1
|
Fard SS, Holz MK. Regulation of mRNA translation by estrogen receptor in breast cancer. Steroids 2023; 200:109316. [PMID: 37806603 PMCID: PMC10841406 DOI: 10.1016/j.steroids.2023.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Breast cancer is one of the leading causes of cancer-related fatalities and the most often diagnosed malignancy in women globally. Dysregulation of sex hormone signaling pathways mediated by the estrogen receptor (ER) in breast cancer is well characterized. Although ER is known to promote cell growth and survival by altering gene transcription, recent research suggests that its effects in cancers are also mediated through dysregulation of protein synthesis. This implies that ER can coordinately affect gene expression through both translational and transcriptional pathways, leading to the development of malignancy. In this review, we will cover the current understanding of how the ER controls mRNA translation in breast cancer and discuss any potential clinical implications of this phenomenon.
Collapse
Affiliation(s)
- Shahrzad S Fard
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA; Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Comparative Analysis of Transcriptomic Changes including mRNA and microRNA Expression Induced by the Xenoestrogens Zearalenone and Bisphenol A in Human Ovarian Cells. Toxins (Basel) 2023; 15:toxins15020140. [PMID: 36828454 PMCID: PMC9967916 DOI: 10.3390/toxins15020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Xenoestrogens are natural or synthetic compounds that mimic the effect of endogenous estrogens and might cause cancer. We aimed to compare the global transcriptomic response to zearalenone (ZEA; mycotoxin) and bisphenol A (BPA; plastic additive) with the effect of physiological estradiol (E2) in the PEO1 human ovarian cell line by mRNA and microRNA sequencing. Estrogen exposure induced remarkable transcriptomic changes: 308, 288 and 63 genes were upregulated (log2FC > 1); 292, 260 and 45 genes were downregulated (log2FC < -1) in response to E2 (10 nM), ZEA (10 nM) and BPA (100 nM), respectively. Furthermore, the expression of 13, 11 and 10 miRNAs changed significantly (log2FC > 1, or log2FC < -1) after exposure to E2, ZEA and BPA, respectively. Functional enrichment analysis of the significantly differentially expressed genes and miRNAs revealed several pathways related to the regulation of cell proliferation and migration. The effect of E2 and ZEA was highly comparable: 407 genes were coregulated by these molecules. We could identify 83 genes that were regulated by all three treatments that might have a significant role in the estrogen response of ovarian cells. Furthermore, the downregulation of several miRNAs (miR-501-5p, let-7a-2-3p, miR-26a-2-3p, miR-197-5p and miR-582-3p) was confirmed by qPCR, which might support the proliferative effect of estrogens in ovarian cells.
Collapse
|
3
|
Triulzi T, Regondi V, Venturelli E, Gasparini P, Ghirelli C, Groppelli J, Di Modica M, Bianchi F, De Cecco L, Sfondrini L, Tagliabue E. HER2 mRNA Levels, Estrogen Receptor Activity and Susceptibility to Trastuzumab in Primary Breast Cancer. Cancers (Basel) 2022; 14:cancers14225650. [PMID: 36428742 PMCID: PMC9688101 DOI: 10.3390/cancers14225650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
While the results thus far demonstrate the clinical benefit of trastuzumab in breast cancer (BC), some patients do not respond to this drug. HER2 mRNA, alone or combined with other genes/biomarkers, has been proven to be a powerful predictive marker in several studies. Here, we provide evidence of the association between HER2 mRNA levels and the response to anti-HER2 treatment in HER2-positive BC patients treated with adjuvant trastuzumab and show that this association is independent of estrogen receptor (ER) tumor positivity. While HER2 mRNA expression was significantly correlated with HER2 protein levels in ER-negative tumors, no correlation was found in ER-positive tumors, and HER2 protein expression was not associated with relapse risk. Correlation analyses in the ER-positive subset identified ER activity as the pathway inversely associated with HER2 mRNA. Associations between HER2 levels and oncogene addiction, as well as between HER2 activation and trastuzumab sensitivity, were also observed in vitro in HER2-positive BC cell lines. In ER-positive but not ER-negative BC cells, HER2 transcription was increased by reducing ligand-dependent ER activity or inducing ER degradation. Accordingly, HER2 mRNA levels in patients were found to be inversely correlated with blood levels of estradiol, the natural ligand of ER that induces ER activation. Moreover, low estradiol levels were associated with a lower risk of relapse in HER2-positive BC patients treated with adjuvant trastuzumab. Overall, we found that HER2 mRNA levels, but not protein levels, indicate the HER2 dependency of tumor cells and low estrogen-dependent ER activity in HER2-positive tumors.
Collapse
Affiliation(s)
- Tiziana Triulzi
- Molecular Targeting Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-0223905121
| | - Viola Regondi
- Molecular Targeting Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elisabetta Venturelli
- Nutritional Research and Metabolomics, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Patrizia Gasparini
- Genomic Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Cristina Ghirelli
- Molecular Targeting Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Jessica Groppelli
- Molecular Targeting Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Martina Di Modica
- Molecular Targeting Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Francesca Bianchi
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Laboratorio Morfologia Umana Applicata, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Lucia Sfondrini
- Molecular Targeting Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
4
|
Davis AR, Goodenough CG, Westerlind KC, Strange R, Deaver JW, Ryan PJ, Riechman SE, Fluckey JD. Myokines derived from contracting skeletal muscle suppress anabolism in MCF7 breast cancer cells by inhibiting mTOR. Front Physiol 2022; 13:1033585. [PMID: 36388131 PMCID: PMC9644210 DOI: 10.3389/fphys.2022.1033585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/06/2022] [Indexed: 08/27/2023] Open
Abstract
There is strong evidence that physical activity has a profound protective effect against multiple types of cancer. Here, we show that this effect may be mediated by factors released from skeletal muscle during simulated exercise, in situ, which suppress canonical anabolic signaling in breast cancer. We report attenuated growth of MCF7 breast cancer cells in the presence of a rodent-derived exercise conditioned perfusate, independent of prior exercise training. This reduction was concomitant with increased levels of DEPTOR protein and reduced mTOR activity.
Collapse
Affiliation(s)
- Amanda R. Davis
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - Chelsea G. Goodenough
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - Kim C. Westerlind
- University of Colorado Health Sciences Center, Denver, CO, United States
| | - Robert Strange
- University of Colorado Health Sciences Center, Denver, CO, United States
| | - John W. Deaver
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - Patrick J. Ryan
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - Steven E. Riechman
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - James D. Fluckey
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| |
Collapse
|
5
|
The Role of mTOR and eIF Signaling in Benign Endometrial Diseases. Int J Mol Sci 2022; 23:ijms23073416. [PMID: 35408777 PMCID: PMC8998789 DOI: 10.3390/ijms23073416] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Adenomyosis, endometriosis, endometritis, and typical endometrial hyperplasia are common non-cancerous diseases of the endometrium that afflict many women with life-impacting consequences. The mammalian target of the rapamycin (mTOR) pathway interacts with estrogen signaling and is known to be dysregulated in endometrial cancer. Based on this knowledge, we attempt to investigate the role of mTOR signaling in benign endometrial diseases while focusing on how the interplay between mTOR and eukaryotic translation initiation factors (eIFs) affects their development. In fact, mTOR overactivity is apparent in adenomyosis, endometriosis, and typical endometrial hyperplasia, where it promotes endometrial cell proliferation and invasiveness. Recent data show aberrant expression of various components of the mTOR pathway in both eutopic and ectopic endometrium of patients with adenomyosis or endometriosis and in hyperplastic endometrium as well. Moreover, studies on endometritis show that derangement of mTOR signaling is linked to the establishment of endometrial dysfunction caused by chronic inflammation. This review shows that inhibition of the mTOR pathway has a promising therapeutic effect in benign endometrial conditions, concluding that mTOR signaling dysregulation plays a critical part in their pathogenesis.
Collapse
|
6
|
Mondal P, Tiwary N, Sengupta A, Dhang S, Roy S, Das C. Epigenetic Reprogramming of the Glucose Metabolic Pathways by the Chromatin Effectors During Cancer. Subcell Biochem 2022; 100:269-336. [PMID: 36301498 DOI: 10.1007/978-3-031-07634-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Niharika Tiwary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sinjini Dhang
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
7
|
Wei Z, Sijia F, Rui T, Yang L, Jianjun H, Bin W, Jing X. Analysis of differentially expressed proteins between HER2 positive and triple negative breast cancer and their prognostic significance. Ann Diagn Pathol 2021; 55:151834. [PMID: 34610510 DOI: 10.1016/j.anndiagpath.2021.151834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/19/2021] [Indexed: 01/08/2023]
Abstract
Both triple negative breast cancer (TNBA) and HER2-positive breast cancer lack expression of estrogen receptor alpha (ER) and progesterone receptor (PR), while human epidermal growth factor receptor 2 (HER2) in TNBC is also negative. This study aimed to identify the differentially expressed proteins (DEPs) between TNBC and HER2-positive breast cancer and to improve understanding of their role in the prognosis of breast cancer. By analyzing the breast cancer data set in The Cancer Proteome Atlas (TCPA) database, 15 DEPs between TNBC and HER2-positive breast cancer were identified. GO and pathway enrichment analysis were performed on DEPs, and the protein-protein interaction (PPI) network was constructed. The overall survival (OS) analysis of the breast cancer protein dataset in the Kaplan-Meier plotter showed that low expression of ACC1 suggested a higher OS of HER2-positive breast cancer (HR = 5.34, P < 0.05) and TNBC (HR = 2.88, P < 0.05). And TNBC patients with high TBA1B (HR = 0.16, P < 0.01) or low INPP4B (HR = 3.47, P < 0.05) expression have a better prognosis. Our research provides new insights into the prognostic indicators of TNBC and HER2-positive breast cancer, which could be further studied.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Fei Sijia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tong Rui
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Liu Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - He Jianjun
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wan Bin
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xu Jing
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
8
|
Oestrogen Activates the MAP3K1 Cascade and β-Catenin to Promote Granulosa-like Cell Fate in a Human Testis-Derived Cell Line. Int J Mol Sci 2021; 22:ijms221810046. [PMID: 34576208 PMCID: PMC8471392 DOI: 10.3390/ijms221810046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate β-catenin-a factor essential for ovarian development. We show that oestrogen can activate β-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to β-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.
Collapse
|
9
|
Gandhi N, Oturkar CC, Das GM. Estrogen Receptor-Alpha and p53 Status as Regulators of AMPK and mTOR in Luminal Breast Cancer. Cancers (Basel) 2021; 13:cancers13143612. [PMID: 34298826 PMCID: PMC8306694 DOI: 10.3390/cancers13143612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Luminal breast cancer (LBC) driven by dysregulated estrogen receptor-alpha (ERα) signaling accounts for 70% of the breast cancer cases diagnosed. Although endocrine therapy (ET) is effective against LBC, about one-third of these patients fail to respond to therapy owing to acquired or inherent resistance mechanisms. Aberrant signaling via ERα, oncogenes, growth factor receptors, and mutations in tumor suppressors such as p53 impinge on downstream regulators such as AMPK and mTOR. While both AMPK and mTOR have been reported to play important roles in determining sensitivity of LBC to ET, how the ERα-p53 crosstalk impinges on regulation of AMPK and mTOR, thereby influencing therapeutic efficacy remains unknown. Here, we have addressed this important issue using isogenic breast cancer cell lines, siRNA-mediated RNA knockdown, and different modes of drug treatments. Interaction of p53 with ERα and AMPK was determined by in situ proximity ligation assay (PLA), and endogenous gene transcripts were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Further, the effect of concurrent and sequential administration of Fulvestrant-Everolimus combination on colony formation was determined. The studies showed that in cells expressing wild type p53, as well as in cells devoid of p53, ERα represses AMPK, whereas in cells harboring mutant p53, repression of AMPK is sustained even in the absence of ERα. AMPK is a major negative regulator of mTOR, and to our knowledge, this is the first study on the contribution of AMPK-dependent regulation of mTOR by ERα. Furthermore, the studies revealed that independent of the p53 mutation status, combination of Fulvestrant and Everolimus may be a viable first line therapeutic strategy for potentially delaying resistance of ERα+/HER2- LBC to ET.
Collapse
|
10
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Cheng JN, Frye JB, Whitman SA, Kunihiro AG, Pandey R, Funk JL. A Role for TGFβ Signaling in Preclinical Osteolytic Estrogen Receptor-Positive Breast Cancer Bone Metastases Progression. Int J Mol Sci 2021; 22:4463. [PMID: 33923316 PMCID: PMC8123146 DOI: 10.3390/ijms22094463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
While tumoral Smad-mediated transforming growth factor β (TGFβ) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFβ signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFβ receptors II and I, only cells with TGFβ-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFβ and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFβ neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFβ may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFβ signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.
Collapse
Affiliation(s)
- Julia N. Cheng
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Jennifer B. Frye
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
| | - Susan A. Whitman
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
| | - Andrew G. Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA;
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Janet L. Funk
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
12
|
Danna V, Mitchell H, Anderson L, Godinez I, Gosline SJC, Teeguarden J, McDermott JE. leapR: An R Package for Multiomic Pathway Analysis. J Proteome Res 2021; 20:2116-2121. [PMID: 33703901 DOI: 10.1021/acs.jproteome.0c00963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A generalized goal of many high-throughput data studies is to identify functional mechanisms that underlie observed biological phenomena, whether they be disease outcomes or metabolic output. Increasingly, studies that rely on multiple sources of high-throughput data (genomic, transcriptomic, proteomic, metabolomic) are faced with a challenge of summarizing the data to generate testable hypotheses. However, this requires a time-consuming process to evaluate numerous statistical methods across numerous data sources. Here, we introduce the leapR package, a framework to rapidly assess biological pathway activity using diverse statistical tests and data sources, allowing facile integration of multisource data. The leapR package with a user manual and example workflow is available for download from GitHub (https://github.com/biodataganache/leapR).
Collapse
Affiliation(s)
- Vincent Danna
- Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hugh Mitchell
- Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lindsey Anderson
- Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Iobani Godinez
- Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sara J C Gosline
- Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Justin Teeguarden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jason E McDermott
- Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon 97201, United States
| |
Collapse
|
13
|
Prospective phase II trial of levonorgestrel intrauterine device: nonsurgical approach for complex atypical hyperplasia and early-stage endometrial cancer. Am J Obstet Gynecol 2021; 224:191.e1-191.e15. [PMID: 32805208 DOI: 10.1016/j.ajog.2020.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND The incidence of complex atypical hyperplasia and early-stage endometrioid endometrial cancer is increasing, in part owing to the epidemic of obesity, which is a risk factor tightly linked to the development of endometrial hyperplasia and cancer. The standard upfront treatment for complex atypical hyperplasia and early-stage endometrial cancer is hysterectomy. However, nonsurgical treatment of early-stage endometrial neoplasia may be necessary owing to medical comorbidities precluding surgery or desired future fertility. OBJECTIVE This study aimed to evaluate the efficacy of the levonorgestrel intrauterine device to treat complex atypical hyperplasia and grade 1 endometrioid endometrial carcinoma. STUDY DESIGN A single-institution, single-arm, phase II study of the levonorgestrel intrauterine device (52 mg levonorgestrel, Mirena) was conducted in patients with complex atypical hyperplasia or grade 1 endometrioid endometrial cancer. The primary endpoint was pathologic response rate at 12 months, including complete or partial response. Quality of life and toxicity were assessed. Molecular analyses for proliferation markers, hormone-regulated genes, and wingless-related integration site pathway activation were performed at baseline and 3 months. RESULTS A total of 57 patients were treated (21 endometrial cancer, 36 complex atypical hyperplasia). The median age was 48.0 years, and the median body mass index was 45.5 kg/m2. Of the 47 evaluable patients, 12-month response rate was 83% (90% credible interval, 72.7-90.3)-37 were complete responders (8 endometrial cancer; 29 complex atypical hyperplasia), 2 were partial responders (2 endometrial cancer), 3 had stable disease (2 endometrial cancer; 1 complex atypical hyperplasia), and 5 had progressive disease (3 endometrial cancer; 2 complex atypical hyperplasia). After stratification for histology, the response rate was 90.6% for complex atypical hyperplasia and 66.7% for grade 1 endometrioid endometrial cancer. Notably, 4 patients (9.5%) experienced relapse after the initial response. Adverse events were mild, primarily irregular bleeding and cramping. Quality of life was not negatively affected. At 3 months, exogenous progesterone effect was present in 96.9% of responders (31 of 32) vs 25% of nonresponders (2 of 8) (P=.001). Nonresponders had higher baseline proliferation (Ki67) and lower dickkopf homolog 3 gene expression than responders (P=.023 and P=.030). Nonresponders had significantly different changes in secreted frizzled-related protein 1, frizzled class receptor 8, and retinaldehyde dehydrogenase 2 compared with responders. CONCLUSION The levonorgestrel intrauterine device has a substantial activity in complex atypical hyperplasia and grade 1 endometrioid endometrial cancer, with a modest proportion demonstrating upfront progesterone resistance. Potential biomarkers were identified that may correlate with resistance to therapy; further exploration is warranted.
Collapse
|
14
|
Márton É, Varga A, Széles L, Göczi L, Penyige A, Nagy B, Szilágyi M. The Cell-Free Expression of MiR200 Family Members Correlates with Estrogen Sensitivity in Human Epithelial Ovarian Cells. Int J Mol Sci 2020; 21:ijms21249725. [PMID: 33419253 PMCID: PMC7766742 DOI: 10.3390/ijms21249725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to physiological estrogens or xenoestrogens (e.g., zearalenone or bisphenol A) increases the risk for cancer. However, little information is available on their significance in ovarian cancer. We present a comprehensive study on the effect of estradiol, zearalenone and bisphenol A on the phenotype, mRNA, intracellular and cell-free miRNA expression of human epithelial ovarian cell lines. Estrogens induced a comparable effect on the rate of cell proliferation and migration as well as on the expression of estrogen-responsive genes (GREB1, CA12, DEPTOR, RBBP8) in the estrogen receptor α (ERα)-expressing PEO1 cell line, which was not observable in the absence of this receptor (in A2780 cells). The basal intracellular and cell-free expression of miR200s and miR203a was higher in PEO1, which was accompanied with low ZEB1 and high E-cadherin expression. These miRNAs showed a rapid but intermittent upregulation in response to estrogens that was diminished by an ERα-specific antagonist. The role of ERα in the regulation of the MIR200B-MIR200A-MIR429 locus was further supported by publicly available ChIP-seq data. MiRNA expression of cell lysates correlated well with cell-free miRNA expression. We conclude that cell-free miR200s might be promising biomarkers to assess estrogen sensitivity of ovarian cells.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lajos Széles
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lóránd Göczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Faculty of Pharmacology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Correspondence:
| |
Collapse
|
15
|
Unraveling the multifaceted nature of the nuclear function of mTOR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118907. [PMID: 33189783 DOI: 10.1016/j.bbamcr.2020.118907] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 01/25/2023]
Abstract
Positioned at the axis between the cell and its environment, mTOR directs a wide range of cellular activity in response to nutrients, growth factors, and stress. Our understanding of the role of mTOR is evolving beyond the spatial confines of the cytosol, and its role in the nucleus becoming ever more apparent. In this review, we will address various studies that explore the role of nuclear mTOR (nmTOR) in specific cellular programs and how these pathways influence one another. To understand the emerging roles of nuclear mTOR, we discuss data and propose plausible mechanisms to offer novel ideas, hypotheses, and future research directions.
Collapse
|
16
|
Ismail A, Doghish AS, E M Elsadek B, Salama SA, Mariee AD. Hydroxycitric acid potentiates the cytotoxic effect of tamoxifen in MCF-7 breast cancer cells through inhibition of ATP citrate lyase. Steroids 2020; 160:108656. [PMID: 32439410 DOI: 10.1016/j.steroids.2020.108656] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Hydroxycitric acid (HCA), a dietary-derived weight loss supplement, competitively inhibits ATP citrate lyase (ACLY). Tamoxifen (TAM) is the most frequently used therapy for estrogen receptor (ER)-positive breast cancer patients, but its application was restricted due to efficacy related issues. Lipid metabolic reprogramming plays a key role in cancer progression and response to treatment. This study will test the hypothesis that targeting lipid metabolic enzymes could enhance TAM effect against breast cancer cells. MCF-7 ER-positive breast cancer cell line was used, and the cytotoxic effect of TAM treatment, alone and in combination with HCA was evaluated. Flowcytometric analysis of apoptosis following TAM and/or HCA treatment was additionally performed. Besides, the effects of TAM and/or HCA on ACLY, acetyl CoA carboxylase alpha (ACC-α) and fatty acid synthase (FAS) expression were investigated. Likewise, expression of ER-α protein through TAM and/or HCA treatment was examined. Cell contents of cholesterol and triglyceride were quantified. Treatment with TAM or HCA significantly reduced cell viability in a concentration-dependent manner whereas co-treatment synergistically reduced cell viability, promoted apoptosis, and decreased the expression of ACLY, ACC-α, and FAS. Intracellular triglyceride and cholesterol were accumulated in response to treatment with TAM and/or HCA. Moreover, either solitary TAM or TAM/ HCA co-treatment increased ER-α protein levels non significantly. Our results revealed that TAM effects on breast cancer are mediated, in part, through the regulation of key genes involved in lipid metabolism. Accordingly, inhibition of ACLY by HCA might be beneficial to enhance the therapeutic index of TAM against breast cancer.
Collapse
Affiliation(s)
- Ahmed Ismail
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11231, Nasr City, Cairo, Egypt.
| | - Ahmed S Doghish
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11231, Nasr City, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Bakheet E M Elsadek
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit Branch, P.O. Box 71524, Assuit, Egypt
| | - Salama A Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11231, Nasr City, Cairo, Egypt
| | - Amr D Mariee
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11231, Nasr City, Cairo, Egypt
| |
Collapse
|
17
|
Faltas CL, LeBron KA, Holz MK. Unconventional Estrogen Signaling in Health and Disease. Endocrinology 2020; 161:5778016. [PMID: 32128594 PMCID: PMC7101056 DOI: 10.1210/endocr/bqaa030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023]
Abstract
Estrogen is a key hormone involved in the development and homeostasis of several tissue types in both males and females. By binding estrogen receptors, estrogen regulates essential functions of gene expression, metabolism, cell growth, and proliferation by acting through cytoplasmic signaling pathways or activating transcription in the nucleus. However, disruption or dysregulation of estrogen activity has been shown to play a key role in the pathogenesis and progression of many diseases. This review will expatiate on some of the unconventional roles of estrogen in homeostasis and disease.
Collapse
Affiliation(s)
- Christina L Faltas
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY
| | - Kira A LeBron
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY
| | - Marina K Holz
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY
- Correspondence: Marina K. Holz, Department of Cell Biology and Anatomy, Graduate School of Basic Medical Sciences, New York Medical College, Valhalla, NY 10595. E-mail: . orcid.org/0000-0001-5030-7973
| |
Collapse
|
18
|
Liu Y, Ma H, Yao J. ERα, A Key Target for Cancer Therapy: A Review. Onco Targets Ther 2020; 13:2183-2191. [PMID: 32210584 PMCID: PMC7073439 DOI: 10.2147/ott.s236532] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor α (ERα) is closely associated with both hormone-dependent and hormone-independent tumors, and it is also essential for the development of these cancers. The functions of ERα are bi-faceted; it can contribute to cancer progression as well as cancer inhibition. Therefore, understanding ERα is vital for the treatment of those cancers that are closely associated with its expression. Here, we will elaborate on ERα based on its structure, localization, activation, modification, and mutation. Also, we will look at co-activators of ERα, elucidate the signaling pathway activated by ERα, and identify cancers related to its activation. A comprehensive understanding of ERα could help us to find new ways to treat cancers.
Collapse
Affiliation(s)
- Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|