1
|
Lv J, Su M, Wang Y, Yang J, Liang Y, Chen L, Lei L. Yunvjian decoction mitigates hyperglycemia in rats induced by a high-fat diet and streptozotocin via reducing oxidative stress in pancreatic beta cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118045. [PMID: 38479546 DOI: 10.1016/j.jep.2024.118045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yunvjian (YNJ), a traditional Chinese herbal formula first reported in Jing Yue Quan Shu, is commonly used in the clinical treatment of type 2 diabetes mellitus (T2DM). However, the mechanism by which YNJ affects T2DM remains unclear. AIM OF THE STUDY This study aimed to assess the therapeutic effects of YNJ on T2DM and explore the potential mechanism involved. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) was used to identify the chemical compounds of YNJ. The anti-T2DM effects of YNJ were observed in a high-fat diet/streptozotocin induced rat model. The type 2 diabetic rats were prepared as follows: rats were fed a high-fat diet for four weeks and then intraperitoneally injected with a low dose (30 mg/kg) of streptozotocin. YNJ and the positive control metformin were used in these experiments. Biochemical assays were implemented to determine the fasting blood glucose, glucose tolerance, insulin sensitivity, serum lipid levels, and oxidative stress index of the pancreas. Hematoxylin-eosin (H&E) staining was used to assess histopathological alterations in the pancreas. The mechanism by which YNJ affects T2DM was evaluated in INS-1 cells treated with glucose and high sodium palmitate. YNJ-supplemented serum was used in these experiments. Methyl thiazolyl tetrazolium assays, enzyme-linked immunosorbent assays, Nile red staining, flow cytometric analysis, and Western blotting were used to assess apoptosis, insulin secretion, lipid accumulation, reactive oxygen species production, and protein levels. RESULTS Five major compounds were identified in YNJ. In high-fat diet/streptozotocin-induced diabetic rats, YNJ-M notably decreased fasting blood glucose and lipid levels; ameliorated glucose tolerance, insulin sensitivity, and islet morphology; reduced Malondialdehyde levels; and restored superoxide dismutase activity in the pancreatic islets. Furthermore, the effect of YNJ-M was significantly greater than that of YNJ-L, and YNJ-H had little effect on diabetic rats. In vitro experiments revealed that YNJ-supplemented serum (10%, 15%, and 20%) dramatically suppressed apoptosis, mitigated intracellular lipid accumulation and reduced intracellular oxidative stress levels in a dose-dependent manner. Additionally, YNJ-supplemented serum increased the protein expression of Nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, and superoxide dismutase 1 and inhibited the protein expression of Kelch-like ECH-associated protein 1. CONCLUSION YNJ ameliorates high-fat diet/streptozotocin induced experimental T2DM. The underlying mechanism involves reducing oxidative stress in pancreatic beta cells. The findings of this study provide scientific justification for the application of the traditional medicine YNJ in treating T2DM.
Collapse
Affiliation(s)
- Jie Lv
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China.
| | - Meng Su
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China.
| | - Yansong Wang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China
| | - Juan Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China
| | - Yanni Liang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China
| | - Lin Chen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China
| | - Liyan Lei
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China.
| |
Collapse
|
2
|
Feng X, Xuan R, Dong Y, Wu X, Cheng Y, Yuan Z, Dong H, Han J, Zhong F, Zhao J, Fan X. Changes in Clinical Manifestations Due to AFLD Retyping Based on the New MAFLD Criteria: An Observational Study Based on the National Inpatient Sample Database. Diagnostics (Basel) 2023; 13:488. [PMID: 36766593 PMCID: PMC9914804 DOI: 10.3390/diagnostics13030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: As the introduction of "positive" diagnostic criteria for metabolic dysfunction-associated fatty liver disease (MAFLD) does not exclude alcohol consumption, some patients originally diagnosed with alcoholic fatty liver disease (AFLD) may be diagnosed with dual- etiology fatty liver disease (AFLD&MAFLD), which requires us to urgently explore the impact of the changes in this classification of AFLD on clinical manifestations. (2) Methods: Utilizing data from the Nationwide Inpatient Sample database 2016-2018, a total of 9269 participants with AFLD were selected. With the definition of MAFLD, these patients were further categorized into two groups: single AFLD and AFLD&MAFLD. The primary outcome was the risk of comorbidities and organ failures. The secondary outcomes were the length of stay, total charges, and in-hospital all-cause mortality. (3) Results: The patients with AFLD&MAFLD were older, were predominantly male, and had more comorbidities and organ failures compared to the patients with AFLD. These comorbidities included coronary atherosclerosis, myocardial infarction, cerebrovascular disease, arrhythmia, asthma, chronic obstructive pulmonary disease, and chronic kidney disease (all p values < 0.05). The patients with AFLD&MAFLD were more likely to develop acute and chronic heart and/or kidney failures than those with single AFLD (all p < 0.05). The length of stay and total charges of the patients in the AFLD&MAFLD group were greater than the single AFLD group (p = 0.029 and p < 0.001, respectively). No significant difference in all-cause mortality was observed. (4) Conclusions: The patients with AFLD&MAFLD have more comorbidities and organ failures, longer hospital stays, and higher hospitalization costs than the patients with single AFLD. Hence, patients with dual-etiology fatty liver disease deserve more attention from clinical staff during treatment.
Collapse
Affiliation(s)
- Xiaoshan Feng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Ruirui Xuan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Yingchun Dong
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Yiping Cheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Zinuo Yuan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Hang Dong
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Junming Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Fang Zhong
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| |
Collapse
|
3
|
Cheraghi O, Dabirmanesh B, Ghazi F, Amanlou M, Atabakhshi-kashi M, Fathollahi Y, Khajeh K. The effect of Nrf2 deletion on the proteomic signature in a human colorectal cancer cell line. BMC Cancer 2022; 22:979. [PMID: 36100939 PMCID: PMC9472369 DOI: 10.1186/s12885-022-10055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Colorectal cancer is one of the most common cancer and the third leading cause of death worldwide. Increased generation of reactive oxygen species (ROS) is observed in many types of cancer cells. Several studies have reported that an increase in ROS production could affect the expression of proteins involved in ROS-scavenging, detoxification and drug resistance. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a known transcription factor for cellular response to oxidative stress. Several researches exhibited that Nrf2 could exert multiple functions and expected to be a promising therapeutic target in many cancers. Here, Nrf2 was knocked down in colorectal cancer cell line HT29 and changes that occurred in signaling pathways and survival mechanisms were evaluated. Methods The influence of chemotherapy drugs (doxorubicin and cisplatin), metastasis and cell viability were investigated. To explore the association between specific pathways and viability in HT29-Nrf2−, proteomic analysis, realtime PCR and western blotting were performed. Results In the absence of Nrf2 (Nrf2−), ROS scavenging and detoxification potential were dramatically faded and the HT29-Nrf2− cells became more susceptible to drugs. However, a severe decrease in viability was not observed. Bioinformatic analysis of proteomic data revealed that in Nrf2− cells, proteins involved in detoxification processes, respiratory electron transport chain and mitochondrial-related compartment were down regulated. Furthermore, proteins related to MAPKs, JNK and FOXO pathways were up regulated that possibly helped to overcome the detrimental effect of excessive ROS production. Conclusions Our results revealed MAPKs, JNK and FOXO pathways connections in reducing the deleterious effect of Nrf2 deficiency, which can be considered in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10055-y.
Collapse
|
4
|
Proteomic analysis reveals USP7 as a novel regulator of palmitic acid-induced hepatocellular carcinoma cell death. Cell Death Dis 2022; 13:563. [PMID: 35732625 PMCID: PMC9217975 DOI: 10.1038/s41419-022-05003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Nutrient surplus and consequent free fatty acid accumulation in the liver cause hepatosteatosis. The exposure of free fatty acids to cultured hepatocyte and hepatocellular carcinoma cell lines induces cellular stress, organelle adaptation, and subsequent cell death. Despite many studies, the mechanism associated with lipotoxicity and subsequent cell death still remains poorly understood. Here, we have used the proteomics approach to circumvent the mechanism for lipotoxicity using hepatocellular carcinoma cells as a model. Our quantitative proteomics data revealed that ectopic lipids accumulation in cells severely affects the ubiquitin-proteasomal system. The palmitic acid (PA) partially lowered the expression of deubiquitinating enzyme USP7 which subsequently destabilizes p53 and promotes mitotic entry of cells. Our global phosphoproteomics analysis also provides strong evidence of an altered cell cycle checkpoint proteins' expression that abrogates early G2/M checkpoints recovery with damaged DNA and induced mitotic catastrophe leading to hepatocyte death. We observe that palmitic acid prefers apoptosis-inducing factor (AIF) mediated cell death by depolarizing mitochondria and translocating AIF to the nucleus. In summary, the present study provides evidence of PA-induced hepatocellular death mediated by deubiquitinase USP7 downregulation and subsequent mitotic catastrophe.
Collapse
|
5
|
Asrih M, Dusaulcy R, Gosmain Y, Philippe J, Somm E, Jornayvaz FR, Kang BE, Jo Y, Choi MJ, Yi HS, Ryu D, Gariani K. Growth differentiation factor-15 prevents glucotoxicity and connexin-36 downregulation in pancreatic beta-cells. Mol Cell Endocrinol 2022; 541:111503. [PMID: 34763008 DOI: 10.1016/j.mce.2021.111503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023]
Abstract
Pancreatic beta cell dysfunction is a hallmark of type 2 diabetes. Growth differentiation factor 15 (GDF15), which is an energy homeostasis regulator, has been shown to improve several metabolic parameters in the context of diabetes. However, its effects on pancreatic beta-cell remain to be identified. We, therefore, performed experiments using cell models and histological sectioning of wild-type and knock-out GDF15 mice to determine the effect of GDF15 on insulin secretion and cell viability. A bioinformatics analysis was performed to identify GDF15-correlated genes. GDF15 prevents glucotoxicity-mediated altered glucose-stimulated insulin secretion (GSIS) and connexin-36 downregulation. Inhibition of endogenous GDF15 reduced GSIS in cultured mouse beta-cells under standard conditions while it had no impact on GSIS in cells exposed to glucolipotoxicity, which is a diabetogenic condition. Furthermore, this inhibition exacerbated glucolipotoxicity-reduced cell survival. This suggests that endogenous GDF15 in beta-cell is required for cell survival but not GSIS in the context of glucolipotoxicity.
Collapse
Affiliation(s)
- Mohamed Asrih
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Rodolphe Dusaulcy
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Yvan Gosmain
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Jacques Philippe
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Baeki E Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419, Suwon, Republic of Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419, Suwon, Republic of Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, 35015, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University School of Medicine, 35015, Daejeon, Republic of Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, 35015, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University School of Medicine, 35015, Daejeon, Republic of Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419, Suwon, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 16419, Suwon, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, 06351, Seoul, Republic of Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland.
| |
Collapse
|
6
|
He X, Gao F, Hou J, Li T, Tan J, Wang C, Liu X, Wang M, Liu H, Chen Y, Yu Z, Yang M. Metformin inhibits MAPK signaling and rescues pancreatic aquaporin 7 expression to induce insulin secretion in type 2 diabetes mellitus. J Biol Chem 2021; 297:101002. [PMID: 34303707 PMCID: PMC8374641 DOI: 10.1016/j.jbc.2021.101002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin is the first-line antidiabetic agent for type 2 diabetes mellitus (T2DM) treatment. Although accumulated evidence has shed light on the consequences of metformin action, the precise mechanisms of its action, especially in the pancreas, are not fully understood. Aquaporin 7 (AQP7) acts as a critical regulator of intraislet glycerol content, which is necessary for insulin production and secretion. The aim of this study was to investigate the effects of different doses of metformin on AQP7 expression and explore the possible mechanism of its protective effects in the pancreatic islets. We used an in vivo model of high-fat diet in streptozocin-induced diabetic rats and an in vitro model of rat pancreatic β-cells (INS-1 cells) damaged by hyperglycemia and hyperlipidemia. Our data showed that AQP7 expression levels were decreased, whereas p38 and JNK mitogen-activated protein kinases (MAPKs) were activated in vivo and in vitro in response to hyperglycemia and hyperlipidemia. T2DM rats treated with metformin demonstrated a reduction in blood glucose levels and increased regeneration of pancreatic β-cells. In addition, metformin upregulated AQP7 expression as well as inhibited activation of p38 and JNK MAPKs both in vivo and in vitro. Overexpression of AQP7 increased glycerol influx into INS-1 cells, whereas inhibition of AQP7 reduced glycerol influx, thereby decreasing subsequent insulin secretion. Our findings demonstrate a new mechanism by which metformin suppresses the p38 and JNK pathways, thereby upregulating pancreatic AQP7 expression and promoting glycerol influx into pancreatic β-cells and subsequent insulin secretion in T2DM.
Collapse
Affiliation(s)
- Xueting He
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Fei Gao
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiaojiao Hou
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tingjie Li
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiang Tan
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chunyu Wang
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaoyan Liu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Maoqi Wang
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hui Liu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuqin Chen
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhuoyuan Yu
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mei Yang
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Rahmatbakhsh M, Gagarinova A, Babu M. Bioinformatic Analysis of Temporal and Spatial Proteome Alternations During Infections. Front Genet 2021; 12:667936. [PMID: 34276775 PMCID: PMC8283032 DOI: 10.3389/fgene.2021.667936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial pathogens have evolved numerous mechanisms to hijack host's systems, thus causing disease. This is mediated by alterations in the combined host-pathogen proteome in time and space. Mass spectrometry-based proteomics approaches have been developed and tailored to map disease progression. The result is complex multidimensional data that pose numerous analytic challenges for downstream interpretation. However, a systematic review of approaches for the downstream analysis of such data has been lacking in the field. In this review, we detail the steps of a typical temporal and spatial analysis, including data pre-processing steps (i.e., quality control, data normalization, the imputation of missing values, and dimensionality reduction), different statistical and machine learning approaches, validation, interpretation, and the extraction of biological information from mass spectrometry data. We also discuss current best practices for these steps based on a collection of independent studies to guide users in selecting the most suitable strategies for their dataset and analysis objectives. Moreover, we also compiled the list of commonly used R software packages for each step of the analysis. These could be easily integrated into one's analysis pipeline. Furthermore, we guide readers through various analysis steps by applying these workflows to mock and host-pathogen interaction data from public datasets. The workflows presented in this review will serve as an introduction for data analysis novices, while also helping established users update their data analysis pipelines. We conclude the review by discussing future directions and developments in temporal and spatial proteomics and data analysis approaches. Data analysis codes, prepared for this review are available from https://github.com/BabuLab-UofR/TempSpac, where guidelines and sample datasets are also offered for testing purposes.
Collapse
Affiliation(s)
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
8
|
Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. Int J Mol Sci 2021; 22:ijms22041509. [PMID: 33546200 PMCID: PMC7913369 DOI: 10.3390/ijms22041509] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a chronic metabolic disorder characterized by inappropriately elevated glucose levels as a result of impaired pancreatic β cell function and insulin resistance. Extensive studies have been conducted to elucidate the mechanism involved in the development of β cell failure and death under diabetic conditions such as hyperglycemia, hyperlipidemia, and inflammation. Of the plethora of proposed mechanisms, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and oxidative stress have been shown to play a central role in promoting β cell dysfunction. It has become more evident in recent years that these 3 factors are closely interrelated and importantly aggravate each other. Oxidative stress in particular is of great interest to β cell health and survival as it has been shown that β cells exhibit lower antioxidative capacity. Therefore, this review will focus on discussing factors that contribute to the development of oxidative stress in pancreatic β cells and explore the downstream effects of oxidative stress on β cell function and health. Furthermore, antioxidative capacity of β cells to counteract these effects will be discussed along with new approaches focused on preserving β cells under oxidative conditions.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
| | | | - Donald C. Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
- Correspondence: ; Tel.: +1-714-456-8590
| |
Collapse
|
9
|
Liu H, Sun Y, Zhang X, Li S, Hu D, Xiao L, Chen Y, He L, Wang DW. Integrated Analysis of Summary Statistics to Identify Pleiotropic Genes and Pathways for the Comorbidity of Schizophrenia and Cardiometabolic Disease. Front Psychiatry 2020; 11:256. [PMID: 32425817 PMCID: PMC7212438 DOI: 10.3389/fpsyt.2020.00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified abundant risk loci associated with schizophrenia (SCZ), cardiometabolic disease (CMD) including body mass index, coronary artery diseases, type 2 diabetes, low- and high-density lipoprotein, total cholesterol, and triglycerides. Although recent studies have suggested that genetic risk shared between these disorders, the pleiotropic genes and biological pathways shared between them are still vague. Here we integrated comprehensive multi-dimensional data from GWAS, expression quantitative trait loci (eQTL), and gene set database to systematically identify potential pleiotropic genes and biological pathways shared between SCZ and CMD. By integrating the results from different approaches including FUMA, Sherlock, SMR, UTMOST, FOCUS, and DEPICT, we revealed 21 pleiotropic genes that are likely to be shared between SCZ and CMD. These genes include VRK2, SLC39A8, NT5C2, AMBRA1, ARL6IP4, OGFOD2, PITPNM2, CDK2AP1, C12orf65, ABCB9, SETD8, MPHOSPH9, FES, FURIN, INO80E, YPEL3, MAPK3, SREBF1, TOM1L2, GATAD2A, and TM6SF2. In addition, we also performed the gene-set enrichment analysis using the software of GSA-SNP2 and MAGMA with GWAS summary statistics and identified three biological pathways (MAPK-TRK signaling, growth hormone signaling, and regulation of insulin secretion signaling) shared between them. Our study provides insights into the pleiotropic genes and biological pathways underlying mechanisms for the comorbidity of SCZ and CMD. However, further genetic and functional studies are required to validate the role of these potential pleiotropic genes and pathways in the etiology of the comorbidity of SCZ and CMD, which should provide potential targets for future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hao Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xinxin Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Shiyang Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
10
|
The Combination of Whole Cell Lipidomics Analysis and Single Cell Confocal Imaging of Fluidity and Micropolarity Provides Insight into Stress-Induced Lipid Turnover in Subcellular Organelles of Pancreatic Beta Cells. Molecules 2019; 24:molecules24203742. [PMID: 31627330 PMCID: PMC6833103 DOI: 10.3390/molecules24203742] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Modern omics techniques reveal molecular structures and cellular networks of tissues and cells in unprecedented detail. Recent advances in single cell analysis have further revolutionized all disciplines in cellular and molecular biology. These methods have also been employed in current investigations on the structure and function of insulin secreting beta cells under normal and pathological conditions that lead to an impaired glucose tolerance and type 2 diabetes. Proteomic and transcriptomic analyses have pointed to significant alterations in protein expression and function in beta cells exposed to diabetes like conditions (e.g., high glucose and/or saturated fatty acids levels). These nutritional overload stressful conditions are often defined as glucolipotoxic due to the progressive damage they cause to the cells. Our recent studies on the rat insulinoma-derived INS-1E beta cell line point to differential effects of such conditions in the phospholipid bilayers in beta cells. This review focuses on confocal microscopy-based detection of these profound alterations in the plasma membrane and membranes of insulin granules and lipid droplets in single beta cells under such nutritional load conditions.
Collapse
|
11
|
LncRNA LEGLTBC Functions as a ceRNA to Antagonize the Effects of miR-34a on the Downregulation of SIRT1 in Glucolipotoxicity-Induced INS-1 Beta Cell Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4010764. [PMID: 31737170 PMCID: PMC6815544 DOI: 10.1155/2019/4010764] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose and/or high serum free fatty acids. Chronic hyperlipidemia causes the dysfunction of pancreatic beta cells, which is aggravated in the presence of hyperglycemia (glucolipotoxicity). Long noncoding RNAs (lncRNAs) have been suggested to play key roles in type 1 diabetes mellitus development. However, their roles in glucolipotoxicity-induced beta cell dysfunction are not fully understood. In the present study, we identified the differentially expressed lncRNAs in INS-1 cells exposed to high glucose and palmitate (HG/PA). Among the dysregulated lncRNAs, NONRATT003679.2 (low expression in glucolipotoxicity-treated beta cells (LEGLTBC)) was involved in glucolipotoxicity-evoked rat islet beta cell damage. LEGLTBC functioned as a molecular sponge of miR-34a in INS-1 cells. Additionally, SIRT1 was identified as a target of miR-34a and LEGLTBC promoted SIRT1 expression by sponging miR-34a. The upregulation of LEGLTBC attenuated HG/PA-induced INS-1 cell injury through the promotion of SIRT1-mediated suppression of ROS accumulation and apoptosis. This is the first study to comprehensively identify the lncRNA expression profiling of HG/PA-treated INS-1 beta cells and to demonstrate that LEGLTBC functions as a competing endogenous RNA and regulates miR-34a/SIRT1-mediated oxidative stress and apoptosis in INS-1 cells undergoing glucolipotoxicity.
Collapse
|
12
|
Merriman C, Fu D. Down-regulation of the islet-specific zinc transporter-8 (ZnT8) protects human insulinoma cells against inflammatory stress. J Biol Chem 2019; 294:16992-17006. [PMID: 31591269 DOI: 10.1074/jbc.ra119.010937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Zinc transporter-8 (ZnT8) primarily functions as a zinc-sequestrating transporter in the insulin-secretory granules (ISGs) of pancreatic β-cells. Loss-of-function mutations in ZnT8 are associated with protection against type-2 diabetes (T2D), but the protective mechanism is unclear. Here, we developed an in-cell ZnT8 assay to track endogenous ZnT8 responses to metabolic and inflammatory stresses applied to human insulinoma EndoC-βH1 cells. Unexpectedly, high glucose and free fatty acids did not alter cellular ZnT8 levels, but proinflammatory cytokines acutely, reversibly, and gradually down-regulated ZnT8. Approximately 50% of the cellular ZnT8 was localized to the endoplasmic reticulum (ER), which was the primary target of the cytokine-mediated ZnT8 down-regulation. Transcriptome profiling of cytokine-exposed β-cells revealed an adaptive unfolded protein response (UPR) including a marked immunoproteasome activation that coordinately degraded ZnT8 and insulin over a 1,000-fold cytokine concentration range. RNAi-mediated ZnT8 knockdown protected cells against cytokine cytotoxicity, whereas inhibiting immunoproteasomes blocked cytokine-induced ZnT8 degradation and triggered a transition of the adaptive UPR to cell apoptosis. Hence, cytokine-induced down-regulation of the ER ZnT8 level promotes adaptive UPR, acting as a protective mechanism that decongests the ER burden of ZnT8 to protect β-cells from proapoptotic UPR during chronic low-grade inflammation.
Collapse
Affiliation(s)
- Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
13
|
Gallo Cantafio ME, Grillone K, Caracciolo D, Scionti F, Arbitrio M, Barbieri V, Pensabene L, Guzzi PH, Di Martino MT. From Single Level Analysis to Multi-Omics Integrative Approaches: A Powerful Strategy towards the Precision Oncology. High Throughput 2018; 7:ht7040033. [PMID: 30373182 PMCID: PMC6306876 DOI: 10.3390/ht7040033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Integration of multi-omics data from different molecular levels with clinical data, as well as epidemiologic risk factors, represents an accurate and promising methodology to understand the complexity of biological systems of human diseases, including cancer. By the extensive use of novel technologic platforms, a large number of multidimensional data can be derived from analysis of health and disease systems. Comprehensive analysis of multi-omics data in an integrated framework, which includes cumulative effects in the context of biological pathways, is therefore eagerly awaited. This strategy could allow the identification of pathway-addiction of cancer cells that may be amenable to therapeutic intervention. However, translation into clinical settings requires an optimized integration of omics data with clinical vision to fully exploit precision cancer medicine. We will discuss the available technical approach and more recent developments in the specific field.
Collapse
Affiliation(s)
- Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | | | - Vito Barbieri
- Medical Oncology Unit, Mater Domini Hospital, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Licia Pensabene
- Department of Medical and Surgical Sciences Pediatric Unit, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Pietro Hiram Guzzi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| |
Collapse
|