1
|
Xu J, Zhao Y, Zhou Y, Dai S, Zhu N, Meng Q, Fan S, Zhao W, Yuan X. Fungal Extracellular Vesicle Proteins with Potential in Biological Interaction. Molecules 2024; 29:4012. [PMID: 39274860 PMCID: PMC11396447 DOI: 10.3390/molecules29174012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like structures composed of lipid bilayers, which can be divided into apoptotic bodies, microbubbles and exosomes. They are nanoparticles used for the exchange of information between cells. EVs contains many substances, including protein. With the development of proteomics, we know more about the types and functions of protein in vesicles. The potential functions of proteins in the envelope are mainly discussed, including cell wall construction, fungal virulence transmission, signal transmission and redox reactions, which provides a new perspective for studying the interaction mechanism between fungi and other organisms. The fungal protein markers of EVs are also summarized, which provided an exploration tool for studying the mechanism of vesicles. In addition, the possible role of immune protein in the EVs in the treatment of human diseases is also discussed, which provides new ideas for vaccine development.
Collapse
Affiliation(s)
- Jingyan Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yujin Zhao
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yanguang Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Shijie Dai
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Na Zhu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Qingling Meng
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Sen Fan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Weichun Zhao
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| |
Collapse
|
2
|
Bartholomew HP, Luciano-Rosario D, Bradshaw MJ, Gaskins VL, Peng H, Fonseca JM, Jurick WM. Avirulent Isolates of Penicillium chrysogenum to Control the Blue Mold of Apple Caused by P. expansum. Microorganisms 2023; 11:2792. [PMID: 38004803 PMCID: PMC10673114 DOI: 10.3390/microorganisms11112792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Blue mold is an economically significant postharvest disease of pome fruit that is primarily caused by Penicillium expansum. To manage this disease and sustain product quality, novel decay intervention strategies are needed that also maintain long-term efficacy. Biocontrol organisms and natural products are promising tools for managing postharvest diseases. Here, two Penicillium chrysogenum isolates, 404 and 413, were investigated as potential biocontrol agents against P. expansum in apple. Notably, 404 and 413 were non-pathogenic in apple, yet they grew vigorously in vitro when compared to the highly aggressive P. expansum R19 and Pe21 isolates. Whole-genome sequencing and species-specific barcoding identified both strains as P. chrysogenum. Each P. chrysogenum strain was inoculated in apple with the subsequent co-inoculation of R19 or Pe21 simultaneously, 3, or 7 days after prior inoculation with 404 or 413. The co-inoculation of these isolates showed reduced decay incidence and severity, with the most significant reduction from the longer establishment of P. chrysogenum. In vitro growth showed no antagonism between species, further suggesting competitive niche colonization as the mode of action for decay reduction. Both P. chrysogenum isolates had incomplete patulin gene clusters but tolerated patulin treatment. Finally, hygromycin resistance was observed for both P. chrysogenum isolates, yet they are not multiresistant to apple postharvest fungicides. Overall, we demonstrate the translative potential of P. chrysogenum to serve as an effective biocontrol agent against blue mold decay in apples, pending practical optimization and formulation.
Collapse
Affiliation(s)
- Holly P. Bartholomew
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Dianiris Luciano-Rosario
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Michael J. Bradshaw
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Verneta L. Gaskins
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hui Peng
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Jorge M. Fonseca
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Wayne M. Jurick
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
3
|
Luciano-Rosario D, Peng H, Gaskins VL, Fonseca JM, Keller NP, Jurick WM. Mining the Penicillium expansum Genome for Virulence Genes: A Functional-Based Approach to Discover Novel Loci Mediating Blue Mold Decay of Apple Fruit. J Fungi (Basel) 2023; 9:1066. [PMID: 37998873 PMCID: PMC10672711 DOI: 10.3390/jof9111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
Blue mold, a postharvest disease of pome fruits, is caused by the filamentous fungus Penicillium expansum. In addition to the economic losses caused by P. expansum, food safety can be compromised, as this pathogen is mycotoxigenic. In this study, forward and reverse genetic approaches were used to identify genes involved in blue mold infection in apple fruits. For this, we generated a random T-DNA insertional mutant library. A total of 448 transformants were generated and screened for the reduced decay phenotype on apples. Of these mutants, six (T-193, T-275, T-434, T-588, T-625, and T-711) were selected for continued studies and five unique genes were identified of interest. In addition, two deletion mutants (Δt-625 and Δt-588) and a knockdown strain (t-434KD) were generated for three loci. Data show that the ∆t-588 mutant phenocopied the T-DNA insertion mutant and had virulence penalties during apple fruit decay. We hypothesize that this locus encodes a glyoxalase due to bioinformatic predictions, thus contributing to reduced colony diameter when grown in methylglyoxal (MG). This work presents novel members of signaling networks and additional genetic factors that regulate fungal virulence in the blue mold fungus during apple fruit decay.
Collapse
Affiliation(s)
| | - Hui Peng
- Everglades Research and Education Center, Horticultural Sciences Department, University of Florida, Belle Glade, FL 33430, USA;
| | - Verneta L. Gaskins
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (V.L.G.); (J.M.F.)
| | - Jorge M. Fonseca
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (V.L.G.); (J.M.F.)
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA;
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Wayne M. Jurick
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (V.L.G.); (J.M.F.)
| |
Collapse
|
4
|
Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. STRESSES 2023. [DOI: 10.3390/stresses3010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fruit diseases brought on by fungus infestation leads to postharvest losses of fresh fruit. Approximately 30% of harvested fruits do not reach consumers’ plates due to postharvest losses. Fungal pathogens play a substantial part in those losses, as they cause the majority of fruit rots and consumer complaints. Understanding fungal pathogenic processes and control measures is crucial for developing disease prevention and treatment strategies. In this review, we covered the presented pathogen entry, environmental conditions for pathogenesis, fruit’s response to pathogen attack, molecular mechanisms by which fungi infect fruits in the postharvest phase, production of mycotoxin, virulence factors, fungal genes involved in pathogenesis, and recent strategies for protecting fruit from fungal attack. Then, in order to investigate new avenues for ensuring fruit production, existing fungal management strategies were then assessed based on their mechanisms for altering the infection process. The goal of this review is to bridge the knowledge gap between the mechanisms of fungal disease progression and numerous disease control strategies being developed for fruit farming.
Collapse
|
5
|
Transcriptome Analysis and Functional Characterization Reveal That Peclg Gene Contributes to the Virulence of Penicillium expansum on Apple Fruits. Foods 2023; 12:foods12030479. [PMID: 36766008 PMCID: PMC9914705 DOI: 10.3390/foods12030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Penicillium expansum is the causal agent of blue mold decay on apple fruits and is also known to be the major producer of patulin, a mycotoxin that represents serious hazard to human health. Several mechanisms have been suggested to explain the pathogenesis of P. expansum in host plants. Secreted effector proteins are vital for the pathogenicity of many fungal pathogens through manipulating their hosts for efficient colonization. In this study, we performed a RNA-Seq analysis followed by computational prediction of effector proteins from P. expansum during infection of the host apple fruits, and a total of 212 and 268 candidate effector protein genes were identified at 6 and 9 h after inoculation (hai), respectively. One of the candidate effector protein genes was identified as a concanavalin A-like lectin/glucanase (Peclg), which was dramatically induced during the pathogen-host interaction. Targeted knockout of Peclg resulted in significant reduction in conidial production and germination relative to the wild type. Further studies showed that in addition to salt stress, the mutant was much more sensitive to SDS and Congo red, suggesting a defect in cell wall integrity. Pathogenicity assays revealed that the ΔPeclg mutant showed significant decrease in virulence and infectious growth on apple fruits. All these results suggest that Peclg is required for fungal growth, stress response, and the virulence of P. expansum.
Collapse
|
6
|
Comparative Penicillium spp. Transcriptomics: Conserved Pathways and Processes Revealed in Ungerminated Conidia and during Postharvest Apple Fruit Decay. Microorganisms 2022; 10:microorganisms10122414. [PMID: 36557667 PMCID: PMC9788453 DOI: 10.3390/microorganisms10122414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Blue mold, caused by Penicillium spp., is an impactful postharvest disease resulting in significant economic losses due to reduced pome fruit quality and mycotoxin contamination. Using two Penicillium species with different levels of aggressiveness, transcriptomics were implemented in order to identify genes expressed during apple fruit decay and loci expressed in ungerminated conidia. Total RNA was isolated from ungerminated conidia and decayed apple fruit infected with P. expansum R19 or P. polonicum RS1. There were 2442 differentially expressed genes (DEGs) between the R19 and RS1 in apple. Comparisons within species between apple and conidia revealed 4404 DEGs for R19 and 2935 for RS1, respectively. Gene ontology (GO) analysis revealed differential regulation in fungal transport and metabolism genes during decay, suggesting a flux in nutrient acquisition and detoxification strategies. In R19, the oxidoreductase GO category comprised 20% of all DEG groups in apple verses conidia. Ungerminated conidia from both species showed DEGs encoding the glyoxylate shunt and beta-oxidation, specifying the earliest metabolic requirements for germination. This is the first study to identify pre-loaded transcripts in conidia from blue mold fungi, reveal unique genes between species expressed during apple decay, and show the expression dynamics of known fungal virulence factors. These findings will enable development of targeted approaches for blue mold abatement strategies.
Collapse
|
7
|
Abdul Hamid NW, Nadarajah K. Microbe Related Chemical Signalling and Its Application in Agriculture. Int J Mol Sci 2022; 23:ijms23168998. [PMID: 36012261 PMCID: PMC9409198 DOI: 10.3390/ijms23168998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The agriculture sector has been put under tremendous strain by the world’s growing population. The use of fertilizers and pesticides in conventional farming has had a negative impact on the environment and human health. Sustainable agriculture attempts to maintain productivity, while protecting the environment and feeding the global population. The importance of soil-dwelling microbial populations in overcoming these issues cannot be overstated. Various processes such as rhizospheric competence, antibiosis, release of enzymes, and induction of systemic resistance in host plants are all used by microbes to influence plant-microbe interactions. These processes are largely founded on chemical signalling. Producing, releasing, detecting, and responding to chemicals are all part of chemical signalling. Different microbes released distinct sorts of chemical signal molecules which interacts with the environment and hosts. Microbial chemicals affect symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm growth, to name a few. We present an in-depth overview of chemical signalling between bacteria-bacteria, bacteria-fungi, and plant-microbe and the diverse roles played by these compounds in plant microbe interactions. These compounds’ current and potential uses and significance in agriculture have been highlighted.
Collapse
|
8
|
Lichtner FJ, Jurick WM, Bradshaw M, Broeckling C, Bauchan G, Broders K. Penicillium raperi, a species isolated from Colorado cropping soils, is a potential biological control agent that produces multiple metabolites and is antagonistic against postharvest phytopathogens. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Bartholomew HP, Bradshaw MJ, Macarisin O, Gaskins VL, Fonseca JM, Jurick WM. More than a Virulence Factor: Patulin Is a Non-Host-Specific Toxin that Inhibits Postharvest Phytopathogens and Requires Efflux for Penicillium Tolerance. PHYTOPATHOLOGY 2022; 112:1165-1174. [PMID: 35365059 DOI: 10.1094/phyto-09-21-0371-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycotoxin contamination is a leading cause of food spoilage and waste on a global scale. Patulin, a mycotoxin produced by Penicillium spp. during postharvest pome fruit decay, causes acute and chronic effects in humans, withstands pasteurization, and is not eliminated by fermentation. While much is known about the impact of patulin on human health, there are significant knowledge gaps concerning the effect of patulin during postharvest fruit-pathogen interactions. Application of patulin on six apple cultivars reproduced some blue mold symptoms that were cultivar-independent and dose-dependent. Identical symptoms were also observed in pear and mandarin orange. Six Penicillium isolates exposed to exogenous patulin exhibited delayed germination after 24 h, yet all produced viable colonies in 7 days. However, four common postharvest phytopathogenic fungi were completely inhibited by patulin during conidial germination and growth, suggesting the toxin is important for Penicillium to dominate the postharvest niche. Using clorgyline, a broad-spectrum efflux pump inhibitor, we demonstrated that efflux plays a role in Penicillium auto-resistance to patulin during conidial germination. The work presented here contributes new knowledge of patulin auto-resistance, its mode of action, and inhibitory role in fungal-fungal interactions. Our findings provide a solid foundation to develop toxin and decay mitigation approaches.
Collapse
Affiliation(s)
- Holly P Bartholomew
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Michael J Bradshaw
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Otilia Macarisin
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Verneta L Gaskins
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Jorge M Fonseca
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Wayne M Jurick
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| |
Collapse
|
10
|
Impact of the antifungal protein PgAFP on the proteome and patulin production of Penicillium expansum on apple-based medium. Int J Food Microbiol 2021; 363:109511. [PMID: 34990884 DOI: 10.1016/j.ijfoodmicro.2021.109511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/29/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
Abstract
Apples are prone to be contaminated with Penicillium expansum, which produces the mycotoxin patulin, posing a risk for human health. Antifungal treatments are required to control this fungal pathogen, although consumers demand products free of synthetic additives. Then, the use of antifungal proteins produced by moulds represents a novel and promising strategy. Although its inhibitory effect on P. expansum has been reported, the impact of these proteins on patulin production has been scarcely studied, pointing to a possible patulin overproduction. The aim of this work was to evaluate the effect of the antifungal protein PgAFP on the proteome and patulin biosynthesis of P. expansum grown in apple-based agar, intending to decipher these effects without the apple in vivo physiological response to the fungal infection. PgAFP increased the production of patulin on three of the five P. expansum strains evaluated. The proteome of the PgAFP-treated P. expansum showed five proteins involved in patulin biosynthesis in higher abundance (fold change 2.8-9.8), as well as proteins related to pathogenicity and virulence that suggest lower ability to infect fruits. Additionally, several proteins associated with oxidative stress, such as glutathione peroxidase, redoxin, or heat shock proteins were found in higher abundance, pointing to a response against oxidative stress elicited by PgAFP. These results provide evidence to be cautious in applying this antifungal protein in apples, being of utmost relevance to provide knowledge about the global response of P. expansum against an antifungal protein with many shared characteristics with others. These findings significantly contribute to future studies of assessment and suitability of not only these antifungal proteins but also new antifungal compounds.
Collapse
|
11
|
Horianopoulos LC, Lee CWJ, Hu G, Caza M, Kronstad JW. Dnj1 Promotes Virulence in Cryptococcus neoformans by Maintaining Robust Endoplasmic Reticulum Homeostasis Under Temperature Stress. Front Microbiol 2021; 12:727039. [PMID: 34566931 PMCID: PMC8461255 DOI: 10.3389/fmicb.2021.727039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
The capacity of opportunistic fungal pathogens such as Cryptococcus neoformans to cause disease is dependent on their ability to overcome an onslaught of stresses including elevated temperature under mammalian host conditions. Protein chaperones and co-chaperones play key roles in thermotolerance. In this study, we characterized the role of the endoplasmic reticulum (ER) J-domain containing co-chaperone, Dnj1, in the virulence of C. neoformans. A strain expressing a Dnj1-GFP fusion protein was used to confirm localization to the ER, and a dnj1∆ deletion mutant was shown to be hypersensitive to the ER stress caused by tunicamycin (TM) or 4μ8C. Dnj1 and another ER chaperone, calnexin were found to coordinately maintain ER homeostasis and contribute to maintenance of cell wall architecture. Dnj1 also contributed to thermotolerance and increased in abundance at elevated temperatures representative of febrile patients (e.g., 39°C) thus highlighting its role as a temperature-responsive J domain protein. The elaboration of virulence factors such as the polysaccharide capsule and extracellular urease activity were also markedly impaired in the dnj1∆ mutant when induced at human body temperature (i.e., 37°C). These virulence factors are immunomodulatory and, indeed, infection with the dnj1∆ mutant revealed impaired induction of the cytokines IL-6, IL-10, and MCP-1 in the lungs of mice compared to infection with wild type or complemented strains. The dnj1∆ mutant also had attenuated virulence in an intranasal murine model of cryptococcosis. Altogether, our data indicate that Dnj1 is crucial for survival and virulence factor production at elevated temperatures. The characterization of this co-chaperone also highlights the importance of maintaining homeostasis in the ER for the pathogenesis of C. neoformans.
Collapse
Affiliation(s)
| | - Christopher W J Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Yin G, Zhao H, Pennerman KK, Jurick WM, Fu M, Bu L, Guo A, Bennett JW. Genomic Analyses of Penicillium Species Have Revealed Patulin and Citrinin Gene Clusters and Novel Loci Involved in Oxylipin Production. J Fungi (Basel) 2021; 7:743. [PMID: 34575780 PMCID: PMC8464941 DOI: 10.3390/jof7090743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Blue mold of apple is caused by several different Penicillium species, among which P. expansum and P. solitum are the most frequently isolated. P. expansum is the most aggressive species, and P. solitum is very weak when infecting apple fruit during storage. In this study, we report complete genomic analyses of three different Penicillium species: P. expansum R21 and P. crustosum NJ1, isolated from stored apple fruit; and P. maximae 113, isolated in 2013 from a flooded home in New Jersey, USA, in the aftermath of Hurricane Sandy. Patulin and citrinin gene cluster analyses explained the lack of patulin production in NJ1 compared to R21 and lack of citrinin production in all three strains. A Drosophila bioassay demonstrated that volatiles emitted by P. solitum SA and P. polonicum RS1 were more toxic than those from P. expansum and P. crustosum strains (R27, R11, R21, G10, and R19). The toxicity was hypothesized to be related to production of eight-carbon oxylipins. Putative lipoxygenase genes were identified in P. expansum and P. maximae strains, but not in P. crustosum. Our data will provide a better understanding of Penicillium spp. complex secondary metabolic capabilities, especially concerning the genetic bases of mycotoxins and toxic VOCs.
Collapse
Affiliation(s)
- Guohua Yin
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Hui Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Kayla K. Pennerman
- Toxicology and Mycotoxin Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA ARS), Athens, GA 30605, USA;
| | - Wayne M. Jurick
- Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service (USDA ARS), Beltsville, MD 20705, USA;
| | - Maojie Fu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Lijing Bu
- Center for Evolutionary & Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Anping Guo
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Joan W. Bennett
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
13
|
Zhang ZQ, Chen T, Li BQ, Qin GZ, Tian SP. Molecular basis of pathogenesis of postharvest pathogenic Fungi and control strategy in fruits: progress and prospect. MOLECULAR HORTICULTURE 2021; 1:2. [PMID: 37789422 PMCID: PMC10509826 DOI: 10.1186/s43897-021-00004-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 10/05/2023]
Abstract
The disease caused by pathogenic fungi is the main cause of postharvest loss of fresh fruits. The formulation of disease control strategies greatly depends on the understanding of pathogenic mechanism of fungal pathogens and control strategy. In recent years, based on the application of various combinatorial research methods, some pathogenic genes of important postharvest fungal pathogens in fruit have been revealed, and their functions and molecular regulatory networks of virulence have been explored. These progresses not only provide a new perspective for understanding the molecular basis and regulation mechanism of pathogenicity of postharvest pathogenic fungi, but also are beneficial to giving theoretical guidance for the creation of new technologies of postharvest disease control. Here, we synthesized these recent advances and illustrated conceptual frameworks, and identified several issues on the focus of future studies.
Collapse
Affiliation(s)
- Zhan-Quan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo-Qiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guo-Zheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shi-Ping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Delivering the goods: Fungal secretion modulates virulence during host–pathogen interactions. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Wu L, Li Z, Zhao F, Zhao B, Phillip FO, Feng J, Liu H, Yu K. Increased Organic Fertilizer and Reduced Chemical Fertilizer Increased Fungal Diversity and the Abundance of Beneficial Fungi on the Grape Berry Surface in Arid Areas. Front Microbiol 2021; 12:628503. [PMID: 34025598 PMCID: PMC8139630 DOI: 10.3389/fmicb.2021.628503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Fertilizer practices can significantly impact the fruit quality and microbial diversity of the orchards. The fungi on the surface of fruits are essential for fruit storability and safety. However, it is not clear whether fertilization affects the fungal diversity and community structure on the surface of grape berries. Here, grape quality and the fungal diversity on the surface of grapes harvested from three fertilizer treatments were analyzed shortly after grape picking (T0) and following 8 days of storage (T1). The study involved three treatments: (1) common chemical fertilizer for 2 years (CH); (2) increased organic fertilizer and reduced chemical fertilizer for 1 year (A.O); and (3) increased organic fertilizer and reduced chemical fertilizer for 2 years (B.O). The application of increased organic fertilizer and reduced chemical fertilizer increased the soluble solids content (SSC) of the grape berries and decreased the pH of the grape juice. A total of 827,947 high-quality fungal sequences were recovered and assigned to 527 operational taxonomic units. Members of the Ascomycota phylum were dominant in all samples and accounted for 94.41% of the total number of detected sequences, followed by the Basidiomycota (5.05%), and unidentified fungi (0.54%). Alpha and beta diversity analyses revealed significantly different fungal populations in the three fertilizer treatments over the two time periods. The fungal diversity and richness on the grape berry surface in the B.O and A.O treatments were higher than those in the CH treatment. Among the detected fungi, the B.O treatments were mainly Pichia, Aureobasidium, and Candida genera, while the CH treatments were Botrytis, Aspergillus, and Penicillium. Moreover, significant differences were revealed between the two assessment times (T0 and T1). The samples from the T0 timepoint had higher fungal richness and diversity than the samples from T1 timepoint. Increasing organic fertilizer usage in grape management could improve grape quality and went on to increase the fungal diversity, as well as the relative abundance (RA) of beneficial fungi on grape berry surfaces. The correlation analysis suggested that the pH of the grape juice was significantly negatively correlated with fungal diversity parameters.
Collapse
Affiliation(s)
- Linnan Wu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Zhiqiang Li
- Shihezi Academy of Agricultural Sciences, Shihezi, China
| | - Fengyun Zhao
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Benzhou Zhao
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Fesobi Olumide Phillip
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Huaifeng Liu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Kun Yu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| |
Collapse
|
16
|
Bartholomew HP, Bradshaw M, Jurick WM, Fonseca JM. The Good, the Bad, and the Ugly: Mycotoxin Production During Postharvest Decay and Their Influence on Tritrophic Host-Pathogen-Microbe Interactions. Front Microbiol 2021; 12:611881. [PMID: 33643240 PMCID: PMC7907610 DOI: 10.3389/fmicb.2021.611881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Mycotoxins are a prevalent problem for stored fruits, grains, and vegetables. Alternariol, aflatoxin, and patulin, produced by Alternaria spp., Aspergillus spp., and Penicillium spp., are the major mycotoxins that negatively affect human and animal health and reduce fruit and produce quality. Control strategies for these toxins are varied, but one method that is increasing in interest is through host microbiome manipulation, mirroring a biocontrol approach. While the majority of mycotoxins and other secondary metabolites (SM) produced by fungi impact host–fungal interactions, there is also an interplay between the various organisms within the host microbiome. In addition to SMs, these interactions involve compounds such as signaling molecules, plant defense and growth hormones, and metabolites produced by both the plants and microbial community. Therefore, studies to understand the impact of the various toxins impacting the beneficial and harmful microorganisms that reside within the microbiome is warranted, and could lead to identification of safe analogs for antimicrobial activity to reduce fruit decay. Additionally, exploring the composition of the microbial carposphere of host plants is likely to shed light on developing a microbial consortium to maintain quality during storage and abate mycotoxin contamination.
Collapse
Affiliation(s)
- Holly P Bartholomew
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Michael Bradshaw
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Wayne M Jurick
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Jorge M Fonseca
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
17
|
Luciano‐Rosario D, Keller NP, Jurick WM. Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. MOLECULAR PLANT PATHOLOGY 2020; 21:1391-1404. [PMID: 32969130 PMCID: PMC7548999 DOI: 10.1111/mpp.12990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 05/02/2023]
Abstract
UNLABELLED Blue mould, caused primarily by Penicillium expansum, is a major threat to the global pome fruit industry, causing multimillion-dollar losses annually. The blue mould fungus negatively affects fruit quality, thereby reducing fresh fruit consumption, and significantly contributes to food loss. P. expansum also produces an array of mycotoxins that are detrimental to human health. Management options are limited and the emergence of fungicide-resistant Penicillium spp. makes disease management difficult, therefore new approaches and tools are needed to combat blue mould in storage. This species profile comprises a comprehensive literature review of this aggressive pathogen associated with pomes (apple, pear, quince), focusing on biology, mechanisms of disease, control, genomics, and the newest developments in disease management. TAXONOMY Penicillium expansum Link 1809. Domain Eukaryota, Kingdom Fungi, Phylum Ascomycota, Subphylum Pezizomycotina, Class Eurotiomycetes, Subclass: Eurotiomycetidae, Order Eurotiales; Family Trichocomaceae, Genus Penicillium, Species expansum. BIOLOGY A wide host range necrotrophic postharvest pathogen that requires a wound (e.g., stem pull, punctures, bruises, shoulder cracks) or natural openings (e.g., lenticel, stem end, calyx sinus) to gain ingress and infect. TOXINS Patulin, citrinin, chaetoglobosins, communesins, roquefortine C, expansolides A and B, ochratoxin A, penitrem A, rubratoxin B, and penicillic acid. HOST RANGE Primarily apples, European pear, Asian pear, medlar, and quince. Blue mould has also been reported on stone fruits (cherry, plum, peach), small fruits (grape, strawberry, kiwi), and hazel nut. DISEASE SYMPTOMS Blue mould initially appears as light tan to dark brown circular lesions with a defined margin between the decayed and healthy tissues. The decayed tissue is soft and watery, and blue-green spore masses appear on the decayed area, starting at the infection site and radiating outward as the decayed area ages. DISEASE CONTROL Preharvest fungicides with postharvest activity and postharvest fungicides are primarily used to control decay. Orchard and packinghouse sanitation methods are also critical components of an integrated pest management strategy. USEFUL WEBSITES Penn State Tree Fruit Production Guide (https://extension.psu.edu/forage-and-food-crops/fruit), Washington State Comprehensive Tree Fruit (http://treefruit.wsu.edu/crop-protection/disease-management/blue-mold/), The Apple Rot Doctor (https://waynejurick.wixsite.com/applerotdr), penicillium expansum genome sequences and resources (https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/11336/).
Collapse
Affiliation(s)
| | - Nancy P. Keller
- Department of Medical Microbiology and ImmunologyDepartment of BacteriologyFood Research InstituteUniversity of Wisconsin at MadisonMadisonWisconsinUSA
| | | |
Collapse
|
18
|
Li B, Chen Y, Zhang Z, Qin G, Chen T, Tian S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in
Penicillium expansum. Compr Rev Food Sci Food Saf 2020; 19:3416-3438. [DOI: 10.1111/1541-4337.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|