1
|
Borkar SB, Negi M, Acharya TR, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Mitigation of T3SS-mediated virulence in waterborne pathogenic bacteria by multi-electrode cylindrical-DBD plasma-generated nitric oxide water. CHEMOSPHERE 2024; 350:140997. [PMID: 38128737 DOI: 10.1016/j.chemosphere.2023.140997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Prajwal Lamichhane
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
2
|
Geddes-McAlister J, Hansmeier N. Quantitative Proteomics of the Intracellular Bacterial Pathogen Salmonella enterica Serovar Typhimurium. Methods Mol Biol 2024; 2813:107-115. [PMID: 38888773 DOI: 10.1007/978-1-0716-3890-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Mass spectrometry-based proteomics provides a wealth of information about changes in protein production and abundance under diverse conditions, as well as mechanisms of regulation, signaling cascades, interaction partners, and communication patterns across biological systems. For profiling of intracellular pathogens, proteomic profiling can be performed in the absence of a host to singularly define the pathogenic proteome or during an infection-like setting to identify dual perspectives of infection. In this chapter, we present techniques to extract proteins from the human bacterial intracellular pathogen, Salmonella enterica serovar Typhimurium, in the presence of macrophages, an important innate immune cell in host defense. We outline sample preparation, including protein extraction, digestion, and purification, as well as mass spectrometry measurements and bioinformatics analysis. The data generated from our dual perspective profiling approach provides new insight into pathogen and host protein modulation under infection-like conditions.
Collapse
Affiliation(s)
- Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada.
- Canadian Proteomics and Artificial Intelligence Consortium, Guelph, ON, Canada.
| | | |
Collapse
|
3
|
Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev 2024; 321:246-262. [PMID: 37823450 DOI: 10.1111/imr.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cell death can be executed through distinct subroutines. PANoptosis is a unique inflammatory cell death modality involving the interactions between pyroptosis, apoptosis, and necroptosis, which can be mediated by multifaceted PANoptosome complexes assembled via integrating components from other cell death modalities. There is growing interest in the process and function of PANoptosis. Accumulating evidence suggests that PANoptosis occurs under diverse stimuli, for example, viral or bacterial infection, cytokine storm, and cancer. Given the impact of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and PANoptosis activation, and outlines the multifaceted roles of PANoptosis in diseases together with a potential for therapeutic targeting. We also discuss important concepts and pressing issues for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is crucial for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Xu Sun
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yanpeng Yang
- Cardiac Care Unit, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaona Meng
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoli Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Liao XJ, He TT, Liu LY, Jiang XL, Sun SS, Deng YH, Zhang LQ, Xie HX, Nie P. Unraveling and characterization of novel T3SS effectors in Edwardsiella piscicida. mSphere 2023; 8:e0034623. [PMID: 37642418 PMCID: PMC10597406 DOI: 10.1128/msphere.00346-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023] Open
Abstract
Type III secretion system (T3SS) facilitates survival and replication of Edwardsiella piscicida in vivo. Identifying novel T3SS effectors and elucidating their functions are critical in understanding the pathogenesis of E. piscicida. E. piscicida T3SS effector EseG and EseJ was highly secreted when T3SS gatekeeper-containing protein complex EsaB-EsaL-EsaM was disrupted by EsaB deficiency. Based on this observation, concentrated secretomes of ΔesaB strain and ΔesaBΔesaN strain were purified by loading them into SDS-PAGE gel for a short electrophoresis to remove impurities prior to the in-the gel digestion and mass spectrometry. Four reported T3SS effectors and two novel T3SS effector candidates EseQ (ETAE_2009) and Trx2 (ETAE_0559) were unraveled by quantitative comparison of the identified peptides. EseQ and Trx2 were revealed to be secreted and translocated in a T3SS-dependent manner through CyaA-based translocation assay and immunofluorescent staining, demonstrating that EseQ and Trx2 are the novel T3SS effectors of E. piscicida. Trx2 was found to suppress macrophage apoptosis as revealed by TUNEL staining and cleaved caspase-3 of infected J774A.1 monolayers. Moreover, Trx2 has been shown to inhibit the p65 phosphorylation and p65 translocation into the nucleus, thus blocking the NF-κB pathway. Furthermore, depletion of Trx2 slightly but significantly attenuates E. piscicida virulence in a fish infection model. Taken together, an efficient method was established in unraveling T3SS effectors in E. piscicida, and Trx2, one of the novel T3SS effectors identified in this study, was demonstrated to suppress apoptosis and block NF- κB pathway during E. piscicida infection. IMPORTANCE Edwardsiella piscicida is an intracellular bacterial pathogen that causes intestinal inflammation and hemorrhagic sepsis in fish and human. Virulence depends on the Edwardsiella type III secretion system (T3SS). Identifying the bacterial effector proteins secreted by T3SS and defining their role is key to understanding Edwardsiella pathogenesis. EsaB depletion disrupts the T3SS gatekeeper-containing protein complex, resulting in increased secretion of T3SS effectors EseG and EseJ. EseQ and Trx2 were shown to be the novel T3SS effectors of E. piscicida by a secretome comparison between ∆esaB strain and ∆esaB∆esaN strain (T3SS mutant), together with CyaA-based translocation assay. In addition, Trx2 has been shown to suppress macrophage apoptosis and block the NF-κB pathway. Together, this work expands the known repertoire of T3SS effectors and sheds light on the pathogenic mechanism of E. piscicida.
Collapse
Affiliation(s)
- Xiao Jian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lu Yi Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xiu Long Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Hang Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Qiang Zhang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Ge J, Wang Y, Chen X, Yu K, Luo ZQ, Liu X, Qiu J. Phosphoribosyl-linked serine ubiquitination of USP14 by the SidE family effectors of Legionella excludes p62 from the bacterial phagosome. Cell Rep 2023; 42:112817. [PMID: 37471226 DOI: 10.1016/j.celrep.2023.112817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Xenophagy is an evolutionarily conserved host defensive mechanism to eliminate invading microorganisms through autophagic machinery. The intracellular bacterial pathogen Legionella pneumophila can avoid clearance by the xenophagy pathway via the actions of multiple Dot/Icm effector proteins. Previous studies have shown that p62, an adaptor protein involved in xenophagy signaling, is excluded from Legionella-containing vacuoles (LCVs). Such defects are attributed to the multifunctional SidE family effectors (SidEs) that exhibit classic deubiquitinase (DUB) and phosphoribosyl ubiquitination (PR-ubiquitination) activities, yet the mechanism remains elusive. In the present study, we demonstrate that the host DUB USP14 is PR-ubiquitinated by SidEs at multiple serine residues, which impairs its DUB activity and its interactions with p62. The exclusion of p62 from the bacterial phagosome requires the ubiquitin ligase but not the DUB activity of SidEs. These results reveal that PR-ubiquitination of USP14 by SidEs contributes to the evasion of xenophagic clearance by L. pneumophila.
Collapse
Affiliation(s)
- Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130062, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xindi Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130062, China
| | - Kaiwen Yu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Yuan H, Zhou L, Chen Y, You J, Hu H, Li Y, Huang R, Wu S. Salmonella effector SopF regulates PANoptosis of intestinal epithelial cells to aggravate systemic infection. Gut Microbes 2023; 15:2180315. [PMID: 36803521 PMCID: PMC9980482 DOI: 10.1080/19490976.2023.2180315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
SopF, a newly discovered effector secreted by Salmonella pathogenicity island-1 type III secretion system (T3SS1), was reported to target phosphoinositide on host cell membrane and aggravate systemic infection, while its functional relevance and underlying mechanisms have yet to be elucidated. PANoptosis (pyroptosis, apoptosis, and necroptosis) of intestinal epithelial cells (IECs) has been characterized as a pivotal host defense to limit the dissemination of foodborne pathogens, whereas the effect of SopF on IECs PANoptosis induced by Salmonella is rather limited. Here, we show that SopF can attenuate intestinal inflammation and suppress IECs expulsion to promote bacterial dissemination in mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). We revealed that SopF could activate phosphoinositide-dependent protein kinase-1 (PDK1) to phosphorylate p90 ribosomal S6 kinase (RSK) which down-regulated Caspase-8 activation. Caspase-8 inactivated by SopF resulted in inhibition of pyroptosis and apoptosis, but promotion of necroptosis. The administration of both AR-12 (PDK1 inhibitor) and BI-D1870 (RSK inhibitor) potentially overcame Caspase-8 blockade and subverted PANoptosis challenged by SopF. Collectively, these findings demonstrate that this virulence strategy elicited by SopF aggregates systemic infection via modulating IEC PANoptosis through PDK1-RSK signaling, which throws light on novel functions of bacterial effectors, as well as a mechanism employed by pathogens to counteract host immune defense.
Collapse
Affiliation(s)
- Haibo Yuan
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Liting Zhou
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Yilin Chen
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiayi You
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongye Hu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Rui Huang
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine,CONTACT Shuyan Wu; Rui Huang ; Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu215123, PR China
| |
Collapse
|
8
|
Zubair M, Wang J, Yu Y, Faisal M, Qi M, Shah AU, Feng Z, Shao G, Wang Y, Xiong Q. Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases. Front Vet Sci 2022; 9:1079359. [PMID: 36601329 PMCID: PMC9806867 DOI: 10.3389/fvets.2022.1079359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Proteomics is playing an increasingly important role in identifying pathogens, emerging and re-emerging infectious agents, understanding pathogenesis, and diagnosis of diseases. Recently, more advanced and sophisticated proteomics technologies have transformed disease diagnostics and vaccines development. The detection of pathogens is made possible by more accurate and time-constrained technologies, resulting in an early diagnosis. More detailed and comprehensive information regarding the proteome of any noxious agent is made possible by combining mass spectrometry with various gel-based or short-gun proteomics approaches recently. MALDI-ToF has been proved quite useful in identifying and distinguishing bacterial pathogens. Other quantitative approaches are doing their best to investigate bacterial virulent factors, diagnostic markers and vaccine candidates. Proteomics is also helping in the identification of secreted proteins and their virulence-related functions. This review aims to highlight the role of cutting-edge proteomics approaches in better understanding the functional genomics of pathogens. This also underlines the limitations of proteomics in bacterial secretome research.
Collapse
Affiliation(s)
- Muhammad Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Faisal
- Division of Hematology, Department of Medicine, The Ohio State University College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Mingpu Qi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abid Ullah Shah
- National Research Centre of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Wang
- China Pharmaceutical University, Nanjing, China,*Correspondence: Yu Wang
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,School of Life Sciences, Jiangsu University, Zhenjiang, China,Qiyan Xiong
| |
Collapse
|
9
|
Wang Y, Ramos M, Jefferson M, Zhang W, Beraza N, Carding S, Powell PP, Stewart JP, Mayer U, Wileman T. Control of infection by LC3-associated phagocytosis, CASM, and detection of raised vacuolar pH by the V-ATPase-ATG16L1 axis. SCIENCE ADVANCES 2022; 8:eabn3298. [PMID: 36288298 PMCID: PMC9604538 DOI: 10.1126/sciadv.abn3298] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/07/2022] [Indexed: 05/29/2023]
Abstract
The delivery of pathogens to lysosomes for degradation provides an important defense against infection. Degradation is enhanced when LC3 is conjugated to endosomes and phagosomes containing pathogens to facilitate fusion with lysosomes. In phagocytic cells, TLR signaling and Rubicon activate LC3-associated phagocytosis (LAP) where stabilization of the NADPH oxidase leads to sustained ROS production and raised vacuolar pH. Raised pH triggers the assembly of the vacuolar ATPase on the vacuole membrane where it binds ATG16L1 to recruit the core LC3 conjugation complex (ATG16L1:ATG5-12). This V-ATPase-ATG16L1 axis is also activated in nonphagocytic cells to conjugate LC3 to endosomes containing extracellular microbes. Pathogens provide additional signals for recruitment of LC3 when they raise vacuolar pH with pore-forming toxins and proteins, phospholipases, or specialized secretion systems. Many microbes secrete virulence factors to inhibit ROS production and/or the V-ATPase-ATG16L1 axis to slow LC3 recruitment and avoid degradation in lysosomes.
Collapse
Affiliation(s)
- Yingxue Wang
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| | - Maria Ramos
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| | | | - Weijiao Zhang
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | - Penny P. Powell
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - James P. Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ulrike Mayer
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
10
|
Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022; 12:989451. [PMID: 36061869 PMCID: PMC9433700 DOI: 10.3389/fcimb.2022.989451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica is capable of invading different host cell types including epithelial cells and M cells during local infection, and immune cells and fibroblasts during the subsequent systemic spread. The intracellular lifestyles of Salmonella inside different cell types are remarkable for their distinct residential niches, and their varying replication rates. To study this, researchers have employed different cell models, such as various epithelial cells, immune cells, and fibroblasts. In epithelial cells, S. Typhimurium dwells within modified endolysosomes or gains access to the host cytoplasm. In the cytoplasm, the pathogen is exposed to the host autophagy machinery or poised for rapid multiplication, whereas it grows at a slower rate or remains dormant within the endomembrane-bound compartments. The swift bimodal lifestyle is not observed in fibroblasts and immune cells, and it emerges that these cells handle intracellular S. Typhimurium through different clearance machineries. Moreover, in these cell types S. Typhimurium grows withing modified phagosomes of distinct functional composition by adopting targeted molecular countermeasures. The preference for one or the other intracellular niche and the diverse cell type-specific Salmonella lifestyles are determined by the complex interactions between a myriad of bacterial effectors and host factors. It is important to understand how this communication is differentially regulated dependent on the host cell type and on the distinct intracellular growth rate. To support the efforts in deciphering Salmonella invasion across the different infection models, we provide a systematic comparison of the findings yielded from cell culture models. We also outline the future directions towards a better understanding of these differential Salmonella intracellular lifestyles.
Collapse
Affiliation(s)
- Chak Hon Luk
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| | - Jost Enninga
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| |
Collapse
|
11
|
Lissens M, Joos M, Lories B, Steenackers HP. Evolution-proof inhibitors of public good cooperation: a screening strategy inspired by social evolution theory. FEMS Microbiol Rev 2022; 46:6604382. [PMID: 35675280 PMCID: PMC9616471 DOI: 10.1093/femsre/fuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Indexed: 01/07/2023] Open
Abstract
Interference with public good cooperation provides a promising novel antimicrobial strategy since social evolution theory predicts that resistant mutants will be counter-selected if they share the public benefits of their resistance with sensitive cells in the population. Although this hypothesis is supported by a limited number of pioneering studies, an extensive body of more fundamental work on social evolution describes a multitude of mechanisms and conditions that can stabilize public behaviour, thus potentially allowing resistant mutants to thrive. In this paper we theorize on how these different mechanisms can influence the evolution of resistance against public good inhibitors. Based hereon, we propose an innovative 5-step screening strategy to identify novel evolution-proof public good inhibitors, which involves a systematic evaluation of the exploitability of public goods under the most relevant experimental conditions, as well as a careful assessment of the most optimal way to interfere with their action. Overall, this opinion paper is aimed to contribute to long-term solutions to fight bacterial infections.
Collapse
Affiliation(s)
- Maries Lissens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Mathieu Joos
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Hans P Steenackers
- Corresponding author: Centre of Microbial and Plant Genetics (CMPG), Kasteelpark Arenberg 20 – Box 2460, B-3001 Leuven, Belgium. E-mail:
| |
Collapse
|
12
|
Zheng L, Wei F, Li G. The crosstalk between bacteria and host autophagy: host defense or bacteria offense. J Microbiol 2022; 60:451-460. [DOI: 10.1007/s12275-022-2009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
|
13
|
Lau N, Thomas DR, Lee YW, Knodler LA, Newton HJ. Perturbation of ATG16L1 function impairs the biogenesis of Salmonella and Coxiella replication vacuoles. Mol Microbiol 2022; 117:235-251. [PMID: 34874584 PMCID: PMC8844213 DOI: 10.1111/mmi.14858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
Anti-bacterial autophagy, known as xenophagy, is a host innate immune response that targets invading pathogens for degradation. Some intracellular bacteria, such as the enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), utilize effector proteins to interfere with autophagy. One such S. Typhimurium effector, SopF, inhibits recruitment of ATG16L1 to damaged Salmonella-containing vacuoles (SCVs), thereby inhibiting the host xenophagic response. SopF is also required to maintain the integrity of the SCV during the early stages of infection. Here we show disruption of the SopF-ATG16L1 interaction leads to an increased proportion of cytosolic S. Typhimurium. Furthermore, SopF was utilized as a molecular tool to examine the requirement for ATG16L1 in the intracellular lifestyle of Coxiella burnetii, a bacterium that requires a functional autophagy pathway to replicate efficiently and form a single, spacious vacuole called the Coxiella-containing vacuole (CCV). ATG16L1 is required for CCV expansion and fusion but does not influence C. burnetii replication. In contrast, SopF did not affect CCV formation or replication, demonstrating that the contribution of ATG16L1 to CCV biogenesis is via its role in autophagy, not xenophagy. This study highlights the diverse capabilities of bacterial effector proteins to dissect the molecular details of host-pathogen interactions.
Collapse
Affiliation(s)
- Nicole Lau
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David R Thomas
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Wei Lee
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Leigh A Knodler
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Hayley J Newton
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Xu Y, Cheng S, Zeng H, Zhou P, Ma Y, Li L, Liu X, Shao F, Ding J. ARF GTPases activate Salmonella effector SopF to ADP-ribosylate host V-ATPase and inhibit endomembrane damage-induced autophagy. Nat Struct Mol Biol 2022; 29:67-77. [PMID: 35046574 DOI: 10.1038/s41594-021-00710-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Selective autophagy helps eukaryotes to cope with endogenous dangers or foreign invaders; its initiation often involves membrane damage. By studying a Salmonella effector SopF, we recently identified the vacuolar ATPase (V-ATPase)-ATG16L1 axis that initiates bacteria-induced autophagy. Here we show that SopF is an ADP-ribosyltransferase specifically modifying Gln124 of ATP6V0C in V-ATPase. We identify GTP-bound ADP-ribosylation factor (ARF) GTPases as a cofactor required for SopF functioning. Crystal structures of SopF-ARF1 complexes not only reveal structural basis of SopF ADP-ribosyltransferase activity but also a unique effector-binding mode adopted by ARF GTPases. Further, the N terminus of ARF1, although dispensable for high-affinity binding to SopF, is critical for activating SopF to modify ATP6V0C. Moreover, lysosome or Golgi damage-induced autophagic LC3 activation is inhibited by SopF or Q124A mutation of ATP6V0C, thus also mediated by the V-ATPase-ATG16L1 axis. In this process, the V-ATPase functions to sense membrane damages, which can be uncoupled from its proton-pumping activity.
Collapse
Affiliation(s)
- Yue Xu
- National Institute of Biological Sciences, Beijing, China.,Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Huan Zeng
- National Institute of Biological Sciences, Beijing, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ping Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Jingjin Ding
- National Institute of Biological Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate. Sci Rep 2021; 11:22803. [PMID: 34815429 PMCID: PMC8611075 DOI: 10.1038/s41598-021-02054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Numerous studies have demonstrated the key role of the Salmonella Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of Salmonella in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization. Salmonella resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which Salmonella Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of Salmonella Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type Salmonella and T3SS1-invalidated Salmonella followed a common pathway leading to the formation of a Salmonella containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to Salmonella multiplication as well as the formation of a tubular network resembling Salmonella induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that Salmonella Typhimurium invasion and intracellular survival can be completely independent of T3SS1.
Collapse
|
16
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
17
|
Bioanalysis Rising Star Award 2021: announcing our finalists. Bioanalysis 2021. [DOI: 10.4155/bio-2021-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Vieira KCDO, Silva HRAD, Rocha IPM, Barboza E, Eller LKW. Foodborne pathogens in the omics era. Crit Rev Food Sci Nutr 2021; 62:6726-6741. [PMID: 33783282 DOI: 10.1080/10408398.2021.1905603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outbreaks and deaths related to Foodborne Diseases (FBD) occur constantly in the world, as a result of the consumption of contaminated foodstuffs with pathogens such as Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella spp, Clostridium spp. and Campylobacter spp. The purpose of this review is to discuss the main omic techniques applied in foodborne pathogen and to demonstrate their functionalities through the food chain and to guarantee the food safety. The main techniques presented are genomic, transcriptomic, secretomic, proteomic, and metabolomic, which together, in the field of food and nutrition, are known as "Foodomics." This review had highlighted the potential of omics to integrate variables that contribute to food safety and to enable us to understand their application on foodborne diseases. The appropriate use of these techniques had driven the definition of critical parameters to achieve successful results in the improvement of consumers health, costs and to obtain safe and high-quality products.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barboza
- Health Sciences Faculty, University of Western Sao Paulo, Presidente Prudente, Sao Paulo, Brazil
| | | |
Collapse
|
19
|
Tambassi M, Berni M, Bracchi C, Scaltriti E, Morganti M, Bolzoni L, Tanner JR, Thilliez G, Kingsley RA, Pongolini S, Casadei G. Mutation of hilD in a Salmonella Derby lineage linked to swine adaptation and reduced risk to human health. Sci Rep 2020; 10:21539. [PMID: 33299016 PMCID: PMC7726570 DOI: 10.1038/s41598-020-78443-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
AbstractSalmonella enterica variants exhibit diverse host adaptation, outcome of infection, and associated risk to food safety. Analysis of the distribution of Salmonella enterica serovar Derby (S. Derby) subtypes in human and swine identified isolates with a distinct PFGE profile that were significantly under-represented in human infections, consistent with further host adaptation to swine. Here we show that isolates with this PFGE profile form a distinct phylogenetic sub-clade within S. Derby and exhibit a profound reduction in invasion of human epithelial cells, and a relatively small reduction in swine epithelial cells. A single missense mutation in hilD, that encodes the master-regulator of the Salmonella Pathogenicity Island 1 (SPI-1), was present in the adapted lineage. The missense mutation resulted in a loss of function of HilD that accounted for reduced invasion in human epithelial cells. The relatively small impact of the mutation on interaction with swine cells was consistent with an alternative mechanism of invasion in this pathogen-host combination.
Collapse
|
20
|
Xie Z, Zhang Y, Huang X. Evidence and speculation: the response of Salmonella confronted by autophagy in macrophages. Future Microbiol 2020; 15:1277-1286. [PMID: 33026883 DOI: 10.2217/fmb-2020-0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from self-limited gastroenteritis to typhoid fever. Macrophages are immune cells that engulf and restrict Salmonella. These cells will carry Salmonella into the circulatory system and provoke a systemic infection. Therefore, the interaction between macrophages and intracellular Salmonella is vital for its pathogenicity. As one of the immune responses of macrophages, autophagy, along with the fusion of autophagosomes with lysosomes, occupies an important position in eliminating Salmonella. However, Salmonella that can overcome cellular defensive responses and infect neighboring cells must derive strategies to escape autophagy. This review introduces novel findings on Salmonella and macrophage autophagy as a mechanism against infection and explores the strategies used by Salmonella to escape autophagy.
Collapse
Affiliation(s)
- Zhongyi Xie
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.,International Genome Center, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ying Zhang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
21
|
Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions. Pathogens 2020; 9:pathogens9070581. [PMID: 32708900 PMCID: PMC7400052 DOI: 10.3390/pathogens9070581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023] Open
Abstract
As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics has evolved into a powerful technological platform that can quantitatively measure thousands of proteins in terms of their expression as well as post-translational modifications. Here, we will review the applications of high-throughput proteomic technologies in understanding the dynamic reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore, we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges with current proteomic platforms in the context of host-pathogen interactions and highlight some emerging technologies that may offer the promise of tackling these problems.
Collapse
|
22
|
Abstract
Xenophagy, a unique type of selective macroautophagy/autophagy, targets invading pathogens as part of the host immune response. In order to survive within the host, bacteria have established various self-defense mechanisms. In a recent paper from Feng Shao's lab, the Salmonella effector protein SopF has been demonstrated to block xenophagy by interrupting the vacuolar type H+-translocating (v-) ATPase-ATG16L1 axis, which is important for antibacterial autophagy initiation. SopF can specifically ADP-ribosylate Gln124 on ATP6V0C, a v-ATPase component, thus influencing recruitment of ATG16L1 onto the bacteria-containing vacuole within the host cytosol.Abbreviations: ATG: autophagy-related; S. Typhimurium: Salmonella enterica serovar Typhimurium; T3SS: type III secretion system.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
23
|
Pao KC, Rape M. Tug of War in the Xenophagy World. Trends Cell Biol 2019; 29:767-769. [PMID: 31471010 DOI: 10.1016/j.tcb.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Xenophagy, the process of eliminating intracellular pathogens through the autophagy machinery, is an important defense mechanism against infectious disease, yet the underlying molecular mechanisms remain incompletely understood. Recent work (Xu et al., Cell, 2019) used the discovery of an inhibitor of xenophagy, SopF, to identify a SopF-sensitive mechanism that allows mammalian cells to detect invading bacteria.
Collapse
Affiliation(s)
- Kuan Chuan Pao
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Lau N, Haeberle AL, O’Keeffe BJ, Latomanski EA, Celli J, Newton HJ, Knodler LA. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog 2019; 15:e1007959. [PMID: 31339948 PMCID: PMC6682159 DOI: 10.1371/journal.ppat.1007959] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/05/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The enteric bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), utilizes two type III secretion systems (T3SSs) to invade host cells, survive and replicate intracellularly. T3SS1 and its dedicated effector proteins are required for bacterial entry into non-phagocytic cells and establishment and trafficking of the nascent Salmonella-containing vacuole (SCV). Here we identify the first T3SS1 effector required to maintain the integrity of the nascent SCV as SopF. SopF associates with host cell membranes, either when translocated by bacteria or ectopically expressed. Recombinant SopF binds to multiple phosphoinositides in protein-lipid overlays, suggesting that it targets eukaryotic cell membranes via phospholipid interactions. In yeast, the subcellular localization of SopF is dependent on the activity of Mss4, a phosphatidylinositol 4-phosphate 5-kinase that generates PI(4,5)P2 from PI(4)P, indicating that membrane recruitment of SopF requires specific phospholipids. Ectopically expressed SopF partially colocalizes with specific phosphoinositide pools present on the plasma membrane in mammalian cells and with cytoskeletal-associated markers at the leading edge of cells. Translocated SopF concentrates on plasma membrane ruffles and around intracellular bacteria, presumably on the SCV. SopF is not required for bacterial invasion of non-phagocytic cells but is required for maintenance of the internalization vacuole membrane as infection with a S. Typhimurium ΔsopF mutant led to increased lysis of the SCV compared to wild type bacteria. Our structure-function analysis shows that the carboxy-terminal seven amino acids of SopF are essential for its membrane association in host cells and to promote SCV membrane stability. We also describe that SopF and another T3SS1 effector, SopB, act antagonistically to modulate nascent SCV membrane dynamics. In summary, our study highlights that a delicate balance of type III effector activities regulates the stability of the Salmonella internalization vacuole.
Collapse
Affiliation(s)
- Nicole Lau
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Brittany J. O’Keeffe
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Eleanor A. Latomanski
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Hayley J. Newton
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (LAK); (HJN)
| | - Leigh A. Knodler
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- * E-mail: (LAK); (HJN)
| |
Collapse
|
25
|
A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy. Cell 2019; 178:552-566.e20. [PMID: 31327526 DOI: 10.1016/j.cell.2019.06.007] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 12/20/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Antibacterial autophagy (xenophagy) is an important host defense, but how it is initiated is unclear. Here, we performed a bacterial transposon screen and identified a T3SS effector SopF that potently blocked Salmonella autophagy. SopF was a general xenophagy inhibitor without affecting canonical autophagy. S. Typhimurium ΔsopF resembled S. flexneri ΔvirAΔicsB with the majority of intracellular bacteria targeted by autophagy, permitting a CRISPR screen that identified host V-ATPase as an essential factor. Upon bacteria-caused vacuolar damage, the V-ATPase recruited ATG16L1 onto bacteria-containing vacuole, which was blocked by SopF. Mammalian ATG16L1 bears a WD40 domain required for interacting with the V-ATPase. Inhibiting autophagy by SopF promoted S. Typhimurium proliferation in vivo. SopF targeted Gln124 of ATP6V0C in the V-ATPase for ADP-ribosylation. Mutation of Gln124 also blocked xenophagy, but not canonical autophagy. Thus, the discovery of SopF reveals the V-ATPase-ATG16L1 axis that critically mediates autophagic recognition of intracellular pathogen.
Collapse
|
26
|
Visser JG, Van Staden ADP, Smith C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front Pharmacol 2019; 10:22. [PMID: 30740053 PMCID: PMC6355695 DOI: 10.3389/fphar.2019.00022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
With the effectiveness of therapeutic agents ever decreasing and the increased incidence of multi-drug resistant pathogens, there is a clear need for administration of more potent, potentially more toxic, drugs. Alternatively, biopharmaceuticals may hold potential but require specialized protection from premature in vivo degradation. Thus, a paralleled need for specialized drug delivery systems has arisen. Although cell-mediated drug delivery is not a completely novel concept, the few applications described to date are not yet ready for in vivo application, for various reasons such as drug-induced carrier cell death, limited control over the site and timing of drug release and/or drug degradation by the host immune system. Here, we present our hypothesis for a new drug delivery system, which aims to negate these limitations. We propose transport of nanoparticle-encapsulated drugs inside autologous macrophages polarized to M1 phenotype for high mobility and treated to induce transient phagosome maturation arrest. In addition, we propose a significant shift of existing paradigms in the study of host-microbe interactions, in order to study microbial host immune evasion and dissemination patterns for their therapeutic utilization in the context of drug delivery. We describe a system in which microbial strategies may be adopted to facilitate absolute control over drug delivery, and without sacrificing the host carrier cells. We provide a comprehensive summary of the lessons we can learn from microbes in the context of drug delivery and discuss their feasibility for in vivo therapeutic application. We then describe our proposed "synthetic microbe drug delivery system" in detail. In our opinion, this multidisciplinary approach may hold the solution to effective, controlled drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| | | | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|