1
|
Liu Q, Wang D, Cui M, Li M, Zhang XE. A genetically encoded fluorescent protein sensor for mitochondrial membrane damage detection. Biochem Biophys Res Commun 2024; 709:149836. [PMID: 38564937 DOI: 10.1016/j.bbrc.2024.149836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage. The sensor consists of two molecular modules. Module I is a fusion structure of the mitochondrial localization sequence (MLS), AIF cleavage site sequence (CSS), nuclear localization sequence (NLS), N-terminus of mNeonGreen and mCherry. Module II is a fusion structure of the C-terminus of mNeonGreen, NLS sequence, and mtagBFP2. Under normal condition, Module I is constrained in the inner mitochondrial membrane anchored by MLS, while Module II is restricted to the nucleus by its NLS fusion component. If the mitochondrial membrane is damaged, CSS is cut from the inner membrane, causing Module I to shift into the nucleus guided by the NLS fusion component. After Module I enters the nucleus, the N- and C-terminus of mNeonGreen meet each other and rebuild its intact 3D structure through fragment complementation and thus generates green fluorescence in the nucleus. Dynamic migration of red fluorescence from mitochondria to the nucleus and generation of green fluorescence in the nucleus indicate mitochondrial membrane damage. Using the MMD-Sensor, mitochondrial membrane damage induced by various reagents, such as uncoupling agents, ATP synthase inhibitors, monovalent cationic carriers, and ROS, in HeLa and 293T cells are directly observed and evaluated.
Collapse
Affiliation(s)
- Qian Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengmeng Cui
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Unten Y, Murai M, Koshitaka T, Kitao K, Shirai O, Masuya T, Miyoshi H. Comprehensive understanding of multiple actions of anticancer drug tamoxifen in isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148520. [PMID: 34896079 DOI: 10.1016/j.bbabio.2021.148520] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Tamoxifen has been widely used in the treatment of estrogen receptor (ER)-positive breast cancer, whereas it also exhibits ER-independent anticancer effects in various cancer cell types. As one of the convincing mechanisms underlying the ER-independent effects, induction of apoptosis through mitochondrial dysfunction has been advocated. However, the mechanism of action of tamoxifen even at the isolated mitochondrial level is not fully understood and remains controversial. Here, we attempted to comprehensively understand tamoxifen's multiple actions in isolated rat liver mitochondria through not only revisiting the actions hitherto reported but also conducting originally designed experiments. Using submitochondrial particles, we found that tamoxifen has potential as an inhibitor of both respiratory complex I and ATP synthase. However, these inhibitory effects were not elicited in intact mitochondria, likely because penetration of tamoxifen across the inner mitochondrial membrane is highly restricted owing to its localized positive charge (-N+H(CH3)2). This restricted penetration may also explain why tamoxifen is unable to function as a protonophore-type uncoupler in mitochondria. Moreover, tamoxifen suppressed opening of the mitochondrial permeability transition pore induced by Ca2+ overload through enhancing phosphate uptake into the matrix. The photoaffinity labeling experiments using a photolabile tamoxifen derivative (pTAM1) indicated that pTAM1 specifically binds to voltage-dependent anion channels (VDACs) 1 and 3, which regulate transport of various substances into mitochondria. The binding of tamoxifen to VDAC1 and/or VDAC3 could be responsible for the enhancement of phosphate uptake. Taking all the results together, we consider the principal impairment of mitochondrial functions caused by tamoxifen.
Collapse
Affiliation(s)
- Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoki Koshitaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kotaro Kitao
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
3
|
Watanabe A, Maeda K, Nara A, Hashida M, Ozono M, Nakao A, Yamada A, Shinohara Y, Yamamoto T. Quantitative analysis of mitochondrial calcium uniporter (MCU) and essential MCU regulator (EMRE) in mitochondria from mouse tissues and HeLa cells. FEBS Open Bio 2022; 12:811-826. [PMID: 35060355 PMCID: PMC8972046 DOI: 10.1002/2211-5463.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/27/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial calcium homeostasis plays critical roles in cell survival and aerobic metabolism in eukaryotes. The calcium uniporter is a highly selective calcium ion channel consisting of several subunits. Mitochondrial calcium uniporter (MCU) and essential MCU regulator (EMRE) are core subunits of the calcium uniporter required for calcium uptake activity in the mitochondria. Recent 3D structure analysis of the MCU‐EMRE complex reconstituted in nanodiscs revealed that the human MCU exists as a tetramer forming a channel pore, with EMRE bound to each MCU at a 1 : 1 ratio. However, the stoichiometry of MCU and EMRE in the mitochondria has not yet been investigated. We here quantitatively examined the protein levels of MCU and EMRE in the mitochondria from mouse tissues by using characterized antibodies and standard proteins. Unexpectedly, the number of EMRE molecules was lower than that of MCU; moreover, the ratios between MCU and EMRE were significantly different among tissues. Statistical calculations based on our findings suggest that a MCU tetramer binding to 4 EMREs may exist, but at low levels in the mitochondrial inner membrane. In brain mitochondria, the majority of MCU tetramers bind to 2 EMREs; in mitochondria in liver, kidney, and heart, MCU tetramers bind to 1 EMRE; and in kidney and heart, almost half of MCU tetramers bound to no EMRE. We propose here a novel stoichiometric model of the MCU‐EMRE complex in mitochondria.
Collapse
Affiliation(s)
- Akira Watanabe
- Division of Molecular Target and Gene Therapy Products National Institute of Health Sciences 3‐25‐26, Tonomachi, Kawasaki‐ku, Kawasaki‐shi Kanagawa 210‐9501 Japan
- Institute for Genome Research Tokushima University Kuramotocho‐3 Tokushima 770‐8503 Japan
- Faculty of Pharmaceutical Sciences Tokushima University Shomachi‐1 Tokushima 770‐8505 Japan
| | - Kousuke Maeda
- Institute for Genome Research Tokushima University Kuramotocho‐3 Tokushima 770‐8503 Japan
- Faculty of Pharmaceutical Sciences Tokushima University Shomachi‐1 Tokushima 770‐8505 Japan
| | - Atsushi Nara
- Institute for Genome Research Tokushima University Kuramotocho‐3 Tokushima 770‐8503 Japan
- Faculty of Pharmaceutical Sciences Tokushima University Shomachi‐1 Tokushima 770‐8505 Japan
| | - Mei Hashida
- Institute for Genome Research Tokushima University Kuramotocho‐3 Tokushima 770‐8503 Japan
- Faculty of Pharmaceutical Sciences Tokushima University Shomachi‐1 Tokushima 770‐8505 Japan
| | - Mizune Ozono
- Institute for Genome Research Tokushima University Kuramotocho‐3 Tokushima 770‐8503 Japan
- Faculty of Pharmaceutical Sciences Tokushima University Shomachi‐1 Tokushima 770‐8505 Japan
| | - Ayaka Nakao
- Institute for Genome Research Tokushima University Kuramotocho‐3 Tokushima 770‐8503 Japan
- Faculty of Pharmaceutical Sciences Tokushima University Shomachi‐1 Tokushima 770‐8505 Japan
| | - Akiko Yamada
- School of Dentistry Nihon University 1‐8‐13, Kanda‐Surugadai, Chiyoda‐ku Tokyo 101‐8310 Japan
| | - Yasuo Shinohara
- Institute for Genome Research Tokushima University Kuramotocho‐3 Tokushima 770‐8503 Japan
- Faculty of Pharmaceutical Sciences Tokushima University Shomachi‐1 Tokushima 770‐8505 Japan
| | - Takenori Yamamoto
- Division of Molecular Target and Gene Therapy Products National Institute of Health Sciences 3‐25‐26, Tonomachi, Kawasaki‐ku, Kawasaki‐shi Kanagawa 210‐9501 Japan
- Institute for Genome Research Tokushima University Kuramotocho‐3 Tokushima 770‐8503 Japan
| |
Collapse
|
4
|
Veres B, Eros K, Antus C, Kalman N, Fonai F, Jakus PB, Boros E, Hegedus Z, Nagy I, Tretter L, Gallyas F, Sumegi B. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia. FEBS Open Bio 2021; 11:684-704. [PMID: 33471430 PMCID: PMC7931201 DOI: 10.1002/2211-5463.13091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023] Open
Abstract
Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)-dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS-induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA-seq) data, Ingenuity® Pathway Analysis (IPA ® ) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll-like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)-mediated processes in wild-type mice. The disruption of CypD reduced LPS-induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO- and ROS-producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear- and mitochondrial-encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD-dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases.
Collapse
Affiliation(s)
- Balazs Veres
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Krisztian Eros
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| | - Csenge Antus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Nikoletta Kalman
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Fruzsina Fonai
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Peter Balazs Jakus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Eva Boros
- Institute of BiochemistryBiological Research CentreSzegedHungary
| | - Zoltan Hegedus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- Institute of BiophysicsBiological Research CentreSzegedHungary
| | - Istvan Nagy
- Institute of BiochemistryBiological Research CentreSzegedHungary
- SeqOmics Biotechnology LtdMorahalomHungary
| | - Laszlo Tretter
- Department of Medical BiochemistrySemmelweis UniversityBudapestHungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| |
Collapse
|
5
|
Martinis P, Grancara S, Kanamori Y, García-Argáez AN, Pacella E, Dalla Via L, Toninello A, Agostinelli E. Involvement of the biogenic active amine agmatine in mitochondrial membrane permeabilization and release of pro-apoptotic factors. Amino Acids 2019; 52:161-169. [DOI: 10.1007/s00726-019-02791-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
6
|
Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol 2019; 170:113664. [PMID: 31606409 DOI: 10.1016/j.bcp.2019.113664] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Several biomarkers are used to monitor organ damage caused by drug toxicity. Traditional markers of kidney function, such as serum creatinine and blood urea nitrogen are commonly used to estimate glomerular filtration rate. However, these markers have several limitations including poor specificity and sensitivity. A number of serum and urine biomarkers have recently been described to detect kidney damage caused by drugs such as cisplatin, gentamicin, vancomycin, and tacrolimus. Neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP), kidney injury molecule-1 (KIM-1), monocyte chemotactic protein-1 (MCP-1), and cystatin C have been identified as biomarkers for early kidney damage. Hy's Law is widely used as to predict a high risk of severe drug-induced liver injury caused by drugs such as acetaminophen. Recent reports have indicated that glutamate dehydrogenase (GLDH), high-mobility group box 1 (HMGB-1), Keratin-18 (k18), MicroRNA-122 and ornithine carbamoyltransferase (OCT) are more sensitive markers of hepatotoxicity compared to the traditional markers including the blood levels of amiotransferases and total bilirubin. Additionally, the rapid development of proteomic technologies in biofluids and tissue provides a new multi-marker panel, leading to the discovery of more sensitive biomarkers. In this review, an update topics of biomarkers for the detection of kidney or liver injury associated with pharmacotherapy.
Collapse
Affiliation(s)
- Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Nanae Yamamoto
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan; Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare Narita Hospital, Japan.
| |
Collapse
|
7
|
Yamamoto T, Ozono M, Watanabe A, Maeda K, Nara A, Hashida M, Ido Y, Hiroshima Y, Yamada A, Terada H, Shinohara Y. Functional analysis of coiled-coil domains of MCU in mitochondrial calcium uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148061. [PMID: 31394096 DOI: 10.1016/j.bbabio.2019.148061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022]
Abstract
The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel. This complex consists of MCU, mitochondrial calcium uptake proteins (MICUs), MCU regulator 1 (MCUR1), essential MCU regulator element (EMRE), etc. MCU, which is the pore-forming subunit, has 2 highly conserved coiled-coil domains (CC1 and CC2); however, their functional roles are unknown. The yeast expression system of mammalian MCU and EMRE enables precise reconstitution of the properties of the mammalian MCU complex in yeast mitochondria. Using the yeast expression system, we here showed that, when MCU mutant lacking CC1 or CC2 was expressed together with EMRE in yeast, their mitochondrial Ca2+-uptake function was lost. Additionally, point mutations in CC1 or CC2, which were expected to prevent the formation of the coiled coil, also disrupted the Ca2+-uptake function. Thus, it is essential for the Ca2+ uptake function of MCU that the coiled-coil structure be formed in CC1 and CC2. The loss of function of those mutated MCUs was also observed in the mitochondria of a yeast strain lacking the yeast MCUR1 homolog. Also, in the D. discoideum MCU, which has EMRE-independent Ca2+-uptake function, the deletion of either CC1 or CC2 caused the loss of function. These results indicated that the critical functions of CC1 and CC2 were independent of other regulatory subunits such as MCUR1 and EMRE, suggesting that CC1 and CC2 might be essential for pore formation by MCUs themselves. Based on the tetrameric structure of MCU, we discussed the functional roles of the coiled-coil domains of MCU.
Collapse
Affiliation(s)
- Takenori Yamamoto
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan.
| | - Mizune Ozono
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Akira Watanabe
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Kosuke Maeda
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Atsushi Nara
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Mei Hashida
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Yusuke Ido
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Yuka Hiroshima
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan
| | - Akiko Yamada
- School of Dentistry, Tokushima University, Kuramotocho-3, Tokushima 770-8504, Japan
| | - Hiroshi Terada
- Niigata University of Pharmacy and Applied Life Sciences, Niigata City 956-8603, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan.
| |
Collapse
|
8
|
Shibata T, Yoneda M, Morikawa D, Ohta Y. Time-lapse imaging of Ca 2+-induced swelling and permeability transition: Single mitochondrion study. Arch Biochem Biophys 2019; 663:288-296. [PMID: 30659803 DOI: 10.1016/j.abb.2019.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 11/26/2022]
Abstract
Mitochondrial functions are closely related to the membrane structure. Mitochondrial swelling, which is accompanied with dissipation of the crista structure and rupture of the outer membrane, have been observed as mitochondrial damage when mitochondria are under Ca2+-overload or oxidative stress. Although these phenomena have been well studied, the detailed behaviors of individual mitochondria upon swelling remain unknown. The aim of this study was to investigate the detailed behavior of mitochondrial volume upon addition of Ca2+. Here, we report for the first time, time-lapse measurements of single mitochondrion swelling and permeability transition induced by Ca2+ by optical microscopy. We added 220 μM Ca2+ to mitochondria, and found that 1) the swelling rate depended on the mitochondrion, 2) a small number of mitochondria showed step-like swelling, 3) cyclosporin A decreased the percentage of mitochondria that underwent swelling induced by Ca2+, but did not affect the amplitude of swelling, 4) permeability transition is necessary but not sufficient for Ca2+-induced swelling, 5) permeability transition is more sensitive to Ca2+ than swelling, 6) Ca2+ stimulated mitochondrial swelling after permeability transition. These results suggest that single mitochondrion measurement of swelling is a powerful tool for examining the regulation of mitochondrial structure.
Collapse
Affiliation(s)
- Takahiro Shibata
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Mayu Yoneda
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Daisuke Morikawa
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
9
|
Tatematsu Y, Fujita H, Hayashi H, Yamamoto A, Tabata A, Nagamune H, Ohkura K. Effects of the Nonsteroidal Anti-inflammatory Drug Celecoxib on Mitochondrial Function. Biol Pharm Bull 2018; 41:319-325. [PMID: 29491208 DOI: 10.1248/bpb.b17-00527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammation and pain. In the present study, we examined the effects of celecoxib, a cyclooxygenase-2 (COX-2)-selective NSAID, on rat liver mitochondrial function. Celecoxib dose-dependently induced mitochondria swelling, which was not suppressed by cyclosporine A (CsA). The oxygen consumption rate in mitochondria-suspended solution was facilitated by the addition of celecoxib, and its uncoupling activity was observed. Celecoxib also suppressed SF6847-induced uncoupling, and appeared to exert inhibitory effects on the electron transport chain. Celecoxib suppressed the state 3 oxygen consumption rate in the presence of ADP. Protein release from the mitochondrial matrix was detected following the addition of celecoxib, and aldehyde dehydrogenase 2 (ALDH2) and hydroxymethylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2) bands were confirmed in a Western blot analysis. On the other hand, protein release of cytochrome C (CytC), which is an inducer of apoptosis, from the intermembrane space was not observed. Celecoxib enhanced the membrane permeability of human erythrocytes and synthesized liposomes dose-dependently. It then induced the membrane-involving mitochondrial swelling and suppressed mitochondrial function.
Collapse
Affiliation(s)
- Yohei Tatematsu
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Haruhi Fujita
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Hiroki Hayashi
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Atsushi Yamamoto
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Kazuto Ohkura
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
10
|
Daniele JR, Heydari K, Dillin A. Mitochondrial Subtype Identification and Characterization. CURRENT PROTOCOLS IN CYTOMETRY 2018; 85:e41. [PMID: 29944197 PMCID: PMC6039279 DOI: 10.1002/cpcy.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Healthy, functional mitochondria are central to many cellular and physiological phenomena, including aging, metabolism, and stress resistance. A key feature of healthy mitochondria is a high membrane potential (Δψ) or charge differential (i.e., proton gradient) between the matrix and inner mitochondrial membrane. Mitochondrial Δψ has been extensively characterized via flow cytometry of intact cells, which measures the average membrane potential within a cell. However, the characteristics of individual mitochondria differ dramatically even within a single cell, and thus interrogation of mitochondrial features at the organelle level is necessary to better understand and accurately measure heterogeneity. Here we describe a new flow cytometric methodology that enables the quantification and classification of mitochondrial subtypes (via their Δψ, size, and substructure) using the small animal model C. elegans. Future application of this methodology should allow research to discern the bioenergetic and mitochondrial component in a number of human disease and aging models, including, C. elegans, cultured cells, small animal models, and human biopsy samples. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Joseph R. Daniele
- Department of Molecular & Cellular Biology, University of
California, Berkeley, Berkeley, CA 94720
| | - Kartoosh Heydari
- LKS Flow Cytometry Core, Cancer Research Laboratory, University of
California, Berkeley, Berkeley, CA 94720
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of
California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
11
|
Yamamoto T, Tsunoda M, Ozono M, Watanabe A, Kotake K, Hiroshima Y, Yamada A, Terada H, Shinohara Y. Polyethyleneimine renders mitochondrial membranes permeable by interacting with negatively charged phospholipids in them. Arch Biochem Biophys 2018; 652:9-17. [PMID: 29886045 DOI: 10.1016/j.abb.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/21/2023]
Abstract
Polyethyleneimines (PEIs) are used for transfection of cells with nucleic acids. Meanwhile, the interaction of PEI with mitochondria causes cytochrome c release prior to apoptosis; the mechanisms how PEI causes this permeabilization of mitochondrial membranes and the release of cytochrome c remain unclear. To clarify these mechanisms, we examined the effects of branched-type PEI and linear-type PEI, each of which was 25 kDa in size, on mitochondria. The permeabilization potency of mitochondrial membranes by branched PEI was stronger than that by linear PEI. The permeabilization by PEIs were insensitive to permeability-transition inhibitors, indicating that PEI-induced permeabilization was not attributed to permeability transition. Meanwhile, PEIs caused permeabilization of artificial lipid vesicles; again, the permeabilization potency of branched PEI was stronger than that of linear PEI. Such a difference in this potency was close to that in the case of isolated mitochondria, signifying that the PEI-induced permeabilization of mitochondrial membranes could be attributed to PEI's interaction with the phospholipid phase. Furthermore, this PEI-induced permeabilization of the lipid vesicles was observed only in the case of lipid vesicles including negatively charged phospholipids. These results indicate that PEIs interacted with negatively charged phospholipids in the mitochondrial membranes to directly lead to their permeabilization.
Collapse
Affiliation(s)
- Takenori Yamamoto
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan.
| | - Moe Tsunoda
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Mizune Ozono
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Akira Watanabe
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Kazumasa Kotake
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Yuka Hiroshima
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan
| | - Akiko Yamada
- School of Dentistry, Tokushima University, Kuramotocho-3, Tokushima 770-8504, Japan
| | - Hiroshi Terada
- Niigata University of Pharmacy and Applied Life Sciences, Niigata City 956-8603, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| |
Collapse
|
12
|
Kim D, Luo J, Arriaga EA, Ros A. Deterministic Ratchet for Sub-micrometer (Bio)particle Separation. Anal Chem 2018; 90:4370-4379. [PMID: 29506379 DOI: 10.1021/acs.analchem.7b03774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Resolving the heterogeneity of particle populations by size is important when the particle size is a signature of abnormal biological properties leading to disease. Accessing size heterogeneity in the sub-micrometer regime is particularly important to resolve populations of subcellular species or diagnostically relevant bioparticles. Here, we demonstrate a ratchet migration mechanism capable of separating sub-micrometer sized species by size and apply it to biological particles. The phenomenon is based on a deterministic ratchet effect, is realized in a microfluidic device, and exhibits fast migration allowing separation in tens of seconds. We characterize this phenomenon extensively with the aid of a numerical model allowing one to predict the speed and resolution of this method. We further demonstrate the deterministic ratchet migration with two sub-micrometer sized beads as model system experimentally as well as size-heterogeneous mouse liver mitochondria and liposomes as model system for other organelles. We demonstrate excellent agreement between experimentally observed migration and the numerical model.
Collapse
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| | - Jinghui Luo
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| | - Edgar A Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Alexandra Ros
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| |
Collapse
|
13
|
Lotz C, Liem D, Ping P. New Frontiers in Myocardial Protection: A Systems Biology Approach. J Cardiovasc Pharmacol Ther 2016; 16:285-9. [DOI: 10.1177/1074248411415855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myocardial ischemic injury and cardioprotection are characterized by a cascade of molecular changes, which includes gene expression, protein expression, protein localization, interactions, and posttranslational modifications (PTMs). A systems biology approach allows the study of these genes and proteins on a large scale; the omics technologies have led to new discoveries that further enhance our understanding of these molecular events. The complexity of the prosurvival signaling networks in cardiac cells is increasingly recognized; they afford beneficial effects on the integrity and functionality of a common effector, the mitochondrion. Mitochondrial proteome undergoes dynamic modifications in the course of ischemic injury; depending on the degree of injury, a variety of functional clusters are being affected including the changes in their protein properties (eg, PTMs), which consequently impact their function. The mitochondrial proteome appears to have inherent molecular machinery that initiates a versatile prosurvival mode, resisting environmental challenges. The molecular features in these mitochondrial pathways enabling adaptations involve distinct phosphorylation sites, S-nitrosylation cysteine residues, and other important amino acid domains subjected to PTMs. They become critical players in the determination of cell death and survival. Cardioprotective protein kinases, such as protein kinase C∊, can activate these PTMs, and provide a unique therapeutic platform for the use of small peptide regulators. Combining genomics and metabolomics discovery with that of proteomics information allows biological insights into cardioprotection at an integrated systems level. The current review discusses the systems biology concepts of myocardial ischemic injury and cardioprotection, as well as outlines the interrelationships of proteomics, genomics, and metabolomics in the quest to comprehend the prosurvival cell-signaling networks.
Collapse
Affiliation(s)
- Christopher Lotz
- Department of Physiology, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David Liem
- Department of Physiology, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peipei Ping
- Department of Physiology, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Yamagoshi R, Yamamoto T, Hashimoto M, Sugahara R, Shiotsuki T, Miyoshi H, Terada H, Shinohara Y. Identification of amino acid residues of mammalian mitochondrial phosphate carrier important for its functional expression in yeast cells, as achieved by PCR-mediated random mutation and gap-repair cloning. Mitochondrion 2016; 32:1-9. [PMID: 27836624 DOI: 10.1016/j.mito.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022]
Abstract
The mitochondrial phosphate carrier (PiC) of mammals, but not the yeast one, is synthesized with a presequence. The deletion of this presequence of the mammalian PiC was reported to facilitate the import of the carrier into yeast mitochondria, but the question as to whether or not mammalian PiC could be functionally expressed in yeast mitochondria was not addressed. In the present study, we first examined whether the defective growth on a glycerol plate of yeast cells lacking the yeast PiC gene could be reversed by the introduction of expression vectors of rat PiCs. The introduction of expression vectors encoding full-length rat PiC (rPiC) or rPiC lacking the presequence (ΔNrPiC) was ineffective in restoring growth on the glycerol plates. When we examined the expression levels of individual rPiCs in yeast mitochondria, ΔNrPiC was expressed at a level similar to that of yeast PiC, but that of rPiC was very low. These results indicated that ΔNrPiC expressed in yeast mitochondria is inert. Next, we sought to isolate "revertants" viable on the glycerol plate by expressing randomly mutated ΔNrPiC, and obtained two clones. These clones carried either of two mutations, F267S or F282S; and these mutations restored the transport function of ΔNrPiC in yeast mitochondria. These two Phe residues were conserved in human carrier (hPiC), and the transport function of ΔNhPiC expressed in yeast mitochondria was also markedly improved by their substitutions. Thus, substitution of F267S or F282S was concluded to be important for functional expression of mammalian PiCs in yeast mitochondria.
Collapse
Affiliation(s)
- Ryohei Yamagoshi
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Takenori Yamamoto
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Mitsuru Hashimoto
- Faculty of Pharmaceutical Science, Matsuyama University, Bunkyocho-4, Matsuyama 790-8578, Japan
| | - Ryohei Sugahara
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takahiro Shiotsuki
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Terada
- Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan.
| |
Collapse
|
15
|
Gyulkhandanyan AV, Allen DJ, Mykhaylov S, Lyubimov E, Ni H, Freedman J, Leytin V. Mitochondrial Inner Membrane Depolarization as a Marker of Platelet Apoptosis : Disclosure of Nonapoptotic Membrane Depolarization. Clin Appl Thromb Hemost 2016; 23:139-147. [PMID: 27637909 DOI: 10.1177/1076029616665924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Availability of universal marker for the diagnosis of platelet apoptosis is an important but currently unresolved goal of platelet physiology investigations. Mitochondrial inner transmembrane potential (▵Ψm) depolarization is frequently used as a marker of apoptosis in nucleated cells and anucleate platelets. Since ▵Ψm depolarization in platelets is also frequently associated with concurrent induction of other apoptotic responses, it may appear that ▵Ψm depolarization is a good universal marker of platelet apoptosis. However, data presented in the current study indicate that this is incorrect. We report here fundamental differences in the effects of potassium ionophore valinomycin and calcium ionophore A23187 on human platelet apoptosis. Although both A23187-triggered and valinomycin-triggered ▵Ψm depolarization are strongly induced, the former is dependent on the opening of mitochondrial permeability transition pore (MPTP) and the latter is MPTP-independent. Furthermore, effects of calcium and potassium ionophores on other apoptotic events are also basically different. A23187 induces caspase-3 activation, proapoptotic Bax and Bak protein expression, phosphatidylserine exposure, and microparticle formation, whereas valinomycin does not induce these apoptotic manifestations. Discovery of targeted ▵Ψm depolarization not associated with apoptosis in valinomycin-treated platelets indicates that this marker should not be used as a single universal marker of platelet apoptosis in unknown experimental and clinical settings as it may lead to a false-positive apoptosis diagnosis.
Collapse
Affiliation(s)
- Armen V Gyulkhandanyan
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada.,2 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - David J Allen
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sergiy Mykhaylov
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Elena Lyubimov
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Heyu Ni
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada.,2 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,4 Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,5 Canadian Blood Services, Ottawa, Ontario, Canada
| | - John Freedman
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada.,2 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,4 Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Valery Leytin
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada.,6 Department of Physics, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Daniele JR, Heydari K, Arriaga EA, Dillin A. Identification and Characterization of Mitochondrial Subtypes in Caenorhabditis elegans via Analysis of Individual Mitochondria by Flow Cytometry. Anal Chem 2016; 88:6309-16. [PMID: 27210103 DOI: 10.1021/acs.analchem.6b00542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondrial bioenergetics has been implicated in a number of vital cellular and physiological phenomena, including aging, metabolism, and stress resistance. Heterogeneity of the mitochondrial membrane potential (Δψ), which is central to organismal bioenergetics, has been successfully measured via flow cytometry in whole cells but rarely in isolated mitochondria from large animal models. Similar studies in small animal models, such as Caenorhabditis elegans (C. elegans), are critical to our understanding of human health and disease but lack analytical methodologies. Here we report on new methodological developments that make it possible to investigate the heterogeneity of Δψ in C. elegans during development and in tissue-specific studies. The flow cytometry methodology described here required an improved collagenase-3-based mitochondrial isolation procedure and labeling of mitochondria with the ratiometric fluorescent probe JC-9. To demonstrate feasibility of tissue-specific studies, we used C. elegans strains expressing blue-fluorescent muscle-specific proteins, which enabled identification of muscle mitochondria among mitochondria from other tissues. This methodology made it possible to observe, for the first time, critical changes in Δψ during C. elegans larval development and provided direct evidence of the elevated bioenergetic status of muscle mitochondria relative to their counterparts in the rest of the organism. Further application of these methodologies can help tease apart bioenergetics and other biological complexities in C. elegans and other small animal models used to investigate human disease and aging.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular and Cellular Biology, University of California, Berkeley , Berkeley, California 94720, United States
| | - Kartoosh Heydari
- LKS Flow Cytometry Core, Cancer Research Laboratory, University of California, Berkeley , Berkeley, California 94720, United States
| | - Edgar A Arriaga
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrew Dillin
- Department of Molecular and Cellular Biology, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
17
|
Lofrumento DD, La Piana G, Palmitessa V, Abbrescia DI, Lofrumento NE. Stimulation by pro-apoptotic valinomycin of cytosolic NADH/cytochrome c electron transport pathway-Effect of SH reagents. Int J Biochem Cell Biol 2016; 76:12-8. [PMID: 27129925 DOI: 10.1016/j.biocel.2016.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 01/27/2023]
Abstract
Intrinsic and extrinsic apoptosis are both characterised by the presence of cytochrome c (cyto-c) in the cytosol. We present data on the extra-mitochondrial NADH oxidation catalysed by exogenous (cytosolic) cyto-c, as a possible answer to the paradox of apoptosis being an energy-dependent program but characterized by the impairment of the respiratory chain. The reduction of molecular oxygen induced by the cytosolic NADH/cyto-c pathway is coupled to the generation of an electrochemical proton gradient available for ATP synthesis. Original findings show that SH reagents inhibit the NADH/cyto-c system with a conformational change mechanism. The mitochondrial integrity-test of sulfite oxidase unequivocally demonstrates that this enzyme (120kDa) can be released outside but exogenous cyto-c (12.5kDa) does not permeate into mitochondria. Valinomycin at 2nM stimulates both the energy-dependent reversible mitochondrial swelling and the NADH/cyto-c oxidation pathway. The pro-apoptotic activity of valinomycin, as well as to the dissipation of membrane potential, can be also ascribed to the increased activity of the NADH/cyto-c oxidation pathway useful as an additional source of energy for apoptosis. It can be speculated that the activation of the NADH/cyto-c system coupled to valinomycin-induced mitochondrial osmotic swelling may represent a strategy to activate apoptosis in confined solid tumours.
Collapse
Affiliation(s)
- Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, Lecce, Italy
| | - Gianluigi La Piana
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Valeria Palmitessa
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Nicola Elio Lofrumento
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.
| |
Collapse
|
18
|
Analysis of the structure and function of EMRE in a yeast expression system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:831-9. [PMID: 27001609 DOI: 10.1016/j.bbabio.2016.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 11/21/2022]
Abstract
The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel, and this complex is believed to consist of a pore-forming subunit, MCU, and its regulatory subunits. As yeast cells lack orthologues of the mammalian proteins, the yeast expression system for the mammalian calcium uniporter subunits is useful for investigating their functions. We here established a yeast expression system for the native-form mouse MCU and 4 other subunits. This expression system enabled us to precisely reconstitute the properties of the mammalian MCU complex in yeast mitochondria. Using this expression system, we analyzed the essential MCU regulator (EMRE), which is a key subunit for Ca(2+) uptake but whose functions and structure remain unclear. The topology of EMRE was revealed: its N- and C-termini projected into the matrix and the inter membrane space, respectively. The expression of EMRE alone was insufficient for Ca(2+) uptake; and co-expression of MCU with EMRE was necessary. EMRE was independent of the protein levels of other subunits, indicating that EMRE was not a protein-stabilizing factor. Deletion of acidic amino acids conserved in EMRE did not significantly affect Ca(2+) uptake; thus, EMRE did not have basic properties of ion channels such as ion-selectivity filtration and ion concentration. Meanwhile, EMRE closely interacted with the MCU on both sides of the inner membrane, and this interaction was essential for Ca(2+) uptake. This close interaction suggested that EMRE might be a structural factor for opening of the MCU-forming pore.
Collapse
|
19
|
Tatematsu Y, Hayashi H, Taguchi R, Fujita H, Yamamoto A, Ohkura K. Effect of N-Phenylanthranilic Acid Scaffold Nonsteroidal Anti-inflammatory Drugs on the Mitochondrial Permeability Transition. Biol Pharm Bull 2016; 39:278-84. [DOI: 10.1248/bpb.b15-00717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yohei Tatematsu
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Hiroki Hayashi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Ryo Taguchi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Haruhi Fujita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Atsushi Yamamoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Kazuto Ohkura
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
20
|
Lotz C, Kehl F. Volatile Anesthetic-Induced Cardiac Protection: Molecular Mechanisms, Clinical Aspects, and Interactions With Nonvolatile Agents. J Cardiothorac Vasc Anesth 2015; 29:749-60. [DOI: 10.1053/j.jvca.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/07/2023]
|
21
|
Rajkovic A, Grootaert C, Butorac A, Cucu T, Meulenaer BD, van Camp J, Bracke M, Uyttendaele M, Bačun-Družina V, Cindrić M. Sub-emetic toxicity of Bacillus cereus toxin cereulide on cultured human enterocyte-like Caco-2 cells. Toxins (Basel) 2014; 6:2270-90. [PMID: 25093386 PMCID: PMC4147582 DOI: 10.3390/toxins6082270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022] Open
Abstract
Cereulide (CER) intoxication occurs at relatively high doses of 8 µg/kg body weight. Recent research demonstrated a wide prevalence of low concentrations of CER in rice and pasta dishes. However, the impact of exposure to low doses of CER has not been studied before. In this research, we investigated the effect of low concentrations of CER on the behavior of intestinal cells using the Caco-2 cell line. The MTT (mitochondrial 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and the SRB (sulforhodamine B) reactions were used to measure the mitochondrial activity and cellular protein content, respectively. Both assays showed that differentiated Caco-2 cells were sensitive to low concentrations of CER (in a MTT reaction of 1 ng/mL after three days of treatment; in an SRB reaction of 0.125 ng/mL after three days of treatment). Cell counts revealed that cells were released from the differentiated monolayer at 0.5 ng/mL of CER. Additionally, 0.5 and 2 ng/mL of CER increased the lactate presence in the cell culture medium. Proteomic data showed that CER at a concentration of 1 ng/mL led to a significant decrease in energy managing and H2O2 detoxification proteins and to an increase in cell death markers. This is amongst the first reports to describe the influence of sub-emetic concentrations of CER on a differentiated intestinal monolayer model showing that low doses may induce an altered enterocyte metabolism and membrane integrity.
Collapse
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Ghent University, Ghent B-9000, Belgium; E-Mail:
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Ana Butorac
- Laboratory for Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, Zagreb University, Zagreb HR-10000, Croatia; E-Mails: (A.B.); (V.B.-D.)
| | - Tatiana Cucu
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Bruno De Meulenaer
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - John van Camp
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, University Hospital Ghent, Ghent B-9000, Belgium; E-Mail:
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Ghent University, Ghent B-9000, Belgium; E-Mail:
| | - Višnja Bačun-Družina
- Laboratory for Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, Zagreb University, Zagreb HR-10000, Croatia; E-Mails: (A.B.); (V.B.-D.)
| | - Mario Cindrić
- Laboratory for System Biomedicine and Centre for Proteomics and Mass Spectrometry, “Ruđer Bošković” Institute, Zagreb HR-10000, Croatia; E-Mail:
| |
Collapse
|
22
|
Yamamoto T, Ito M, Kageyama K, Kuwahara K, Yamashita K, Takiguchi Y, Kitamura S, Terada H, Shinohara Y. Mastoparan peptide causes mitochondrial permeability transition not by interacting with specific membrane proteins but by interacting with the phospholipid phase. FEBS J 2014; 281:3933-44. [DOI: 10.1111/febs.12930] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/24/2014] [Accepted: 07/14/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Takenori Yamamoto
- Institute for Genome Research; University of Tokushima; Japan
- Faculty of Pharmaceutical Sciences; University of Tokushima; Japan
| | - Mika Ito
- Institute for Genome Research; University of Tokushima; Japan
- Faculty of Pharmaceutical Sciences; University of Tokushima; Japan
| | - Keita Kageyama
- Institute for Genome Research; University of Tokushima; Japan
- Faculty of Pharmaceutical Sciences; University of Tokushima; Japan
| | - Kana Kuwahara
- Institute for Genome Research; University of Tokushima; Japan
- Faculty of Pharmaceutical Sciences; University of Tokushima; Japan
| | | | | | | | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Japan
| | - Yasuo Shinohara
- Institute for Genome Research; University of Tokushima; Japan
- Faculty of Pharmaceutical Sciences; University of Tokushima; Japan
| |
Collapse
|
23
|
Yamamoto T, Yamada A, Yoshimura Y, Terada H, Shinohara Y. [The mechanisms of the release of cytochrome C from mitochondria revealed by proteomics analysis]. YAKUGAKU ZASSHI 2014; 132:1099-104. [PMID: 23037694 DOI: 10.1248/yakushi.12-00220-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial permeability transition (PT) is the phenomenon in which the mitochondrial inner membrane becomes permeable to various solutes and ions. When PT is induced by Ca(2+), cytochrome c is released from mitochondria into the cytosol where it then triggers subsequent steps of programmed cell death, apoptosis. Thus, the proteins that regulate PT and cytochrome c release could become druggable targets for various diseases. However, the mechanisms of PT and the release of cytochrome c have not yet been revealed. We previously showed that valinomycin, a potassium selective ionophore, also caused release of cytochrome c from mitochondria without inducing PT. This result indicates that cytochrome c could be released from mitochondria with or without induction of PT. In this study, to understand the difference of effects of valinomycin and Ca(2+) on mitochondria, we examined what protein species are released from valinomycin- and Ca(2+)-treated mitochondria by LC-MS/MS. As a result, only the proteins located in the intermembrane space were found to be released from valinomycin-treated mitochondria, while those in both the intermembrane space and in the matrix were released from Ca(2+)-treated mitochondria. Furthermore, the protein releases by each reagent occurred not selectively but in a concentration-dependent manner. Based on these results, the permeabilization effects of Ca(2+) and valinomycin on the inner and outer mitochondrial membranes are discussed.
Collapse
Affiliation(s)
- Takenori Yamamoto
- Institute for Genome Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
24
|
Yamamoto T, Tamaki H, Katsuda C, Nakatani K, Terauchi S, Terada H, Shinohara Y. Molecular basis of interactions between mitochondrial proteins and hydroxyapatite in the presence of Triton X-100, as revealed by proteomic and recombinant techniques. J Chromatogr A 2013; 1301:169-78. [DOI: 10.1016/j.chroma.2013.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023]
|
25
|
Lofrumento DD, La Piana G, Abbrescia DI, Palmitessa V, La Pesa V, Marzulli D, Lofrumento NE. Valinomycin induced energy-dependent mitochondrial swelling, cytochrome c release, cytosolic NADH/cytochrome c oxidation and apoptosis. Apoptosis 2012; 16:1004-13. [PMID: 21739274 DOI: 10.1007/s10495-011-0628-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In valinomycin induced stimulation of mitochondrial energy dependent reversible swelling, supported by succinate oxidation, cytochrome c (cyto-c) and sulfite oxidase (Sox) [both present in the mitochondrial intermembrane space (MIS)] are released outside. This effect can be observed at a valinomycin concentration as low as 1 nM. The rate of cytosolic NADH/cyto-c electron transport pathway is also greatly stimulated. The test on the permeability of mitochondrial outer membrane to exogenous cyto-c rules out the possibility that the increased rate of exogenous NADH oxidation could be ascribed either to extensively damaged or broken mitochondria. Accumulation of potassium inside the mitochondria, mediated by the highly specific ionophore valinomycin, promotes an increase in the volume of matrix (evidenced by swelling) and the interaction points between the two mitochondrial membranes are expected to increase. The data reported and those previously published are consistent with the view that "respiratory contact sites" are involved in the transfer of reducing equivalents from cytosol to inside the mitochondria both in the absence and the presence of valinomycin. Magnesium ions prevent at least in part the valinomycin effects. Rather than to the dissipation of membrane potential, the pro-apoptotic property of valinomycin can be ascribed to both the release of cyto-c from mitochondria to cytosol and the increased rate of cytosolic NADH coupled with an increased availability of energy in the form of glycolytic ATP, useful for the correct execution of apoptotic program.
Collapse
Affiliation(s)
- Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Kido J, Bando M, Hiroshima Y, Iwasaka H, Yamada K, Ohgami N, Nambu T, Kataoka M, Yamamoto T, Shinohara Y, Sagawa I, Nagata T. Analysis of proteins in human gingival crevicular fluid by mass spectrometry. J Periodontal Res 2012; 47:488-99. [DOI: 10.1111/j.1600-0765.2011.01458.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Dai J, Liu JJ, Zhou GQ, Zhang YZ, Liu Y. Effect of Ce(III) on heat production of mitochondria isolated from hybrid rice. Biol Trace Elem Res 2011; 143:1142-8. [PMID: 21104337 DOI: 10.1007/s12011-010-8902-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022]
Abstract
The effect of cerium on mitochondria isolated from hybrid rice Shanyou 63 (Oryza sativa L) was investigated. Through in vivo culture, low dose Ce3+ promoted, but higher dose Ce3+, restrained mitochondrial heat production. However, through vitro incubation, Ce3+ showed only inhibitory action on mitochondrial energy turnover, the concentration required for 50% inhibition being 46.7 μM. In addition, Ce3+, like Ca2+, induced rice mitochondrial swelling and decreased membrane potential (△ψ), which was inhibited by the specific permeability transition inhibitor cyclosporine A (CsA). The induction approached a constant level while mitochondrial metabolism was fully prevented by Ce3+. These results demonstrated that cerium influenced rice mitochondria in vivo and in vitro via different action pathways, and the latter involved the opening of rice mitochondrial permeability.
Collapse
Affiliation(s)
- Jie Dai
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | | | | | | | | |
Collapse
|
28
|
S-15176 and its methylated derivative suppress the CsA-insensitive mitochondrial permeability transition and subsequent cytochrome c release induced by silver ion, and show weak protonophoric activity. Mol Cell Biochem 2011; 358:45-51. [DOI: 10.1007/s11010-011-0919-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
29
|
Okada N, Yamamoto T, Watanabe M, Yoshimura Y, Obana E, Yamazaki N, Kawazoe K, Shinohara Y, Minakuchi K. Identification of TMEM45B as a protein clearly showing thermal aggregation in SDS–PAGE gels and dissection of its amino acid sequence responsible for this aggregation. Protein Expr Purif 2011; 77:118-23. [DOI: 10.1016/j.pep.2011.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
|
30
|
Use of highly purified and mixed antibodies for simultaneous detection of multiple protein species released from mitochondria upon induction of the permeability transition. Appl Biochem Biotechnol 2010; 163:64-70. [PMID: 20582638 DOI: 10.1007/s12010-010-9016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Concomitant with the induction of the mitochondrial permeability transition (PT), cytochrome c is released from mitochondria into the cytosol where it triggers subsequent steps of cellular apoptosis. Thus, inducers of the mitochondrial PT would become "seed compounds" of regulators of apoptosis. However, when we examine the actions of certain chemicals on the release of mitochondrial cytochrome c, the behaviors of not only cytochrome c but also multiple mitochondrial protein species must be carefully examined because the mitochondrial PT and release of proteins from mitochondria occur in diverse manners. In the present study, we examined whether it is possible to measure the behaviors of multiple protein species in a single experiment using purified and mixed antibodies. The results obtained clearly indicate that this procedure would be applicable for high-throughput screening of regulators of apoptosis. Further requirements necessary for the establishment of a useful screening system for apoptosis regulators are discussed.
Collapse
|
31
|
Hill RB, Pellegrini L. The PARL family of mitochondrial rhomboid proteases. Semin Cell Dev Biol 2010; 21:582-92. [PMID: 20045481 DOI: 10.1016/j.semcdb.2009.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/10/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Rhomboids are an ancient and conserved family of intramembrane-cleaving proteases, a small group of proteolytic enzymes capable of hydrolyzing a peptide bond within a transmembrane helix that anchors a substrate protein to the membrane. Mitochondrial rhomboids evolved in eukaryotes to coordinate a critical aspect of cell biology, the regulation of mitochondrial membranes dynamics. This function appears to have required the emergence of a structural feature that is unique among all other rhomboids: an additional transmembrane helix (TMH) positioned at the N-terminus of six TMHs that form the core proteolytic domain of all prokaryotic and eukaryotic rhomboids. This "1+6" structure, which is shared only among mitochondrial rhomboids, defines a subfamily of rhomboids with the prototypical family member being mammalian Parl. Here, we present the findings that in 11 years have elevated mitochondrial rhomboids as the gatekeepers of mitochondrial dynamics and apoptosis; further, we discuss the aspects of their biology that are bound to introduce new paradigm shifts in our understanding of how the organelle uses this unique type of protease to govern stress, signaling to the nucleus, and other key mitochondrial activities in health and disease.
Collapse
Affiliation(s)
- R Blake Hill
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
32
|
Jeyaraju DV, Cisbani G, De Brito OM, Koonin EV, Pellegrini L. Hax1 lacks BH modules and is peripherally associated to heavy membranes: implications for Omi/HtrA2 and PARL activity in the regulation of mitochondrial stress and apoptosis. Cell Death Differ 2009; 16:1622-9. [PMID: 19680265 DOI: 10.1038/cdd.2009.110] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hax1 has an important role in immunodeficiency syndromes and apoptosis. A recent report (Chao et al., Nature, 2008) proposed that the Bcl-2-family-related protein, Hax1, suppresses apoptosis in lymphocytes and neurons through a mechanism that involves its association to the inner mitochondrial membrane rhomboid protease PARL, to proteolytically activate the serine protease Omi/HtrA2 and eliminate active Bax. This model implies that the control of cell-type sensitivity to pro-apoptotic stimuli is governed by the PARL/Hax1 complex in the mitochondria intermembrane space and, more generally, that Bcl-2-family-related proteins can control mitochondrial outer-membrane permeabilization from inside the mitochondrion. Further, it defines a novel, anti-apoptotic Opa1-independent pathway for PARL. In this study, we present evidence that, in vivo, the activity of Hax1 cannot be mechanistically coupled to PARL because the two proteins are confined in distinct cellular compartments and their interaction in vitro is an artifact. We also show by sequence analysis and secondary structure prediction that Hax1 is extremely unlikely to be a Bcl-2-family-related protein because it lacks Bcl-2 homology modules. These results indicate a different function and mechanism of Hax1 in apoptosis and re-opens the question of whether mammalian PARL, in addition to apoptosis, regulates mitochondrial stress response through Omi/HtrA2 processing.
Collapse
Affiliation(s)
- D V Jeyaraju
- Mitochondria Biology Laboratory, CRULRG, Université Laval, Quebec, QC, Canada G1J 2G3
| | | | | | | | | |
Collapse
|