1
|
Li H, Li L, Qiu X, Zhang J, Hua Z. The interaction of CFLAR with p130Cas promotes cell migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119390. [PMID: 36400248 DOI: 10.1016/j.bbamcr.2022.119390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
CASP8 and FADD Like Apoptosis Regulator (CFLAR) is a key anti-apoptotic regulator for resistance to apoptosis mediated by Fas and TRAIL. In addition to its anti-apoptotic function, CFLAR is also an important mediator of tumor growth. High level of CFLAR expression correlates with a more aggressive tumor. However, the mechanism of CFLAR signaling in malignant progression is not clear. Here we report a novel CFLAR-associated protein p130Cas, which is a general regulator of cell growth and cell migration. CFLAR-p130Cas association is mediated by the DED domain of CFLAR and the SD domain of p130Cas. Immunofluorescence observation showed that CFLAR had the colocalization with p130Cas at the focal adhesion of cell membrane. CFLAR overexpression promoted p130Cas phosphorylation and the formation of focal adhesion complex. Moreover, the enhancement of cell migration induced by CFLAR overexpression was obviously inhibited by p130Cas siRNA. In silico analysis on human database suggests high expressions of CFLAR or/and p130Cas are associated with poor prognosis of patients with lung cancer. Together, our results suggest a new mechanism for CFLAR involved in tumor development via association with p130Cas.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Luqi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xun Qiu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; School of Biopharmacy, China Pharmaceutical University, Nanjing, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China.
| |
Collapse
|
2
|
Muñoz VR, Gaspar RC, Severino MB, Macêdo APA, Simabuco FM, Ropelle ER, Cintra DE, da Silva ASR, Kim YB, Pauli JR. Exercise Counterbalances Rho/ROCK2 Signaling Impairment in the Skeletal Muscle and Ameliorates Insulin Sensitivity in Obese Mice. Front Immunol 2021; 12:702025. [PMID: 34234788 PMCID: PMC8256841 DOI: 10.3389/fimmu.2021.702025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Physical exercise is considered a fundamental strategy in improving insulin sensitivity and glucose uptake in skeletal muscle. However, the molecular mechanisms underlying this regulation, primarily on skeletal muscle glucose uptake, are not fully understood. Recent evidence has shown that Rho-kinase (ROCK) isoforms play a pivotal role in regulating skeletal muscle glucose uptake and systemic glucose homeostasis. The current study evaluated the effect of physical exercise on ROCK2 signaling in skeletal muscle of insulin-resistant obese animals. Physiological (ITT) and molecular analysis (immunoblotting, and RT-qPCR) were performed. The contents of RhoA and ROCK2 protein were decreased in skeletal muscle of obese mice compared to control mice but were restored to normal levels in response to physical exercise. The exercised animals also showed higher phosphorylation of insulin receptor substrate 1 (IRS1 Serine 632/635) and protein kinase B (Akt) in the skeletal muscle. However, phosphatase and tensin homolog (PTEN) and protein-tyrosine phosphatase-1B (PTP-1B), both inhibitory regulators for insulin action, were increased in obesity but decreased after exercise. The impact of ROCK2 action on muscle insulin signaling is further underscored by the fact that impaired IRS1 and Akt phosphorylation caused by palmitate in C2C12 myotubes was entirely restored by ROCK2 overexpression. These results suggest that the exercise-induced upregulation of RhoA-ROCK2 signaling in skeletal muscle is associated with increased systemic insulin sensitivity in obese mice and further implicate that muscle ROCK2 could be a potential target for treating obesity-linked metabolic disorders.
Collapse
Affiliation(s)
- Vitor R Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| | - Rafael C Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| | - Matheus B Severino
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, Brazil
| | - Ana P A Macêdo
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando M Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
3
|
An Increase in Liver Polyamine Concentration Contributes to the Tryptophan-Induced Acute Stimulation of Rat Hepatic Protein Synthesis. Nutrients 2020; 12:nu12092665. [PMID: 32882842 PMCID: PMC7551729 DOI: 10.3390/nu12092665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
Tryptophan has a unique role as a nutritional signaling molecule that regulates protein synthesis in mouse and rat liver. However, the mechanism underlying the stimulating actions of tryptophan on hepatic protein synthesis remains unclear. Proteomic and metabolomic analyses were performed to identify candidate proteins and metabolites likely to play a role in the stimulation of protein synthesis by tryptophan. Overnight-fasted rats were orally administered L-tryptophan and then sacrificed 1 or 3 h after administration. Four differentially expressed protein spots were detected in rat liver at 3 h after tryptophan administration, of which one was identified as an ornithine aminotransferase (OAT) precursor. OAT is the main catabolic enzyme for ornithine, and its expression was significantly decreased by tryptophan administration. The concentration of ornithine was increased in the liver at 3 h after tryptophan administration. Ornithine is a precursor for polyamine biosynthesis. Significantly increased concentrations of polyamines were found in the liver at 3 h after administration of tryptophan. Additionally, enhanced hepatic protein synthesis was demonstrated by oral administration of putrescine. We speculate that the increase in ornithine level through suppression of OAT expression by tryptophan administration may lead to accelerated polyamine synthesis, thereby promoting protein synthesis in the liver.
Collapse
|
4
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
5
|
Muñoz VR, Gaspar RC, Kuga GK, da Rocha AL, Crisol BM, Botezelli JD, Baptista IL, Mekary RA, da Silva ASR, Cintra DE, de Moura LP, Ropelle ER, Pauli JR. Exercise increases Rho-kinase activity and insulin signaling in skeletal muscle. J Cell Physiol 2018; 233:4791-4800. [PMID: 29219181 DOI: 10.1002/jcp.26278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Vitor R. Muñoz
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Rafael C. Gaspar
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Gabriel K. Kuga
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance,; Ribeirão Preto Medical School, USP; Ribeirão Preto São Paulo Brazil
- School of Physical Education and Sport of Ribeirão Preto; University of São Paulo (USP); Ribeirão Preto São Paulo Brazil
| | - Barbara M. Crisol
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - José D. Botezelli
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Igor L. Baptista
- Laboratory of Cell and Tissue Biology; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Rania A. Mekary
- Department of Nutrition; Harvard T. Chan School of Public Health; Boston Massachusetts
- Department of Pharmaceutical Business and Administrative Sciences; MCPHS University; Boston Massachusetts
| | - Adelino S. R. da Silva
- Laboratory of Cell and Tissue Biology; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Dennys E. Cintra
- Laboratory of Nutritional Genomics; University of Campinas (UNICAMP); Limeira São Paulo Brazil
- OCRC - Obesity and Comorbidities Research Center; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
- OCRC - Obesity and Comorbidities Research Center; University of Campinas (UNICAMP); Campinas São Paulo Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
- OCRC - Obesity and Comorbidities Research Center; University of Campinas (UNICAMP); Campinas São Paulo Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
- OCRC - Obesity and Comorbidities Research Center; University of Campinas (UNICAMP); Campinas São Paulo Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| |
Collapse
|
6
|
Kusumah D, Kabuyama Y, Maeda I. Promotion of Fungal Growth, Antibacterial and Antioxidative Activities in Tempe Produced with Soybeans Thermally Treated Using Steam Pressure. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Dewi Kusumah
- Department of Applied Life Science, United Graduate School Agriculture, Tokyo University of Agriculture and Technology
| | - Yukihito Kabuyama
- Department of Applied Life Science, United Graduate School Agriculture, Tokyo University of Agriculture and Technology
- Faculty of Agricultural Science, Utsunomiya University
| | - Isamu Maeda
- Department of Applied Life Science, United Graduate School Agriculture, Tokyo University of Agriculture and Technology
- Faculty of Agricultural Science, Utsunomiya University
| |
Collapse
|
7
|
Lee SH, Huang H, Choi K, Lee DH, Shi J, Liu T, Chun KH, Seo JA, Lima IS, Zabolotny JM, Wei L, Kim YB. ROCK1 isoform-specific deletion reveals a role for diet-induced insulin resistance. Am J Physiol Endocrinol Metab 2014; 306:E332-43. [PMID: 24326423 PMCID: PMC3920011 DOI: 10.1152/ajpendo.00619.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rho kinase (ROCK) isoforms regulate insulin signaling and glucose metabolism negatively or positively in cultured cell lines and skeletal muscle. However, the in vivo function of the ROCK1 isoform in adipose tissue has not been addressed. To determine the specific role of the adipose ROCK1 isoform in the development of insulin resistance and obesity, mice lacking ROCK1 in adipose tissue globally or selectively were studied. Here, we show that insulin's ability to activate IRS-1/PI3K/Akt signaling was greatly enhanced in adipose tissue of ROCK1(-/-) mice compared with wild-type mice. These effects resulted from the inhibitory effect of ROCK1 on insulin receptor action, as evidenced by the fact that IR tyrosine phosphorylation was abolished in ROCK1(-/-) MEF cells when ROCK1 was reexpressed. Consistently, adipose-specific disruption of ROCK1 increased IR tyrosine phosphorylation in adipose tissue and modestly improved sensitivity to insulin in obese mice induced by high-fat feeding. This effect is independent of any changes in adiposity, number or size of adipocytes, and metabolic parameters, including glucose, insulin, leptin, and triglyceride levels, demonstrating a minimal effect of adipose ROCK1 on whole body metabolism. Enzymatic activity of ROCK1 in adipose tissue remained ∼50%, which likely originated from the fraction of stromal vascular cells, suggesting involvement of these cells for adipose metabolic regulation. Moreover, ROCK isoform activities were increased in adipose tissue of diet-induced or genetically obese mice. These data suggest that adipose ROCK1 isoform plays an inhibtory role for the regulation of insulin sensitivity in diet-induced obesity in vivo.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Evaluation of protein tyrosine phosphatase activity in patients with acute leukemia. Contemp Oncol (Pozn) 2013; 17:83-7. [PMID: 23788968 PMCID: PMC3685355 DOI: 10.5114/wo.2013.33780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/21/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022] Open
Abstract
Protein tyrosine phosphatases regulate physiological processes including growth, differentiation, metabolism and the cell cycle. Together with tyrosine kinases, they control the phosphorylation state of tyrosine residues of signaling proteins. An increased level of protein phosphorylation results in abnormal proliferation and many cancer types show a mutation or deletion of a protein tyrosine phosphatase gene. In this study we evaluated the protein tyrosine phosphatase activity in acute leukemia patients. Tyrosine phosphatase activity in bone marrow mononuclear cells of acute leukemia patients was measured using a tyrosine phosphatase assay system kit and compared with a control group. We found that tyrosine phosphatase activity in acute leukemia patients was high compared to the controls. According to subgroups of acute leukemia, tyrosine phosphatase activity in the AML-M2 subgroup was high compared to the controls. The effect of increased level of protein tyrosine phosphatase activity on leukemogenesis needs further evaluation. Studies in a large group of patients are needed to emphasize the importance of tyrosine phosphatase activity in acute leukemia patients.
Collapse
|
9
|
Chacon PJ, Garcia-Mejias R, Rodriguez-Tebar A. Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hippocampal neurons against amyloid β toxicity. Mol Neurodegener 2011; 6:14. [PMID: 21294893 PMCID: PMC3038970 DOI: 10.1186/1750-1326-6-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background Amyloid beta (Aβ) is the main agent responsible for the advent and progression of Alzheimer's disease. This peptide can at least partially antagonize nerve growth factor (NGF) signalling in neurons, which may be responsible for some of the effects produced by Aβ. Accordingly, better understanding the NGF signalling pathway may provide clues as to how to protect neurons from the toxic effects of Aβ. Results We show here that Aβ activates the RhoA GTPase by binding to p75NTR, thereby preventing the NGF-induced activation of protein tyrosine phosphatase 1B (PTP1B) that is required for neuron survival. We also show that the inactivation of RhoA GTPase and the activation of PTP1B protect cultured hippocampal neurons against the noxious effects of Aβ. Indeed, either pharmacological inhibition of RhoA with C3 ADP ribosyl transferase or the transfection of cultured neurons with a dominant negative form of RhoA protects cultured hippocampal neurons from the effects of Aβ. In addition, over-expression of PTP1B also prevents the deleterious effects of Aβ on cultured hippocampal neurons. Conclusion Our findings indicate that potentiating the activity of NGF at the level of RhoA inactivation and PTP1B activation may represent a new means to combat the noxious effects of Aβ in Alzheimer's disease.
Collapse
Affiliation(s)
- Pedro J Chacon
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Americo Vespucio s/n, Isla de la Cartuja, 41092 Seville, Spain.
| | | | | |
Collapse
|
10
|
Kuzelová K, Pluskalová M, Brodská B, Otevrelová P, Elknerová K, Grebenová D, Hrkal Z. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin. J Cell Biochem 2010; 109:184-95. [PMID: 19911379 DOI: 10.1002/jcb.22397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate).
Collapse
Affiliation(s)
- Katerina Kuzelová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kabuyama Y, Litman ES, Templeton PD, Metzner SI, Witze ES, Argast GM, Langer SJ, Polvinen K, Shellman Y, Chan D, Shabb JB, Fitzpatrick JE, Resing KA, Sousa MC, Ahn NG. A mediator of Rho-dependent invasion moonlights as a methionine salvage enzyme. Mol Cell Proteomics 2009; 8:2308-20. [PMID: 19620624 PMCID: PMC2758758 DOI: 10.1074/mcp.m900178-mcp200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RhoA controls changes in cell morphology and invasion associated with cancer phenotypes. Cell lines derived from melanoma tumors at varying stages revealed that RhoA is selectively activated in cells of metastatic origin. We describe a functional proteomics strategy to identify proteins regulated by RhoA and report a previously uncharacterized human protein, named “mediator of RhoA-dependent invasion (MRDI),” that is induced in metastatic cells by constitutive RhoA activation and promotes cell invasion. In human melanomas, MRDI localization correlated with stage, showing nuclear localization in nevi and early stage tumors and cytoplasmic localization with plasma membrane accentuation in late stage tumors. Consistent with its role in promoting cell invasion, MRDI localized to cell protrusions and leading edge membranes in cultured cells and was required for cell motility, tyrosine phosphorylation of focal adhesion kinase, and modulation of actin stress fibers. Unexpectedly MRDI had enzymatic function as an isomerase that converts the S-adenosylmethionine catabolite 5-methylribose 1-phosphate into 5-methylribulose 1-phosphate. The enzymatic function of MRDI was required for methionine salvage from S-adenosylmethionine but distinct from its function in cell invasion. Thus, mechanisms used by signal transduction pathways to control cell movement have evolved from proteins with ancient function in amino acid metabolism.
Collapse
Affiliation(s)
- Yukihito Kabuyama
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rodriguez-Zas SL, Schellander K, Lewin HA. Biological interpretations of transcriptomic profiles in mammalian oocytes and embryos. Reproduction 2008; 135:129-39. [PMID: 18239044 DOI: 10.1530/rep-07-0426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characterization of gene-expression profiles in oocytes and embryos is critical to understand the influence of genetic and environmental factors on preimplantation and fetal development. Numerous gene-expression microarray studies using different platforms and species are offering insights into the biological processes extensively represented among the genes exhibiting differential expression. Major advances on understanding the direct relationship between gene expression and developmental competence are being reported. Integration of information across studies using meta-analysis techniques can increase the precision and accuracy to identify expression profiles associated with embryo development. Gene network and pathway analyses are offering insights into gene interactions and expression profiles of embryos. All these advances are cementing the way toward a comparative and systems approach to understanding the complex processes underlying vertebrate development.
Collapse
Affiliation(s)
- S L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
13
|
Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H. Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 2008; 7:1763-77. [PMID: 18515860 DOI: 10.1074/mcp.m800196-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.
Collapse
Affiliation(s)
- Philipp Mertins
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|