1
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
Affiliation(s)
- Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
2
|
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru PN. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 2023; 10:1110750. [PMID: 37275642 PMCID: PMC10232757 DOI: 10.3389/fnut.2023.1110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Underutilized/orphan legumes provide food and nutritional security to resource-poor rural populations during periods of drought and extreme hunger, thus, saving millions of lives. The Leguminaceae, which is the third largest flowering plant family, has approximately 650 genera and 20,000 species and are distributed globally. There are various protein-rich accessible and edible legumes, such as soybean, cowpea, and others; nevertheless, their consumption rate is far higher than production, owing to ever-increasing demand. The growing global urge to switch from an animal-based protein diet to a vegetarian-based protein diet has also accelerated their demand. In this context, underutilized legumes offer significant potential for food security, nutritional requirements, and agricultural development. Many of the known legumes like Mucuna spp., Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain comparable amounts of protein, essential amino acids, polyunsaturated fatty acids (PUFAs), dietary fiber, essential minerals and vitamins along with other bioactive compounds. Keeping this in mind, the current review focuses on the potential of discovering underutilized legumes as a source of food, feed and pharmaceutically valuable chemicals, in order to provide baseline data for addressing malnutrition-related problems and sustaining pulse needs across the globe. There is a scarcity of information about underutilized legumes and is restricted to specific geographical zones with local or traditional significance. Around 700 genera and 20,000 species remain for domestication, improvement, and mainstreaming. Significant efforts in research, breeding, and development are required to transform existing local landraces of carefully selected, promising crops into types with broad adaptability and economic viability. Different breeding efforts and the use of biotechnological methods such as micro-propagation, molecular markers research and genetic transformation for the development of underutilized crops are offered to popularize lesser-known legume crops and help farmers diversify their agricultural systems and boost their profitability.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute, Jodhpur, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station, Odisha University of Agriculture and Technology, Keonjhar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dilip Kumar
- ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi, India
| | | | | | - P. N. Guru
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, India
| |
Collapse
|
3
|
Ballesteros-Gutiérrez M, Albareda M, Barbas C, López-Gonzálvez Á, Dunn MF, Palacios JM. A host-specific diaminobutyrate aminotransferase contributes to symbiotic performance, homoserine metabolism, and competitiveness in the Rhizobium leguminosarum/ Pisum sativum system. Front Microbiol 2023; 14:1182563. [PMID: 37260681 PMCID: PMC10228743 DOI: 10.3389/fmicb.2023.1182563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae (Rlv) UPM791 effectively nodulates pea and lentil, but bacteroids contain a number of proteins differentially expressed depending on the host. One of these host-dependent proteins (C189) is similar to a diaminobutyrate-2-oxoglutarate aminotransferase (DABA-AT). DABA-AT activity was demonstrated with cell extracts and with purified protein, so C189 was renamed as Dat. The dat gene was strongly induced in the central, active area of pea nodules, but not in lentil. Mutants defective in dat were impaired in symbiotic performance with pea plants, exhibiting reduced shoot dry weight, smaller nodules, and a lower competitiveness for nodulation. In contrast, there were no significant differences between mutant and wild-type in symbiosis with lentil plants. A comparative metabolomic approach using cell-free extracts from bacteroids induced in pea and lentil showed significant differences among the strains in pea bacteroids whereas no significant differences were found in lentil. Targeted metabolomic analysis revealed that the dat mutation abolished the presence of 2,4-diaminobutyrate (DABA) in pea nodules, indicating that DABA-AT reaction is oriented toward the production of DABA from L-aspartate semialdehyde. This analysis also showed the presence of L-homoserine, a likely source of aspartate semialdehyde, in pea bacteroids but not in those induced in lentil. The dat mutant showed impaired growth when cells were grown with L-homoserine as nitrogen source. Inclusion of DABA or L-homoserine as N source suppressed pantothenate auxotropy in Rlv UPM791, suggesting DABA as source of the pantothenate precursor β-alanine. These data indicate that Rlv UPM791 Dat enzyme is part of an adaptation mechanism of this bacterium to a homoserine-rich environment such as pea nodule and rhizosphere.
Collapse
Affiliation(s)
- Marta Ballesteros-Gutiérrez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Consejo Superior de Investigaciones Científicas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Marta Albareda
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Consejo Superior de Investigaciones Científicas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Coral Barbas
- Facultad de Farmacia, Center for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, Boadilla del Monte, Spain
| | - Ángeles López-Gonzálvez
- Facultad de Farmacia, Center for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, Boadilla del Monte, Spain
| | - Michael F. Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José M. Palacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Consejo Superior de Investigaciones Científicas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Hao X, Zhang W, Zhao L, Shen L, Zhu L, Zeng B, Jiang D, Bai L. Bacillus subtilis reduces antibiotic resistance genes of animal sludge in vermicomposting by improving heat stress tolerance of Eisenia foetida and bacterial community adjustment. ENVIRONMENTAL RESEARCH 2023; 219:115088. [PMID: 36529325 DOI: 10.1016/j.envres.2022.115088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance genes (ARGs) in livestock industry have been recognized as a kind of pollutant. The effect of Bacillus subtilis (B. subtilis) as an additive for the reduction of ARGs in animal sludge from livestock and poultry wastewater treatment plant during vermicomposting was investigated. We also evaluated the oxidative stress level and growth of earthworms, Eisenia foetida, bacterial community succession, and the quality of the end products. Two treatments were conducted using B. subtilis, one at 18 °C and another at 28 °C. Controls were setup without the bacteria. The results showed that inoculation of B. subtilis promoted the degradation of organics at 28 °C and increased the germination index to 236%. The increased activities of the superoxide dismutase (1.69 U/mg pr) and catalase (8.05 U/mg pr) and the decreased activity of malondialdehyde (0.02 nmol/mg pr) by B. subtilis at 28 °C showed that the earthworms were relieved of heat stress. The addition of B. subtilis reduced the abundance of 32 target ARGs, including integron (intI-1), transposase (IS613) and resistant genes, such as sulfonamide (sul2), quinolone (oprJ), macrolide-lincosamide-streptogramin group B (ermF, ermB), tetracycline (tetL-02, tetX), β-lactama (blaOXA10-01) and aminoglycoside [strB, aac(6')-Ib(aka aacA4)-01, aac(6')-Ib(aka aacA4)-02]. Organic matter degrading Membranicola, Paludisphaera, Sphingorhabdus and uncultured bacterium belonging to the order Chitinophagales, nitrifying and nitrogen-fixing Singulisphaera and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, soil remediating Achromobacter, and plant growth promoting Kaistia, Galbibacter and Ilumatobacter were increased significantly (P < 0.05). However, the growth of harmful bacteria such as Burkholderiaceae was inhibited in the vermicompost. In earthworm guts, the probiotic Mesorhizobium was promoted, while the pathogenic uncultured bacterium belonging to the family Enterobacteriaceae was reduced. Besides, B. subtilis enhanced the host relationships between bacteria and ARGs. These findings might be helpful in the removal of ARGs in animal wastes and in understanding the synergy between earthworms and microorganisms.
Collapse
Affiliation(s)
- Xiaoxia Hao
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wenjin Zhang
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Liangbin Zhao
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Dongmei Jiang
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lin Bai
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
5
|
Taboada-Castro H, Gil J, Gómez-Caudillo L, Escorcia-Rodríguez JM, Freyre-González JA, Encarnación-Guevara S. Rhizobium etli CFN42 proteomes showed isoenzymes in free-living and symbiosis with a different transcriptional regulation inferred from a transcriptional regulatory network. Front Microbiol 2022; 13:947678. [PMID: 36312930 PMCID: PMC9611204 DOI: 10.3389/fmicb.2022.947678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
A comparative proteomic study at 6 h of growth in minimal medium (MM) and bacteroids at 18 days of symbiosis of Rhizobium etli CFN42 with the Phaseolus vulgaris leguminous plant was performed. A gene ontology classification of proteins in MM and bacteroid, showed 31 and 10 pathways with higher or equal than 30 and 20% of proteins with respect to genome content per pathway, respectively. These pathways were for energy and environmental compound metabolism, contributing to understand how Rhizobium is adapted to the different conditions. Metabolic maps based on orthology of the protein profiles, showed 101 and 74 functional homologous proteins in the MM and bacteroid profiles, respectively, which were grouped in 34 different isoenzymes showing a great impact in metabolism by covering 60 metabolic pathways in MM and symbiosis. Taking advantage of co-expression of transcriptional regulators (TF’s) in the profiles, by selection of genes whose matrices were clustered with matrices of TF’s, Transcriptional Regulatory networks (TRN´s) were deduced by the first time for these metabolic stages. In these clustered TF-MM and clustered TF-bacteroid networks, containing 654 and 246 proteins, including 93 and 46 TFs, respectively, showing valuable information of the TF’s and their regulated genes with high stringency. Isoenzymes were specific for adaptation to the different conditions and a different transcriptional regulation for MM and bacteroid was deduced. The parameters of the TRNs of these expected biological networks and biological networks of E. coli and B. subtilis segregate from the random theoretical networks. These are useful data to design experiments on TF gene–target relationships for bases to construct a TRN.
Collapse
Affiliation(s)
- Hermenegildo Taboada-Castro
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Jeovanis Gil
- Division of Oncology, Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Leopoldo Gómez-Caudillo
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Juan Miguel Escorcia-Rodríguez
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Julio Augusto Freyre-González
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sergio Encarnación-Guevara
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
- *Correspondence: Sergio Encarnacion Guevara,
| |
Collapse
|
6
|
Zorin EA, Kliukova MS, Afonin AM, Gribchenko ES, Gordon ML, Sulima AS, Zhernakov AI, Kulaeva OA, Romanyuk DA, Kusakin PG, Tsyganova AV, Tsyganov VE, Tikhonovich IA, Zhukov VA. A variable gene family encoding nodule-specific cysteine-rich peptides in pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:884726. [PMID: 36186063 PMCID: PMC9515463 DOI: 10.3389/fpls.2022.884726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Various legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Medicago truncatula Gaertn., while in many other legumes relevant information is still fragmentary. Here, we characterize the NCR gene family in pea (Pisum sativum L.) using genomic and transcriptomic data. We found 360 genes encoding NCR peptides that are expressed in nodules. The sequences of pea NCR genes and putative peptides are highly variable and differ significantly from NCR sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47-MtNCR312) has been identified. The NCR genes in the pea genome are located in clusters, and the expression patterns of NCR genes from one cluster tend to be similar. These data support the idea of independent evolution of NCR genes by duplication and diversification in related legume species. We also described spatiotemporal expression profiles of NCRs and identified specific transcription factor (TF) binding sites in promoters of "early" and "late" NCR genes. Further, we studied the expression of NCR genes in nodules of Fix- mutants and predicted potential regulators of NCR gene expression, one among them being the TF ERN1 involved in the early steps of nodule organogenesis. In general, this study contributes to understanding the functions of NCRs in legume nodules and contributes to understanding the diversity and potential antibiotic properties of pea nodule-specific antimicrobial molecules.
Collapse
Affiliation(s)
- Evgeny A. Zorin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Marina S. Kliukova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Emma S. Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Mikhail L. Gordon
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | | | - Olga A. Kulaeva
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Daria A. Romanyuk
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Pyotr G. Kusakin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna V. Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| |
Collapse
|
7
|
McDonald TR, Rizvi MF, Ruiter BL, Roy R, Reinders A, Ward JM. Posttranslational regulation of transporters important for symbiotic interactions. PLANT PHYSIOLOGY 2022; 188:941-954. [PMID: 34850211 PMCID: PMC8825328 DOI: 10.1093/plphys/kiab544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Coordinated sharing of nutritional resources is a central feature of symbiotic interactions, and, despite the importance of this topic, many questions remain concerning the identification, activity, and regulation of transporter proteins involved. Recent progress in obtaining genome and transcriptome sequences for symbiotic organisms provides a wealth of information on plant, fungal, and bacterial transporters that can be applied to these questions. In this update, we focus on legume-rhizobia and mycorrhizal symbioses and how transporters at the symbiotic interfaces can be regulated at the protein level. We point out areas where more research is needed and ways that an understanding of transporter mechanism and energetics can focus hypotheses. Protein phosphorylation is a predominant mechanism of posttranslational regulation of transporters in general and at the symbiotic interface specifically. Other mechanisms of transporter regulation, such as protein-protein interaction, including transporter multimerization, polar localization, and regulation by pH and membrane potential are also important at the symbiotic interface. Most of the transporters that function in the symbiotic interface are members of transporter families; we bring in relevant information on posttranslational regulation within transporter families to help generate hypotheses for transporter regulation at the symbiotic interface.
Collapse
Affiliation(s)
- Tami R McDonald
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Madeeha F Rizvi
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Bretton L Ruiter
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Rahul Roy
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Anke Reinders
- College of Continuing and Professional Studies, University of Minnesota, St. Paul, Minnesota, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Author for communication:
| |
Collapse
|
8
|
Ajilogba CF, Olanrewaju OS, Babalola OO. Improving Bambara Groundnut Production: Insight Into the Role of Omics and Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2022; 13:836133. [PMID: 35310649 PMCID: PMC8929175 DOI: 10.3389/fpls.2022.836133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 05/05/2023]
Abstract
With the rise in the world population, environmental hazards caused by chemical fertilizers, and a decrease in food supply due to global climate change, food security has become very pertinent. In addition, considerable parts of agriculture lands have been lost to urbanization. It has therefore been projected that at the present rate of population increase coupled with the other mentioned factors, available food will not be enough to feed the world. Hence, drastic approach is needed to improve agriculture output as well as human sustainability. Application of environmentally sustainable approach, such as the use of beneficial microbes, and improved breeding of underutilized legumes are one of the proposed sustainable ways of achieving food security. Microbiome-assisted breeding in underutilized legumes is an untapped area with great capabilities to improve food security. Furthermore, revolution in genomics adaptation to crop improvement has changed the approach from conventional breeding to more advanced genomic-assisted breeding on the host plant and its microbiome. The use of rhizobacteria is very important to improving crop yield, especially rhizobacteria from legumes like Bambara groundnut (BGN). BGN is an important legume in sub-Saharan Africa with high ability to tolerate drought and thrive well in marginalized soils. BGN and its interaction with various rhizobacteria in the soil could play a vital role in crop production and protection. This review focus on the importance of genomics application to BGN and its microbiome with the view of setting a potential blueprint for improved BGN breeding through integration of beneficial bacteria.
Collapse
Affiliation(s)
- Caroline Fadeke Ajilogba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
- Division of Agrometeorology, Agricultural Research Council, Natural Resources and Engineering, Pretoria, South Africa
| | - Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|