappeared in the G3 clones, the phenotypic instability of the G1 clone could be attributed to faulty epigenetic reprogramming rather than to inherent/accidental genomic damage to the donor cells. Blastocyst rates, cell numbers in blastocyst, pregnancy rates, term placenta weight and ponderal index, and birth weight between G1 and G2 clones did not differ, but were significantly (P < 0.05) lower than control age- and sex-matched piglets. Next, we analyzed global methylation changes during development of the preimplantation embryos reconstructed by donor cells used for the production of G1 and G2 clones and could not find any significant differences in the methylation patterns between G1 and G2 clones. Indeed, we failed to detect the phenotypic abnormality in the G2 and G3 clones. Thus, the phenotypic abnormality of the G1 clone is likely to be due to epigenetic dysregulation. Additional observations then suggested that expression of the hTPO gene in the transgenic clones did not appear to be the cause of the phenotypic abnormality in the G1 clones and that the abnormality was acquired by only a few of the G1 clone's cells during its gestational development.
Collapse
Affiliation(s)
- Seong-Keun Cho
- Division of Applied Life Science, College of Agriculture and Life Science, Gyeongsang National University, Jinju, GyeongNam, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee SY, Park JY, Choi YJ, Cho SK, Ahn JD, Kwon DN, Hwang KC, Kang SJ, Paik SS, Seo HG, Lee HT, Kim JH. Comparative proteomic analysis associated with term placental insufficiency in cloned pig. Proteomics 2007; 7:1303-15. [PMID: 17380531 DOI: 10.1002/pmic.200601045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Somatic cell-derived nuclear transfer (scNT) is a method of animal cloning in which the oocyte reprograms a somatic cell nucleus to divide and execute developmental programs. Despite many successes in this field, cloning by scNT remains very inefficient. Unlike other cloned animals, pigs derived by scNT have placentas with severe villous hypoplasia. To obtain a better understanding of the protein networks involved in this phenomenon, we assessed global protein expression profiles in term placentas from scNT-derived and control animals. Proteomic analysis of term placentas from scNT-derived animals identified 43 proteins that were differentially expressed compared to control animals. Among them, 14-3-3 proteins and Annexin V, which are closely involved in the apoptotic signaling pathway, were significantly down- and up-regulated, respectively. Western blot analysis and immunohistochemistry indicated that down-regulation of 14-3-3 proteins in scNT-derived placentas induced apoptosis of cytotrophoblast cells via mitochondria-mediated apoptosis. Taken together, our results suggest that placental insufficiency in scNT-derived placentas may be due to apoptosis, induced in part by the down-regulation of 14-3-3 proteins and up-regulation of Annexin V. They also indicate that proteomic maps represent an important tool for future studies of placental insufficiency and pathology.
Collapse
Affiliation(s)
- So-Young Lee
- CHO-A Biotechnology Research Institute, CHO-A Pharmaceutical Company, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|