1
|
Lombardi R, Ramsey JS, Mahoney JE, MacCoss MJ, Heck ML, Slupsky CM. Longitudinal Transcriptomic, Proteomic, and Metabolomic Response of Citrus sinensis to Diaphorina citri Inoculation of Candidatus Liberibacter asiaticus. J Proteome Res 2024; 23:2857-2869. [PMID: 38373055 PMCID: PMC11301674 DOI: 10.1021/acs.jproteome.3c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Huanglongbing (HLB) is a fatal citrus disease that is currently threatening citrus varieties worldwide. One putative causative agent, Candidatus Liberibacter asiaticus (CLas), is vectored by Diaphorina citri, known as the Asian citrus psyllid (ACP). Understanding the details of CLas infection in HLB disease has been hindered by its Candidatus nature and the inability to confidently detect it in diseased trees during the asymptomatic stage. To identify early changes in citrus metabolism in response to inoculation of CLas using its natural psyllid vector, leaves from Madam Vinous sweet orange (Citrus sinensis (L.) Osbeck) trees were exposed to CLas-positive ACP or CLas-negative ACP and longitudinally analyzed using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry; data available in Dryad: 10.25338/B83H1Z), and metabolomics (proton nuclear magnetic resonance). At 4 weeks postexposure (wpe) to psyllids, the initial HLB plant response was primarily to the ACP and, to a lesser extent, the presence or absence of CLas. Additionally, analysis of 4, 8, 12, and 16 wpe identified 17 genes and one protein as consistently differentially expressed between leaves exposed to CLas-positive ACP versus CLas-negative ACP. This study informs identification of early detection molecular targets and contributes to a broader understanding of vector-transmitted plant pathogen interactions.
Collapse
Affiliation(s)
- Rachel
L. Lombardi
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - John S. Ramsey
- Agricultural
Research Service, Emerging Pests and Pathogens
Research Unit, Ithaca, New York 14853, United
States
| | - Jaclyn E. Mahoney
- Boyce
Thompson Institute for Plant Research, Ithaca, New York 14853, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michelle L. Heck
- Agricultural
Research Service, Emerging Pests and Pathogens
Research Unit, Ithaca, New York 14853, United
States
- Plant
Pathology and Plant Microbe Biology Section, School of Integrative
Plant Science, Cornell University, Ithaca, New York 14853, United States
| | - Carolyn M. Slupsky
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
- Department
of Nutrition, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Pandey SS, Li J, Oswalt C, Wang N. Dynamics of ' Candidatus Liberibacter asiaticus' Growth, Concentrations of Reactive Oxygen Species, and Ion Leakage in Huanglongbing-Positive Sweet Orange. PHYTOPATHOLOGY 2024; 114:961-970. [PMID: 38478730 DOI: 10.1094/phyto-08-23-0294-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Current affiliation: Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India
| | - Jinyun Li
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Chris Oswalt
- Institute of Food and Agricultural Sciences, University of Florida, Bartow, FL 33830, U.S.A
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
3
|
da Silva FAR, Balbuena TS. Proteome profiling of vascular sap regarding Eucalyptus grandis, Eucalyptus urophylla, and Eucalyptus camaldulensis. Proteomics 2024; 24:e2200463. [PMID: 37183274 DOI: 10.1002/pmic.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
The plant vascular system is a key element for long-distance communication. Understanding its composition may provide valuable information on how plants grow and develop themselves. In this study, a quantitative proteome dataset of the vascular sap proteome of three commercially important Eucalyptus species was shown. Protein extraction was carried out using a pressure bomb, whereas only in silico predicted extracellular proteins were considered as part of the sap proteome. A total of 132 different proteins were identified in all three Eucalyptus species and the most abundant proteome subset within all three species was comprised of proteins involved in the carbohydrate metabolic process, proteolysis, components of membrane, and defense response. The sap proteome of the species E. grandis and E. urophylla revealed the highest similarities. Functional classification indicated that the sap proteome of E. grandis and E. urophylla are mostly comprised of proteins involved in defense response and proteolysis; whereas no prominent functional class was observed for the E. camaldulensis species. Quantitative comparison highlighted characteristic sap proteins in each of the Eucalyptus species. The results that could be found in this study can be used as a reference for the proteome sap analysis of Eucalyptus plants grown under different conditions.
Collapse
Affiliation(s)
- Felipe Alexsander Rodrigues da Silva
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agriculture and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agriculture and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
4
|
Gao C, Li C, Li Z, Liu Y, Li J, Guo J, Mao J, Fang F, Wang C, Deng X, Zheng Z. Comparative transcriptome profiling of susceptible and tolerant citrus species at early and late stage of infection by " Candidatus Liberibacter asiaticus". FRONTIERS IN PLANT SCIENCE 2023; 14:1191029. [PMID: 37389294 PMCID: PMC10301834 DOI: 10.3389/fpls.2023.1191029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
Citrus Huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), is the most destructive disease threatening global citrus industry. Most commercial cultivars were susceptible to HLB, although some showed tolerant to HLB phenotypically. Identifying tolerant citrus genotypes and understanding the mechanism correlated with tolerance to HLB is essential for breeding citrus variety tolerance/resistance to HLB. In this study, the graft assay with CLas-infected bud were performed in four citrus genotypes, including Citrus reticulata Blanco, C. sinensis, C. limon, and C. maxima. HLB tolerance was observed in C. limon and C. maxima, while C. Blanco and C. sinensis were susceptible to HLB. The time-course transcriptomic analysis revealed a significant variation in differentially expressed genes (DEGs) related to HLB between susceptible and tolerant cultivar group at early and late infection stage. Functional analysis of DEGs indicated that the activation of genes involved in SA-mediated defense response, PTI, cell wall associated immunity, endochitinase, phenylpropanoid and alpha-linolenic/linoleic lipid metabolism played an important in the tolerance of C. limon and C. maxima to HLB at early infection stage. In addition, the overactive plant defense combined with the stronger antibacterial activity (antibacterial secondary and lipid metabolism) and the suppression of pectinesterase were contributed to the long-term tolerance to HLB in C. limon and C. maxima at late infection stage. Particularly, the activation of ROS scavenging genes (catalases and ascorbate peroxidases) could help to reduce HLB symptoms in tolerant cultivars. In contrast, the overexpression of genes involved in oxidative burst and ethylene metabolism, as well as the late inducing of defense related genes could lead to the early HLB symptom development in susceptible cultivars at early infection stage. The weak defense response and antibacterial secondary metabolism, and the induce of pectinesterase were responsible for sensitivity to HLB in C. reticulata Blanco and C. sinensis at late infection stage. This study provided new insights into the tolerance/sensitivity mechanism against HLB and valuable guidance for breeding of HLB-tolerant/resistant cultivars.
Collapse
Affiliation(s)
- Chenying Gao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cuixiao Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ziyi Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yaoxin Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiaming Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Jiana Mao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Pandey SS, Xu J, Achor DS, Li J, Wang N. Microscopic and Transcriptomic Analyses of Early Events Triggered by ' Candidatus Liberibacter asiaticus' in Young Flushes of Huanglongbing-Positive Citrus Trees. PHYTOPATHOLOGY 2023; 113:985-997. [PMID: 36449527 DOI: 10.1094/phyto-10-22-0360-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is associated with the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy analysis showed that the mean diameter of the sieve pores decreased in young leaves of HLB-positive trees after CLas infection, consistent with CLas-triggered callose deposition. RNA-seq-based global expression analysis of young leaves of HLB-positive sweet orange with (CLas-Pos) and without (CLas-Neg) detectable CLas demonstrated a significant impact on gene expression in young leaves, including on the expression of genes involved in host immunity, stress response, and plant hormone biosynthesis and signaling. CLas-Pos and CLas-Neg expression data displayed distinct patterns. The number of upregulated genes was higher than that of the downregulated genes in CLas-Pos for plant-pathogen interactions, glutathione metabolism, peroxisome, and calcium signaling, which are commonly associated with pathogen infections, compared with the healthy control. On the contrary, the number of upregulated genes was lower than that of the downregulated genes in CLas-Neg for genes involved in plant-pathogen interactions and peroxisome biogenesis/metabolism. Additionally, a time-course quantitative reverse transcription-PCR-based expression analysis visualized the induced expression of companion cell-specific genes, phloem protein 2 genes, and sucrose transport genes in young flushes triggered by CLas. This study advances our understanding of early events during CLas infection of citrus young flushes.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Diann S Achor
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
6
|
Dandlen SA, Da Silva JP, Miguel MG, Duarte A, Power DM, Marques NT. Quick Decline and Stem Pitting Citrus tristeza virus Isolates Induce a Distinct Metabolomic Profile and Antioxidant Enzyme Activity in the Phloem Sap of Two Citrus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1394. [PMID: 36987082 PMCID: PMC10051153 DOI: 10.3390/plants12061394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Susceptibility to the severe Citrus tristeza virus (CTV), T36, is higher for Citrus macrophylla (CM) than for C. aurantium (CA). How host-virus interactions are reflected in host physiology is largely unknown. In this study, the profile of metabolites and the antioxidant activity in the phloem sap of healthy and infected CA and CM plants were evaluated. The phloem sap of quick decline (T36) and stem pitting (T318A) infected citrus, and control plants was collected by centrifugation, and the enzymes and metabolites analyzed. The activity of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in infected plants increased significantly in CM and decreased in CA, compared to the healthy controls. Using LC-HRMS2 a metabolic profile rich in secondary metabolites was assigned to healthy CA, compared to healthy CM. CTV infection of CA caused a drastic reduction in secondary metabolites, but not in CM. In conclusion, CA and CM have a different response to severe CTV isolates and we propose that the low susceptibility of CA to T36 may be related to the interaction of the virus with the host's metabolism, which reduces significantly the synthesis of flavonoids and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Susana A. Dandlen
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José P. Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Graça Miguel
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Amílcar Duarte
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M. Power
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Natália Tomás Marques
- CEOT—Centro de Eletrónica, Optoeletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Edif. 8, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Wright AT, Hudson LA, Garcia WL. Activity‐Based Protein Profiling – Enabling Phenotyping of Host‐Associated and Environmental Microbiomes. Isr J Chem 2023. [DOI: 10.1002/ijch.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aaron T. Wright
- Department of Biology Baylor University Waco Texas 76798 USA
- Department of Chemistry and Biochemistry Baylor University Waco Texas 76798 USA
| | - LaRae A. Hudson
- Department of Biology Baylor University Waco Texas 76798 USA
| | | |
Collapse
|
8
|
Chen Q, Min A, Luo S, He J, Wu R, Lin X, Wang Y, He W, Zhang Y, Lin Y, Li M, Zhang Y, Luo Y, Tang H, Wang X. Metabolomic Analysis Revealed Distinct Physiological Responses of Leaves and Roots to Huanglongbing in a Citrus Rootstock. Int J Mol Sci 2022; 23:ijms23169242. [PMID: 36012507 PMCID: PMC9409271 DOI: 10.3390/ijms23169242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is an obstinate disease in the citrus industry. No resistant citrus resources were currently available, but various degrees of Huanglongbing tolerance exist in different germplasm. Citrus junos is emerging as one of the popular rootstocks widely used in the citrus production. However, its responses to the HLB causal agent, Candidatus Liberibacter asiaticus (CLas), were still elusive. In the current study, we investigated the physiological, anatomical, and metabolomic responses of a C. junos rootstock ‘Pujiang Xiangcheng’ by a controlled CLas grafting inoculation. The summer flushes and roots were impaired at 15 weeks after inoculation, although typical leaf symptomatic phenotypes were not obvious. The chlorophyll pigments and the photosynthetic rate were compromised. The phloem sieve tubes were still working, despite the fact that the callose was deposited and the starch granules were accumulated in the phloem cells. A wide, targeted metabolomic analysis was carried out to explore the systematic alterations of the metabolites at this early stage of infection in the leaves and root system. The differentially accumulated metabolites in the CLas-affected leaves and roots compared with the mock-inoculation control tissues revealed that distinct responses were obvious. Besides the commonly observed alteration of sugar and amino acids, the active break down of starch in the roots was discovered. The different types of fatty acids were altered in the two tissues, with a more pronounced content decline in the roots. Our results not only provided fundamental knowledge about the response of the C. junos rootstock to the HLB disease, but also presented new insights into the host–pathogen interaction in the early stages.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ailing Min
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinwei He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Runqin Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ximeng Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Wen He
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yunting Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yuanxiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| |
Collapse
|
9
|
Kumar GNM, Kannangara CG, Knowles NR. Nucleases are upregulated in potato tubers afflicted with zebra chip disease. PLANTA 2022; 255:54. [PMID: 35103848 DOI: 10.1007/s00425-022-03832-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The defense response of potato tubers afflicted with zebra chip disease involves oxidatively mediated upregulation of nucleases that likely modulate localized programmed cell death to restrict the phloem-mobile, CLso bacterial pathogen to the vasculature. Zebra chip (ZC) is a bacterial disease of potato (Solanum tuberosum L.) caused by Candidatus Liberibacter solanacearum (CLso). Tubers from infected plants develop characteristic brown discoloration of the vasculature, a result of localized programmed cell death (PCD). We examined the potential contribution of nucleases in the response of tubers to CLso infection. Specific activities of the major isozymes of dsDNase, ssDNase, and RNase were substantially upregulated in tubers from CLso-infected plants, despite their significantly lower soluble protein content. However, ZC disease had no effect on nuclease isozyme profiles. Activities of the predominant nuclease isoforms from healthy and CLso-infected tubers had similar pH optima, thermotolerance, and responses to metallic co-factors. Nuclease activities were heat stable to 60 °C and resistant to precipitation with 70% (v/v) isopropanol, which constitute effective techniques for partial purification. DNase and RNase isozyme activities were highest at pH 7.2-8.5 and 6.8-7.2, respectively, and profiles were similar for tubers from CLso-infected and non-infected plants. RNase activities were mostly insensitive to inhibition by EDTA, except at pH 8.5 and above. DNase activities were inhibited by EDTA but less sensitive to inhibition at high pH than the RNases. The EDTA-mediated inhibition of DNase (ds/ss) activities was restored with ZnSO4, but not Ca+2 or Mg+2. By contrast, ZnSO4 inhibited the activities of RNases. DTT and CuSO4 inhibited the activities of all three nucleases. These results suggest that activation of tuber nucleases is dependent on the oxidation of sulfhydryl groups to disulfide and/or oxidation of Zn to Zn+2. In light of previous published results that established extensive CLso-induced upregulation of oxidative stress metabolism in tubers, we propose a model to show how increased nuclease activity could result from a glutathione-mediated oxidation of nuclease sulfhydryl groups in diseased tubers. DNases and RNases are likely an integral part of the hypersensitive response and may modulate PCD to isolate the pathogen to the vascular tissues of tubers.
Collapse
Affiliation(s)
- G N Mohan Kumar
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA.
| | - C G Kannangara
- Department of Crop and Soils, Washington State University, Pullman, WA, 99163, USA
- , 335/4A, 2nd Cross Street, Kotte Road, Nugegoda, Sri Lanka
| | - N Richard Knowles
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
10
|
Ma W, Pang Z, Huang X, Xu J, Pandey SS, Li J, Achor DS, Vasconcelos FNC, Hendrich C, Huang Y, Wang W, Lee D, Stanton D, Wang N. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat Commun 2022; 13:529. [PMID: 35082290 PMCID: PMC8791970 DOI: 10.1038/s41467-022-28189-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Huanglongbing (HLB) is a devastating disease of citrus, caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas). Here, we present evidence that HLB is an immune-mediated disease. We show that CLas infection of Citrus sinensis stimulates systemic and chronic immune responses in phloem tissue, including callose deposition, production of reactive oxygen species (ROS) such as H2O2, and induction of immunity-related genes. The infection also upregulates genes encoding ROS-producing NADPH oxidases, and downregulates antioxidant enzyme genes, supporting that CLas causes oxidative stress. CLas-triggered ROS production localizes in phloem-enriched bark tissue and is followed by systemic cell death of companion and sieve element cells. Inhibition of ROS levels in CLas-positive stems by NADPH oxidase inhibitor diphenyleneiodonium (DPI) indicates that NADPH oxidases contribute to CLas-triggered ROS production. To investigate potential treatments, we show that addition of the growth hormone gibberellin (known to have immunoregulatory activities) upregulates genes encoding H2O2-scavenging enzymes and downregulates NADPH oxidases. Furthermore, foliar spray of HLB-affected citrus with gibberellin or antioxidants (uric acid, rutin) reduces H2O2 concentrations and cell death in phloem tissues and reduces HLB symptoms. Thus, our results indicate that HLB is an immune-mediated disease that can be mitigated with antioxidants and gibberellin.
Collapse
Affiliation(s)
- Wenxiu Ma
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Xiaoen Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Diann S Achor
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Fernanda N C Vasconcelos
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Yixiao Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Donghwan Lee
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Daniel Stanton
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
11
|
Pandey SS, Hendrich C, Andrade MO, Wang N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. PHYTOPATHOLOGY 2022; 112:55-68. [PMID: 34609203 DOI: 10.1094/phyto-08-21-0354-fi] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Maxuel O Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
12
|
Weber KC, Mahmoud LM, Stanton D, Welker S, Qiu W, Grosser JW, Levy A, Dutt M. Insights into the mechanism of Huanglongbing tolerance in the Australian finger lime ( Citrus australasica). FRONTIERS IN PLANT SCIENCE 2022; 13:1019295. [PMID: 36340410 PMCID: PMC9634478 DOI: 10.3389/fpls.2022.1019295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/22/2022] [Indexed: 05/13/2023]
Abstract
The Australian finger lime (Citrus australasica) is tolerant to Huanglongbing (HLB; Citrus greening). This species can be utilized to develop HLB tolerant citrus cultivars through conventional breeding and biotechnological approaches. In this report, we conducted a comprehensive analysis of transcriptomic data following a non-choice infection assay to understand the CaLas tolerance mechanisms in the finger lime. After filtering 3,768 differentially expressed genes (DEGs), 2,396 were downregulated and 1,372 were upregulated in CaLas-infected finger lime compared to CaLas-infected HLB-susceptible 'Valencia' sweet orange. Comparative analyses revealed several DEGs belonging to cell wall, β-glucanase, proteolysis, R genes, signaling, redox state, peroxidases, glutathione-S-transferase, secondary metabolites, and pathogenesis-related (PR) proteins categories. Our results indicate that the finger lime has evolved specific redox control systems to mitigate the reactive oxygen species and modulate the plant defense response. We also identified candidate genes responsible for the production of Cys-rich secretory proteins and Pathogenesis-related 1 (PR1-like) proteins that are highly upregulated in infected finger lime relative to noninfected and infected 'Valencia' sweet orange. Additionally, the anatomical analysis of phloem and stem tissues in finger lime and 'Valencia' suggested better regeneration of phloem tissues in finger lime in response to HLB infection. Analysis of callose formation following infection revealed a significant difference in the production of callose plugs between the stem phloem of CaLas+ 'Valencia' sweet orange and finger lime. Understanding the mechanism of resistance will help the scientific community design strategies to protect trees from CaLas infection and assist citrus breeders in developing durable HLB tolerant citrus varieties.
Collapse
Affiliation(s)
- Kyle C. Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Lamiaa M. Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Daniel Stanton
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Stacy Welker
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Wenming Qiu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Manjul Dutt,
| |
Collapse
|
13
|
Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q. Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog 2021; 17:e1010071. [PMID: 34882744 PMCID: PMC8659345 DOI: 10.1371/journal.ppat.1010071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Citrus Huanglongbing (HLB), also known as citrus greening, is one of the most devastating citrus diseases worldwide. Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain associated with HLB, which is yet to be cultured in vitro. None of the commercial citrus cultivars are resistant to HLB. The pathosystem of Ca. Liberibacter is complex and remains a mystery. In this review, we focus on the recent progress in genomic research on the pathogen, the interaction of host and CLas, and the influence of CLas infection on the transcripts, proteins, and metabolism of the host. We have also focused on the identification of candidate genes for CLas pathogenicity or the improvements of HLB tolerance in citrus. In the end, we propose potentially promising areas for mechanistic studies of CLas pathogenicity, defense regulators, and genetic improvement for HLB tolerance/resistance in the future.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Elmore JM, Griffin BD, Walley JW. Advances in functional proteomics to study plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102061. [PMID: 34102449 DOI: 10.1016/j.pbi.2021.102061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 05/20/2023]
Abstract
Pathogen infection triggers complex signaling networks in plant cells that ultimately result in either susceptibility or resistance. We have made substantial progress in dissecting many of these signaling events, and it is becoming clear that changes in proteome composition and protein activity are major drivers of plant-microbe interactions. Here, we highlight different approaches to analyze the functional proteomes of hosts and pathogens and discuss how they have been used to further our understanding of plant disease. Global proteome profiling can quantify the dynamics of proteins, posttranslational modifications, and biological pathways that contribute to immune-related outcomes. In addition, emerging techniques such as enzyme activity-based profiling, proximity labeling, and kinase-substrate profiling are being used to dissect biochemical events that operate during infection. Finally, we discuss how these functional approaches can be integrated with other profiling data to gain a mechanistic, systems-level view of plant and pathogen signaling.
Collapse
Affiliation(s)
- James M Elmore
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA.
| | - Brianna D Griffin
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA.
| |
Collapse
|
15
|
Merli ML, Padgett-Pagliai KA, Cuaycal AE, Garcia L, Marano MR, Lorca GL, Gonzalez CF. ' Candidatus Liberibacter asiaticus' Multimeric LotP Mediates Citrus sinensis Defense Response Activation. Front Microbiol 2021; 12:661547. [PMID: 34421834 PMCID: PMC8371691 DOI: 10.3389/fmicb.2021.661547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
‘Candidatus Liberibacter asiaticus’ is known as the most pathogenic organism associated with citrus greening disease. Since its publicized emergence in Florida in 2005, ‘Ca. L. asiaticus’ remains unculturable. Currently, a limited number of potential disease effectors have been identified through in silico analysis. Therefore, these potential effectors remain poorly characterized and do not fully explain the complexity of symptoms observed in citrus trees infected with ‘Ca. L. asiaticus.’ LotP has been identified as a potential effector and have been partially characterized. This protein retains structural homology to the substrate binding domain of the Lon protease. LotP interacts with chaperones like GroEL, Hsp40, DnaJ, and ClpX and may exercise its biological role through interactions with different proteins involved in proteostasis networks. Here, we evaluate the interactome of LotP—revealing a new protein–protein interaction target (Lon-serine protease) and its effect on citrus plant tissue integrity. We found that via protein–protein interactions, LotP can enhance Lon protease activity, increasing the degradation rate of its specific targets. Infiltration of purified LotP strained citrus plant tissue causing photoinhibition and chlorosis after several days. Proteomics analysis of LotP tissues recovering after the infiltration revealed a large abundance of plant proteins associated with the stabilization and processing of mRNA transcripts, a subset of important transcription factors; and pathways associated with innate plant defense were highly expressed. Furthermore, interactions and substrate binding module of LotP suggest potential interactions with plant proteins, most likely proteases.
Collapse
Affiliation(s)
- Marcelo L Merli
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Kaylie A Padgett-Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Alexandra E Cuaycal
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Lucila Garcia
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Rosario, Argentina
| | - Maria Rosa Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Rosario, Argentina
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Ribeiro C, Xu J, Teper D, Lee D, Wang N. The transcriptome landscapes of citrus leaf in different developmental stages. PLANT MOLECULAR BIOLOGY 2021; 106:349-366. [PMID: 33871796 DOI: 10.1007/s11103-021-01154-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The temporal expression profiles of citrus leaves explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses of mature and immature leaves to biotic stress such as citrus canker and Asian citrus psyllid (Diaphorina citri). Citrus is an important fruit crop worldwide. Different developmental stages of citrus leaves are associated with distinct features, such as differences in susceptibilities to pathogens and insects, as well as photosynthetic capacity. Here, we investigated the mechanisms underlying these distinctions by comparing the gene expression profiles of mature and immature citrus leaves. Immature (stages V3 and V4), transition (stage V5), and mature (stage V6) Citrus sinensis leaves were chosen for RNA-seq analyses. Carbohydrate biosynthesis, photosynthesis, starch biosynthesis, and disaccharide metabolic processes were enriched among the upregulated differentially expressed genes (DEGs) in the V5 and V6 stages compared with that in the V3 and V4 stages. Glucose level was found to be higher in V5 and V6 than in V3 and V4. Among the four stages, the largest number of DEGs between contiguous stages were identified between V5 and V4, consistent with a change from sink to source, as well as with the sucrose and starch quantification data. The differential expression profiles related to cell wall synthesis, secondary metabolites such as flavonoids and terpenoids, amino acid biosynthesis, and immunity between immature and mature leaves may contribute to their different responses to Asian citrus psyllid infestation. The expression data suggested that both the constitutive and induced gene expression of immunity-related genes plays important roles in the greater resistance of mature leaves against Xanthomonas citri compared with immature leaves. The gene expression profiles in the different stages can help identify stage-specific promoters for the manipulation of the expression of citrus traits according to the stage. The temporal expression profiles explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses to biotic stress.
Collapse
Affiliation(s)
- Camila Ribeiro
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Jin Xu
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Doron Teper
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Donghwan Lee
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
17
|
Liu Y, Lin T, Valencia MV, Zhang C, Lv Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules 2021; 26:molecules26030667. [PMID: 33514014 PMCID: PMC7865979 DOI: 10.3390/molecules26030667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
Vascular bundles play important roles in transporting nutrients, growth signals, amino acids, and proteins between aerial and underground tissues. In order to understand these sophisticated processes, a comprehensive analysis of the roles of the components located in the vascular tissues is required. A great deal of data has been obtained from proteomic analyses of vascular tissues in plants, which mainly aim to identify the proteins moving through the vascular tissues. Here, different aspects of the phloem and xylem proteins are reviewed, including their collection methods, and their main biological roles in growth, and biotic and abiotic stress responses. The study of vascular proteomics shows great potential to contribute to our understanding of the biological mechanisms related to development and defense in plants.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Maria Valderrama Valencia
- Departamento Académico de Biología–Universidad Nacional de San Agustin de Arequipa Nro117, Arequipa 04000, Peru;
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (C.Z.); (Z.L.)
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
- Correspondence: (C.Z.); (Z.L.)
| |
Collapse
|
18
|
Interrogating Plant-Microbe Interactions with Chemical Tools: Click Chemistry Reagents for Metabolic Labeling and Activity-Based Probes. Molecules 2021; 26:molecules26010243. [PMID: 33466477 PMCID: PMC7796436 DOI: 10.3390/molecules26010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 01/22/2023] Open
Abstract
Continued expansion of the chemical biology toolbox presents many new and diverse opportunities to interrogate the fundamental molecular mechanisms driving complex plant-microbe interactions. This review will examine metabolic labeling with click chemistry reagents and activity-based probes for investigating the impacts of plant-associated microbes on plant growth, metabolism, and immune responses. While the majority of the studies reviewed here used chemical biology approaches to examine the effects of pathogens on plants, chemical biology will also be invaluable in future efforts to investigate mutualistic associations between beneficial microbes and their plant hosts.
Collapse
|